Generic placeholder image

Current Drug Delivery


ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Effect of Solution Properties and Operating Parameters on Needleless Electrospinning of Poly(Ethylene Oxide) Nanofibers Loaded with Bovine Serum Albumin

Author(s): Ramprasath Ramakrishnan, Jolius Gimbun*, Praveen Ramakrishnan, Balu Ranganathan*, Samala Murali Mohan Reddy and Ganesh Shanmugam

Volume 16, Issue 10, 2019

Page: [913 - 922] Pages: 10

DOI: 10.2174/1567201816666191029122445

Price: $65


Background: This paper presents the effect of solution properties and operating parameters of polyethylene oxide (PEO) based nanofiber using a wire electrode-based needleless electrospinning.

Methods: The feed solution was prepared using a PEO dissolved in water or a water-ethanol mixture. The PEO solution is blended with Bovine Serum Albumin protein (BSA) as a model drug to study the effect of the electrospinning process on the stability of the loaded protein. The polymer solution properties such as viscosity, surface tension, and conductivity were controlled by adjusting the solvent and salt content. The morphology and fiber size distribution of the nanofiber was analyzed using scanning electron microscopy.

Results: The results show that the issue of a beaded nanofiber can be eliminated either by increasing the solution viscosity or by the addition of salt and ethanol to the PEO-water system. The addition of salt and solvent produced a high frequency of smaller fiber diameter ranging from 100 to 150 nm. The encapsulation of BSA in PEO nanofiber was characterized by three different spectroscopy techniques (i.e. circular dichroism, Fourier transform infrared, and fluorescence) and the results showed the BSA is well encapsulated in the PEO matrix with no changes in the protein structure.

Conclusion: This work may serve as a useful guide for a drug delivery industry to process a nanofiber at a large and continuous scale with a blend of drugs in nanofiber using a wire electrode electrospinning.

Keywords: Needleless electrospinning, polyethylene oxide (PEO), electrospinning parameters, drug embedding nanofibers, bovine serum albumin (BSA), poly(vinyl alcohol) (PVA).

Graphical Abstract
Dubský, M.; Kubinová, S.; Širc, J.; Voska, L.; Zajíček, R.; Zajícová, A.; Lesný, P.; Jirkovská, A.; Michálek, J.; Munzarová, M.; Holáň, V.; Syková, E. Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. J. Mater. Sci. Mater. Med., 2012, 23(4), 931-941.
[] [PMID: 22331377]
Yarin, A.; Zussman, E. Upward needleless electrospinning of multiple nanofibers. Polymer (Guildf.), 2004, 45(9), 2977-2980.
Jirsak, O.; Petrik, S. Recent advances in nanofibre technology: Needleless electrospinning. Int. J. Nanotechnol., 2012, 9(8-9), 836-845.
Niu, H.; Lin, T. Fiber generators in needleless electrospinning. J. Nanomater., 2012, 2012, 12.
Kai, D.; Liow, S.S.; Loh, X.J. Biodegradable polymers for electrospinning: Towards biomedical applications. Mater. Sci. Eng. C, 2014, 45, 659-670.
[] [PMID: 25491875]
Tiwari, S.K.; Venkatraman, S.S. Importance of viscosity parameters in electrospinning: Of monolithic and core–shell fibers. Mater. Sci. Eng. C, 2012, 32(5), 1037-1042.
Casasola, R.; Thomas, N.L.; Trybala, A.; Georgiadou, S. Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer (Guildf.), 2014, 55(18), 4728-4737.
El-Rafei, A. Optimization of the electrospinning parameters of Mn2O3 and Mn3O4 nanofibers. Ceram. Int., 2015, 41(9), 12065-12072.
Teo, W.E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology, 2006, 17(14), R89-R106.
[] [PMID: 19661572]
Sorour, M.H.; El-Rafei, A.; Hani, H.A. Synthesis and characterization of electrospun aluminum doped Li1. 6Mn1. 6O4 spinel. Ceram. Int., 2016, 42(4), 4911-4917.
Zuo, W.; Zhu, M.; Yang, W.; Yu, H.; Chen, Y.; Zhang, Y. Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym. Eng. Sci., 2005, 45(5), 704-709.
Stepanyan, R.; Subbotin, A.; Cuperus, L.; Boonen, P.; Dorschu, M.; Oosterlinck, F.; Bulters, M. Nanofiber diameter in electrospinning of polymer solutions: Model and experiment. Polymer (Guildf.), 2016, 97, 428-439.
Fong, H.; Chun, I.; Reneker, D. Beaded nanofibers formed during electrospinning. Polymer (Guildf.), 1999, 40(16), 4585-4592.
Yarin, A.L.; Koombhongse, S.; Reneker, D.H. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J. Appl. Phys., 2001, 90(9), 4836-4846.
Angammana, C.J.; Jayaram, S.H. Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Trans. Ind. Appl., 2011, 47(3), 1109-1117.
Arayanarakul, K.; Choktaweesap, N.; Aht‐ong, D.; Meechaisue, C.; Supaphol, P. Effects of poly(ethylene glycol), inorganic salt, sodium dodecyl sulfate, and solvent system on electrospinning of poly(ethylene oxide). Macromol. Mater. Eng., 2006, 291(6), 581-591.
Forward, K.M.; Rutledge, G.C. Free surface electrospinning from a wire electrode. Chem. Eng. J., 2012, 183, 492-503.
Forward, K.M.; Flores, A.; Rutledge, G.C. Production of core/shell fibers by electrospinning from a free surface. Chem. Eng. Sci., 2013, 104, 250-259.
De Vrieze, S.; Van Camp, T.; Nelvig, A.; Hagström, B.; Westbroek, P.; De Clerck, K. The effect of temperature and humidity on electrospinning. J. Mater. Sci., 2009, 44(5), 1357.
Zhu, G.; Zhao, L.Y.; Zhu, L.T.; Deng, X.Y.; Chen, W.L. Effect of experimental parameters on nanofiber diameter from electrospinning with wire electrodes. IOP Conf. Series Mater. Sci. Eng., 2017, 230(1)012043
Deitzel, J.M.; Kleinmeyer, J.; Harris, D.; Tan, N.B. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer (Guildf.), 2001, 42(1), 261-272.
Tripatanasuwan, S.; Zhong, Z.; Reneker, D.H. Effect of evaporation and solidification of the charged jet in electrospinning of poly (ethylene oxide) aqueous solution. Polymer (Guildf.), 2007, 48(19), 5742-5746.
Carroll, C.P.; Joo, Y.L. Axisymmetric instabilities of electrically driven viscoelastic jets. J. Nonnewtonian. Fluid. Mech., 2008, 153(2-3), 130-148.
Personna, Y.R.; Slater, L.; Ntarlagiannis, D.; Werkema, D.; Szabo, Z. Electrical signatures of ethanol-liquid mixtures: Implications for monitoring biofuels migration in the subsurface. J. Contam. Hydrol., 2013, 144(1), 99-107.
[] [PMID: 23159764]
Personna, Y.R.; Slater, L.; Ntarlagiannis, D.; Werkema, D.; Szabo, Z. Complex resistivity signatures of ethanol in sand-clay mixtures. J. Contam. Hydrol., 2013, 149, 76-87.
[] [PMID: 23603518]
Luecke, J.; McCormick, R.L. Electrical conductivity and pHe response of fuel ethanol contaminants. Energy Fuels, 2014, 28(8), 5222-5228.
Sam, M.; Moghimian, N.; Bhiladvala, R.B. Field-directed assembly of nanowires: Identifying directors, disruptors and indices to maximize the device yield. Nanoscale, 2016, 8(2), 889-900.
[] [PMID: 26649627]
Beachley, V.; Wen, X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C, 2009, 29(3), 663-668.
[] [PMID: 21461344]
Zhou, F.L.; Gong, R.H.; Porat, I. Polymeric nanofibers via flat spinneret electrospinning. Polym. Eng. Sci., 2009, 49(12), 2475-2481.
Fuh, Y-K.; Lien, L-C.; Chen, S-Y. High-throughput production of nanofibrous mats via a porous materials electrospinning process. J. Macromol. Sci. B., 2012, 51(9), 1742-1749.
Song, Z.; Chiang, S.W.; Chu, X.; Du, H.; Li, J.; Gan, L.; Xu, C.; Yao, Y.; He, Y.; Li, B. Effects of solvent on structures and properties of electrospun poly(ethylene oxide) nanofibers. J. Appl. Polym. Sci., 2018, 135(5), 45787.
Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc., 2006, 1(6), 2876-2890.
[] [PMID: 17406547]
Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta, 2007, 1767(9), 1073-1101.
[] [PMID: 17692815]
Shanmugam, G.; Selvi, C.C.; Mandal, A.B. Ethanol and acetonitrile induces conformational changes in porcine pepsin at alkaline denatured state. Int. J. Biol. Macromol., 2012, 51(4), 590-596.
[] [PMID: 22750332]
Moriyama, Y.; Watanabe, E.; Kobayashi, K.; Harano, H.; Inui, E.; Takeda, K. Secondary structural change of bovine serum albumin in thermal denaturation up to 130 degrees C and protective effect of sodium dodecyl sulfate on the change. J. Phys. Chem. B, 2008, 112(51), 16585-16589.
[] [PMID: 19367984]
Güler, G.; Vorob’ev, M.M.; Vogel, V.; Mäntele, W. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 161, 8-18.
[] [PMID: 26926394]
Lu, R.; Li, W-W.; Katzir, A.; Raichlin, Y.; Yu, H-Q.; Mizaikoff, B. Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst (Lond.), 2015, 140(3), 765-770.
[] [PMID: 25525641]
Anand, U.; Mukherjee, S. Reversibility in protein folding: Effect of β-cyclodextrin on bovine serum albumin unfolded by sodium dodecyl sulphate. Phys. Chem. Chem. Phys., 2013, 15(23), 9375-9383.
[] [PMID: 23660725]
Xie, J.; Wang, C.H. Encapsulation of proteins in biodegradable polymeric microparticles using electrospray in the Taylor cone-jet mode. Biotechnol. Bioeng., 2007, 97(5), 1278-1290.
[] [PMID: 17216662]

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy