Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Antioxidative and Hepatoprotective Effects of Rubus canescens DC. Growing Wild in Lebanon

Author(s): Ghaydaa Mohamad Salim, Mohammad H. El-Dakdouki*, Hiba Abdallah, Hatem M. Nasser and Nelly Arnold-Apostolides

Volume 11, Issue 1, 2021

Published on: 11 November, 2019

Page: [44 - 56] Pages: 13

DOI: 10.2174/2210315509666191111103820

Price: $65

Abstract

Background: Plants of the genus Rubus (family Rosaceae) have been used for diverse medicinal purposes for centuries. We hypothesized that the scarcely investigated R. canescens DC., like other species of the genus Rubus, exhibit prominent antioxidant activity.

Objective: The present study investigates the in vitro and in vivo antioxidant activity of fruit juice as well as aqueous and methanolic extracts of the areal parts of Rubus canescens DC., and deciphers the phytochemical profile of the methanolic extracts by GC-MS.

Methods: The in vitro antioxidant activity was assessed by DPPH radical scavenging assay and β- carotene bleaching assays. The in vivo antioxidant activity of the extracts was evaluated by measuring ALT, AST, CAT, and SOD levels in CCl4-challenged mice in two experimental models (chronic exposure and preventive). Histological analysis was conducted on H&E stained liver sections, and the phytochemical profile of methanolic extracts was investigated by GC-MS.

Results: DPPH radical scavenging assay revealed that the methanolic leaves extract exhibited the highest activity, while the juice was the most active in terms of the β-carotene bleaching assay. The in vivo experiments suggested that the extracts have promising antioxidant potential and hepatoprotective effects capable of promoting liver functions. Histological analysis of liver sections revealed that administrating juice extract regenerated hepatocytes while reducing inflammation. GC-MS analysis indicated the presence of squalene, β-amyrin, and γ-sitosterol that may have contributed to the observed activity.

Conclusion: The current study provided the first in vivo evidence supporting the antioxidative and hepatoprotective effects of R. canescens DC. growing wild in Lebanon.

Keywords: Rubus canescens DC., antioxidant, hepatoprotective, GC-MS, Lebanon, methanolic extracts.

Graphical Abstract
[1]
Cragg, G.M.; Katz, F.; Newman, D.J.; Rosenthal, J. The impact of the United Nations Convention on Biological Diversity on natural products research. Nat. Prod. Rep., 2012, 29(12), 1407-1423.
[http://dx.doi.org/10.1039/c2np20091k PMID: 23037777]
[2]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001 ] [PMID: 26281720]
[3]
David, B.; Wolfender, J.L.; Dias, D.A. The pharmaceutical industry and natural products: historical status and new trends. Phytochem. Rev., 2015, 14, 299-315.
[http://dx.doi.org/10.1007/s11101-014-9367-z]
[4]
World Health Organization (WHO), WHO Traditional Medicine Strategy, 2014-2023. 2013. Available from: . http://www.who.int/traditional-complementary-integrative-medicine/publications
[5]
Calixto, J.B. Twenty-five years of research on medicinal plants in Latin America: a personal view. J. Ethnopharmacol., 2005, 100(1-2), 131-134.
[http://dx.doi.org/10.1016/j.jep.2005.06.004 PMID: 16006081]
[6]
Bodeker, C.; Bodeker, G.; Ong, C.K.; Grundy, C.K.; Burford, G.; Shein, K. WHO Global atlas of traditional, complementary and alternative medicine; World Health Organization: Geneva, Switzerland, 2005.
[7]
Finn, C.E. Rubus spp., blackberry. Janick J. Paull R.E, eds. The Encyclopedia of fruits and nuts; Cambridge: Centre for Agriculture and Biosciences International (CABI), 2008, pp. 348-351..
[8]
Thompson, E.W.; Newgreen, D.F.; Tarin, D. Carcinoma invasion and metastasis: A role for epithelial-mesenchymal transition? Cancer Res., 2005, 65(14), 5991-5995.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0616 ] [PMID: 16024595]
[9]
Kusznierewicz, B.; Piekarska, A.; Mrugalska, B.; Konieczka, P.; Namieśnik, J.; Bartoszek, A. Phenolic composition and antioxidant properties of Polish blue-berried honeysuckle genotypes by HPLC-DAD-MS, HPLC postcolumn derivatization with ABTS or FC, and TLC with DPPH visualization. J. Agric. Food Chem., 2012, 60(7), 1755-1763.
[http://dx.doi.org/10.1021/jf2039839 PMID: 22264130]
[10]
Olas, B. The multifunctionality of berries toward blood platelets and the role of berry phenolics in cardiovascular disorders. Platelets, 2017, 28(6), 540-549.
[http://dx.doi.org/10.1080/09537104.2016.1235689 ] [PMID: 27778523]
[11]
Fu, Y.; Zhou, X.; Chen, S.; Sun, Y.; Shen, Y.; Ye, X. Chemical composition and antioxidant activity of Chinese wild raspberry (Rubus hirsutus Thunb.). LWT-Food. Sci. Tech. (Paris), 2015, 60, 1262-1268.
[12]
Yu, Z.; Liu, L.; Xu, Y.; Wang, L.; Teng, X.; Li, X.; Dai, J. Characterization and biological activities of a novel polysaccharide isolated from raspberry (Rubus idaeus L.) fruits. Carbohydr. Polym., 2015, 132, 180-186.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.068 PMID: 26256339]
[13]
Gouveia-Figueira, S.C.; Castilho, P.C. Phenolic screening by HPLC–DAD–ESI/MSn and antioxidant capacity of leaves, flowers and berries of Rubus grandifolius Lowe. Ind. Crops Prod., 2015, 73, 28-40.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.022]
[14]
Dall’Acqua, S.; Cervellati, R.; Loi, M.C.; Innocenti, G. Evaluation of in vitro antioxidant properties of some traditional Sardinian medicinal plants: investigation of the high antioxidant capacity of Rubus ulmifolius. Food Chem., 2008, 106, 745-749.
[http://dx.doi.org/10.1016/j.foodchem.2007.06.055]
[15]
Anttonen, M.; Karjalainen, R. Environmental and genetic variation of phenolic compounds in red raspberry. J. Food Compos. Anal., 2005, 18, 759-769.
[http://dx.doi.org/10.1016/j.jfca.2004.11.003]
[16]
Tatlı, I.I.; Sahpaz, S.; Akkol, E.k.; Martin-Nizard, F.; Gressier, B.; Ezer, N.; Bailleul, F. Antioxidant, anti-inflammatory, and antinociceptive activities of Turkish medicinal plants. Pharm. Biol., 2009, 47, 916-921.
[http://dx.doi.org/10.1080/13880200902962731]
[17]
Bulut, G.; Tuzlaci, E. An ethnobotanical study of medicinal plants in Bayramiç (Çanakkale-Turkey). Marmara Pharm. J., 2015, 19, 268-282.
[http://dx.doi.org/10.12991/mpj.201519392830]
[18]
Loganayaki, N.; Siddhuraju, P.; Manian, S. Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. J. Food Sci. Technol., 2013, 50(4), 687-695.
[http://dx.doi.org/10.1007/s13197-011-0389-x PMID: 24425970]
[19]
Rajoriya, A.; Tripathy, S.S.; Gupta, N. In vitro antioxidant activity of selected Ganoderma species found in Odisha, India. Trop. Plant Res., 2015, 2, 72-77.
[20]
Zhang, W.; Chen, H.; Wang, Z.; Lan, G.; Zhang, L. Comparative studies on antioxidant activities of extracts and fractions from the leaves and stem of Epimedium koreanum Nakai. J. Food Sci. Technol., 2013, 50(6), 1122-1129.
[http://dx.doi.org/10.1007/s13197-011-0447-4 PMID: 24426024]
[21]
Liu, J.; Jia, L.; Kan, J.; Jin, C.H. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem. Toxicol., 2013, 51, 310-316.
[http://dx.doi.org/10.1016/j.fct.2012.10.014 PMID: 23099505]
[22]
Huang, T.L.; Villalobos, S.A.; Hammock, B.D. Effect of hepatotoxic doses of paracetamol and carbon tetrachloride on the serum and hepatic carboxylesterase activity in mice. J. Pharm. Pharmacol., 1993, 45(5), 458-465.
[http://dx.doi.org/10.1111/j.2042-7158.1993.tb05576.x ] [PMID: 8099967]
[23]
Gyamfi, M.A.; Yonamine, M.; Aniya, Y. Free-radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. Gen. Pharmacol., 1999, 32(6), 661-667.
[http://dx.doi.org/10.1016/S0306-3623(98)00238-9 ] [PMID: 10401991]
[24]
McCord, J.M.; Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem., 1969, 244(22), 6049-6055.
[http://dx.doi.org/10.1016/S0021-9258(18)63504-5 PMID: 5389100]
[25]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3 PMID: 6727660]
[26]
Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 2005, 53(10), 4290-4302.
[http://dx.doi.org/10.1021/jf0502698 PMID: 15884874]
[27]
Serteser, A.; Kargioğlu, M.; Gök, V.; Bağci, Y.; Özcan, M.M.; Arslan, D. Determination of antioxidant effects of some plant species wild growing in Turkey. Int. J. Food Sci. Nutr., 2008, 59(7-8), 643-651.
[http://dx.doi.org/10.1080/09637480701602530 PMID: 19382350]
[28]
Wang, S.Y.; Lin, H.S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem., 2000, 48(2), 140-146.
[http://dx.doi.org/10.1021/jf9908345 PMID: 10691606]
[29]
Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci., 2015, 16(10), 24673-24706.
[http://dx.doi.org/10.3390/ijms161024673 PMID: 26501271]
[30]
Ferlemi, A.V.; Lamari, F.N. Berry leaves: An alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants, 2016, 5(2), 17-37.
[http://dx.doi.org/10.3390/antiox5020017 PMID: 27258314]
[31]
Buřičová, L.; Andjelkovic, M.; Čermáková, M.; Réblová, Z.; Jurček, O.; Kolehmainen, E.; Verhé, R.; Kvasnička, F. Antioxidant capacities and antioxidants of strawberry, blackberry and raspberry leaves. Czech J. Food Sci., 2011, 29, 181-189.
[http://dx.doi.org/10.17221/300/2010-CJFS]
[32]
Lin, J.K.; Wang, C.J. Protection of crocin dyes on the acute hepatic damage induced by aflatoxin B1 and dimethylnitrosamine in rats. Carcinogenesis, 1986, 7(4), 595-599.
[http://dx.doi.org/10.1093/carcin/7.4.595 PMID: 2870820]
[33]
Hukkeri, V.I.; Jaiprakash, B.; Lavhale, M.S.; Karadi, R.V.; Kuppast, I.J. Hepatoprotective activity of Anthus excelsa Roxb. leaf extracts on experimental liver damage in rats. J. Pharmacogn., 2002, 11, 120-128.
[34]
Anderson, F.H.; Zeng, L.; Rock, N.R.; Yoshida, E.M. An assessment of the clinical utility of serum ALT and AST in chronic hepatitis C. Hepatol. Res., 2000, 18(1), 63-71.
[http://dx.doi.org/10.1016/S1386-6346(99)00085-6 ] [PMID: 10838037]
[35]
Halliwell, B.; Gutteridge, J.M.C. The antioxidants of human extracellular fluids. Arch. Biochem. Biophys., 1990, 280(1), 1-8.
[http://dx.doi.org/10.1016/0003-9861(90)90510-6 PMID: 2191627]
[36]
Kohen, R.; Nyska, A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol., 2002, 30(6), 620-650.
[http://dx.doi.org/10.1080/01926230290166724 PMID: 12512863]
[37]
Manonmani, G.; Bhavapriya, V.; Kalpana, S.; Govindasamy, S.; Apparanantham, T. Antioxidant activity of Cassia fistula (Linn.) flowers in alloxan induced diabetic rats. J. Ethnopharmacol., 2005, 97(1), 39-42.
[http://dx.doi.org/10.1016/j.jep.2004.09.051 PMID: 15652272]
[38]
Kanthal, L.K.; Dey, A.; Satyavathi, K.; Bhojaraju, P. GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC. Pharmacognosy Res., 2014, 6(1), 58-61.
[http://dx.doi.org/10.4103/0974-8490.122919 PMID: 24497744]
[39]
Gomathi, D.; Kalaiselvi, M.; Ravikumar, G.; Devaki, K.; Uma, C. GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. J. Food Sci. Technol., 2015, 52(2), 1212-1217.
[http://dx.doi.org/10.1007/s13197-013-1105-9 PMID: 25694742]
[40]
Gopi, K.; Renu, K.; Jayaraman, G. Inhibition of Naja naja venom enzymes by the methanolic extract of Leucas aspera and its chemical profile by GC-MS. Toxicol. Rep., 2014, 1, 667-673.
[http://dx.doi.org/10.1016/j.toxrep.2014.08.012 PMID: 28962280]
[41]
Chóez-Guaranda, I.; Ruíz-Barzola, O.; Ruales, J.; Manzano, P. Antioxidant activity optimization and GC-MS profile of aqueous extracts of Vernonanthura patens (Kunth) H. Rob. leaves. Nat. Prod. Res., 2018, 17, 1-5.
[http://dx.doi.org/10.1080/14786419.2018.1539978 ] [PMID: 30450958]
[42]
Amarowicz, R. Squalene: A natural antioxidant? Eur. J. Lipid Sci. Technol., 2009, 111, 411-412.
[http://dx.doi.org/10.1002/ejlt.200900102]
[43]
Cardoso, B.K.; de Oliveira, H.L.M.; Melo, U.Z.; Fernandez, C.M.M.; Campo, C.F.A.A.; Gonçalves, J.E.; Laverde, A., Jr; Romagnolo, M.B.; Linde, G.A.; Gazim, Z.C. Antioxidant activity of α and β-amyrin isolated from Myrcianthes pungens leaves. Nat. Prod. Res., 2018, 22, 1-5.
[PMID: 30465617]
[44]
Afify, A.E.M.R.; Fayed, S.A.; Shalaby, E.A.; El-Shemy, H.A. Syzygium cumini (pomposia) active principles exhibit potent anticancer and antioxidant activities. Afr. J. Pharm. Pharmacol., 2011, 5, 948-956.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy