Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Dynorphins in Development and Disease: Implications for Cardiovascular Disease

Author(s): Cody Cissom, Jason J. Paris and Zia Shariat-Madar*

Volume 20, Issue 4, 2020

Page: [259 - 274] Pages: 16

DOI: 10.2174/1566524019666191028122559

Price: $65

Abstract

It is well-established that cardiovascular disease continues to represent a growing health problem and significant effort has been made to elucidate the underlying mechanisms. In this review, we report on past and recent high impact publications in the field of intracrine network signaling, focusing specifically on opioids and their interrelation with key modulators of the cardiovascular system and the onset of related disease. We present an overview of studies outlining the scope of cardiovascular and cerebrovascular processes that are affected by opioids, including heart function, ischemia, reperfusion, and blood flow. Specific emphasis is placed on the importance of dynorphin molecules in cerebrovascular and cardiovascular regulation. Evidence suggests that excessive or insufficient dynorphin could make an important contribution to cardiovascular physiology, yet numerous paradoxical observations frequently impede a clear understanding of the role of dynorphin. Thus, we argue that dynorphin-mediated signaling events for which an immediate regulatory effect is disputed should not be dismissed as unimportant, as they may play a role in cross-talk with other signaling networks. Finally, we consider the most recent evidence on the role of dynorphin during cardiovascular-related inflammation and on the potential value of endogenous and exogenous inhibitors of kappa-opioid receptor, a major dynorphin A receptor, to limit or prevent cardiovascular disease and its related sequelae.

Keywords: Dynorphins, signaling, cardiovascular, I/R injury, intracrine network signaling, opioids.

[1]
Billingsley HE, Carbone S. The antioxidant potential of the Mediterranean diet in patients at high cardiovascular risk: an in-depth review of the PREDIMED. Nutr Diabetes 2018; 8(1): 13.
[http://dx.doi.org/10.1038/s41387-018-0025-1] [PMID: 29549354]
[2]
Marek-Trzonkowska N, Kwieczyńska A, Reiwer-Gostomska M, Koliński T, Molisz A, Siebert J. Arterial hypertension is characterized by imbalance of pro-angiogenic versus anti-angiogenic factors. PLoS One 2015; 10(5) e0126190
[http://dx.doi.org/10.1371/journal.pone.0126190] [PMID: 25951297]
[3]
Ok E, Levin NW, Asci G, Chazot C, Toz H, Ozkahya M. Interplay of volume, blood pressure, organ ischemia, residual renal function, and diet: certainties and uncertainties with dialytic management. Semin Dial 2017; 30(5): 420-9.
[http://dx.doi.org/10.1111/sdi.12612] [PMID: 28581677]
[4]
Lim LM, Tsai NC, Lin MY, et al. Hyponatremia is associated with fluid imbalance and adverse renal outcome in chronic kidney disease patients treated with diuretics. Sci Rep 2016; 6: 36817.
[http://dx.doi.org/10.1038/srep36817] [PMID: 27841359]
[5]
Kraut JA, Madias NE. Adverse effects of the metabolic acidosis of chronic kidney disease. Adv Chronic Kidney Dis 2017; 24(5): 289-97.
[http://dx.doi.org/10.1053/j.ackd.2017.06.005] [PMID: 29031355]
[6]
Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res 2014; 114(6): 1004-21.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.302549] [PMID: 24625726]
[7]
Silvani A, Calandra-Buonaura G, Dampney RA, Cortelli P. Brain-heart interactions: physiology and clinical implications. Philos Trans- Royal Soc, Math Phys Eng Sci 2016; 374(2067) 20150181
[http://dx.doi.org/10.1098/rsta.2015.0181] [PMID: 27044998]
[8]
Tanaka K, Kersten JR, Riess ML. Opioid-induced cardioprotection. Curr Pharm Des 2014; 20(36): 5696-705.
[http://dx.doi.org/10.2174/1381612820666140204120311] [PMID: 24502571]
[9]
Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y. Current research on opioid receptor function. Curr Drug Targets 2012; 13(2): 230-46.
[http://dx.doi.org/10.2174/138945012799201612] [PMID: 22204322]
[10]
Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L. Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci USA 1979; 76(12): 6666-70.
[http://dx.doi.org/10.1073/pnas.76.12.6666] [PMID: 230519]
[11]
Civelli O, Douglass J, Goldstein A, Herbert E. Sequence and expression of the rat prodynorphin gene. Proc Natl Acad Sci USA 1985; 82(12): 4291-5.
[http://dx.doi.org/10.1073/pnas.82.12.4291] [PMID: 3858883]
[12]
Schwarzer C. 30 years of dynorphins--new insights on their functions in neuropsychiatric diseases. Pharmacol Ther 2009; 123(3): 353-70.
[http://dx.doi.org/10.1016/j.pharmthera.2009.05.006] [PMID: 19481570]
[13]
Horikawa S, Takai T, Toyosato M, et al. Isolation and structural organization of the human preproenkephalin B gene. Nature 1983; 306(5943): 611-4.
[http://dx.doi.org/10.1038/306611a0] [PMID: 6316163]
[14]
Day R, Lazure C, Basak A, et al. Prodynorphin processing by proprotein convertase 2. Cleavage at single basic residues and enhanced processing in the presence of carboxypeptidase activity. J Biol Chem 1998; 273(2): 829-36.
[http://dx.doi.org/10.1074/jbc.273.2.829] [PMID: 9422738]
[15]
Spampinato S, Goldstein A. Immunoreactive dynorphin in rat tissues and plasma. Neuropeptides 1983; 3(3): 193-212.
[http://dx.doi.org/10.1016/0143-4179(83)90016-1] [PMID: 16229162]
[16]
Spampinato S, Paradisi R, Canossa M, et al. Immunoreactive dynorphin A-like material in extracted human hypothalamic-hypophysial plasma. Life Sci 1993; 52(2): 223-30.
[http://dx.doi.org/10.1016/0024-3205(93)90143-Q] [PMID: 8102766]
[17]
Müller S, Ho B, Gambus P, Millard W, Hochhaus G. An HPLC/RIA method for dynorphin A1-13 and its main metabolites in human blood. J Pharm Biomed Anal 1997; 16(1): 101-9.
[http://dx.doi.org/10.1016/S0731-7085(97)00010-1] [PMID: 9447557]
[18]
Gein SV. Dynorphins in regulation of immune system functions. Biochemistry (Mosc) 2014; 79(5): 397-405.
[http://dx.doi.org/10.1134/S0006297914050034] [PMID: 24954590]
[19]
Brugos B, Hochhaus G. Metabolism of dynorphin A(1-13). Pharmazie 2004; 59(5): 339-43.
[PMID: 15212298]
[20]
Müller S, Hochhaus G. Metabolism of dynorphin A 1-13 in human blood and plasma. Pharm Res 1995; 12(8): 1165-70.
[http://dx.doi.org/10.1023/A:1016211910107] [PMID: 7494829]
[21]
Chavkin C, Goldstein A. Specific receptor for the opioid peptide dynorphin: structure--activity relationships. Proc Natl Acad Sci USA 1981; 78(10): 6543-7.
[http://dx.doi.org/10.1073/pnas.78.10.6543] [PMID: 6118865]
[22]
Luiz AP, Schroeder SD, Rae GA, Calixto JB, Chichorro JG. Contribution and interaction of kinin receptors and dynorphin A in a model of trigeminal neuropathic pain in mice. Neuroscience 2015; 300: 189-200.
[http://dx.doi.org/10.1016/j.neuroscience.2015.05.015] [PMID: 25982562]
[23]
Pathan H, Williams J. Basic opioid pharmacology: an update. Br J Pain 2012; 6(1): 11-6.
[http://dx.doi.org/10.1177/2049463712438493] [PMID: 26516461]
[24]
Sobczak M, Sałaga M, Storr MA, Fichna J. Physiology, signaling, and pharmacology of opioid receptors and their ligands in the gastrointestinal tract: current concepts and future perspectives. J Gastroenterol 2014; 49(1): 24-45.
[http://dx.doi.org/10.1007/s00535-013-0753-x] [PMID: 23397116]
[25]
Ventura C, Maioli M, Pintus G, Posadino AM, Tadolini B. Nuclear opioid receptors activate opioid peptide gene transcription in isolated myocardial nuclei. J Biol Chem 1998; 273(22): 13383-6.
[http://dx.doi.org/10.1074/jbc.273.22.13383] [PMID: 9593666]
[26]
Ventura C, Guarnieri C, Vaona I, Campana G, Pintus G, Spampinato S. Dynorphin gene expression and release in the myocardial cell. J Biol Chem 1994; 269(7): 5384-6.
[PMID: 7906274]
[27]
Ventura C, Canossa M, Vaona I, et al. Prodynorphin mRNA is synthesized in adult cultured rat ventricular cardiomyocytes. Cardioscience 1993; 4(1): 21-4.
[PMID: 8471738]
[28]
Ationu A, Sorensen K, Whitehead B, Singer D, Carter N. Ventricular expression and circulating levels of immunoreactive dynorphin in heart transplant recipients. Clin Sci (Lond) 1993; 85(1): 1-4.
[http://dx.doi.org/10.1042/cs0850001] [PMID: 7908617]
[29]
Šínová R, Kudová J, Nešporová K, et al. Opioid receptors and opioid peptides in the cardiomyogenesis of mouse embryonic stem cells. J Cell Physiol 2019; 234(8): 13209-19.
[http://dx.doi.org/10.1002/jcp.27992] [PMID: 30536562]
[30]
Dumont M, Lemaire S. Interactions of dynorphin A-(1-13) and nociceptin with cardiac D2 binding sites: inhibition of ischemia-evoked release of noradrenaline from synaptosomal-mitochondrial fractions. J Mol Cell Cardiol 2000; 32(8): 1567-74.
[http://dx.doi.org/10.1006/jmcc.2000.1192] [PMID: 10900181]
[31]
Andrews BT, McIntosh TK, Gonzales MF, Weinstein PR, Faden AI. Levels of endogenous opioids and effects of an opiate antagonist during regional cerebral ischemia in rats. J Pharmacol Exp Ther 1988; 247(3): 1248-54.
[PMID: 3204516]
[32]
Lu X, Hong X, Wang C. Effect of dynorphin A1-13 on hypoxia-ischemic brain injury in neonatal rats. Zhonghua Fu Chan Ke Za Zhi 1997; 32(4): 198-201.
[PMID: 9596896]
[33]
Treskatsch S, Shaqura M, Dehe L, et al. Upregulation of the kappa opioidergic system in left ventricular rat myocardium in response to volume overload: Adaptive changes of the cardiac kappa opioid system in heart failure. Pharmacol Res 2015; 102: 33-41.
[http://dx.doi.org/10.1016/j.phrs.2015.09.005] [PMID: 26365878]
[34]
Ibrahim M, Gorelik J, Yacoub MH, Terracciano CM. The structure and function of cardiac t-tubules in health and disease. Proc Biol Sci 2011; 278(1719): 2714-23.
[http://dx.doi.org/10.1098/rspb.2011.0624] [PMID: 21697171]
[35]
Ventura C, Pintus G. Opioid peptide gene expression in the primary hereditary cardiomyopathy of the Syrian hamster. III. Autocrine stimulation of prodynorphin gene expression by dynorphin B. J Biol Chem 1997; 272(10): 6699-705.
[http://dx.doi.org/10.1074/jbc.272.10.6699] [PMID: 9045702]
[36]
Bian JS, Wang HX, Zhang WM, Wong TM. Effects of kappa-opioid receptor stimulation in the heart and the involvement of protein kinase C. Br J Pharmacol 1998; 124(3): 600-6.
[http://dx.doi.org/10.1038/sj.bjp.0701857] [PMID: 9647487]
[37]
Barra de la Tremblaye P, Plamondon H. Alterations in the corticotropin-releasing hormone (CRH) neurocircuitry: Insights into post stroke functional impairments. Front Neuroendocrinol 2016; 42: 53-75.
[http://dx.doi.org/10.1016/j.yfrne.2016.07.001] [PMID: 27455847]
[38]
Ventura C, Pintus G, Tadolini B. Opioid Peptide gene expression in the myocardial cell. Trends Cardiovasc Med 1998; 8(3): 102-10.
[http://dx.doi.org/10.1016/S1050-1738(97)00140-0] [PMID: 21235919]
[39]
Dumont M, Lemaire S. Interactions of dynorphin A and related peptides with cardiac ouabain binding sites. J Mol Cell Cardiol 1996; 28(3): 615-21.
[http://dx.doi.org/10.1006/jmcc.1996.0057] [PMID: 9011644]
[40]
Rathore N, John S, Kale M, Bhatnagar D. Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat tissues. Pharmacol Res 1998; 38(4): 297-303.
[http://dx.doi.org/10.1006/phrs.1998.0365] [PMID: 9774493]
[41]
Yang CS, Tsai PJ, Chou ST, Niu YL, Lai JS, Kuo JS. The roles of reactive oxygen species and endogenous opioid peptides in ischemia-induced arrhythmia of isolated rat hearts. Free Radic Biol Med 1995; 18(3): 593-8.
[http://dx.doi.org/10.1016/0891-5849(94)00153-B] [PMID: 9101252]
[42]
Yin W, Zhang P, Huang JH, et al. Stimulation of kappa-opioid receptor reduces isoprenaline-induced cardiac hypertrophy and fibrosis. Eur J Pharmacol 2009; 607(1-3): 135-42.
[http://dx.doi.org/10.1016/j.ejphar.2009.01.050] [PMID: 19233160]
[43]
Jaiswal A, Kumar S, Seth S, Dinda AK, Maulik SK. Effect of U50,488H, a κ-opioid receptor agonist on myocardial α-and β-myosin heavy chain expression and oxidative stress associated with isoproterenol-induced cardiac hypertrophy in rat. Mol Cell Biochem 2010; 345(1-2): 231-40.
[http://dx.doi.org/10.1007/s11010-010-0577-4] [PMID: 20730476]
[44]
Sominsky L, Spencer SJ. Eating behavior and stress: a pathway to obesity. Front Psychol 2014; 5(MAY): 434.
[http://dx.doi.org/10.3389/fpsyg.2014.00434] [PMID: 24860541]
[45]
Stout SA, Espel EV, Sandman CA, Glynn LM, Davis EP. Fetal programming of children’s obesity risk. Psychoneuroendocrinology 2015; 53: 29-39.
[http://dx.doi.org/10.1016/j.psyneuen.2014.12.009] [PMID: 25591114]
[46]
Lebowitz EA, Novick JS, Rudolph AM. Development of myocardial sympathetic innervation in the fetal lamb. Pediatr Res 1972; 6(12): 887-93.
[http://dx.doi.org/10.1203/00006450-197212000-00006] [PMID: 4643537]
[47]
Yamamizu K, Furuta S, Katayama S, et al. The κ opioid system regulates endothelial cell differentiation and pathfinding in vascular development. Blood 2011; 118(3): 775-85.
[http://dx.doi.org/10.1182/blood-2010-09-306001] [PMID: 21460241]
[48]
Dunlap CE III, Sundberg DK, Rose JC. Characterization of opioid peptides from maternal and fetal sheep adrenal glands. Peptides 1985; 6(3): 483-9.
[http://dx.doi.org/10.1016/0196-9781(85)90114-7] [PMID: 4070017]
[49]
Jones CT, Ritchie JW. The cardiovascular effects of circulating catecholamines in fetal sheep. J Physiol 1978; 285: 381-93.
[http://dx.doi.org/10.1113/jphysiol.1978.sp012577] [PMID: 745099]
[50]
Portbury AL, Chandra R, Groelle M, et al. Catecholamines act via a beta-adrenergic receptor to maintain fetal heart rate and survival. Am J Physiol Heart Circ Physiol 2003; 284(6): H2069-77.
[http://dx.doi.org/10.1152/ajpheart.00588.2002] [PMID: 12574001]
[51]
Maden CH, Gomes J, Schwarz Q, Davidson K, Tinker A, Ruhrberg C. NRP1 and NRP2 cooperate to regulate gangliogenesis, axon guidance and target innervation in the sympathetic nervous system. Dev Biol 2012; 369(2): 277-85.
[http://dx.doi.org/10.1016/j.ydbio.2012.06.026] [PMID: 22790009]
[52]
Schaub MC, Hefti MA, Harder BA, Eppenberger HM. Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med (Berl) 1997; 75(11-12): 901-20.
[http://dx.doi.org/10.1007/s001090050182] [PMID: 9428623]
[53]
Ventura C, Zinellu E, Maninchedda E, Maioli M. Dynorphin B is an agonist of nuclear opioid receptors coupling nuclear protein kinase C activation to the transcription of cardiogenic genes in GTR1 embryonic stem cells. Circ Res 2003; 92(6): 623-9.
[http://dx.doi.org/10.1161/01.RES.0000065169.23780.0E] [PMID: 12623878]
[54]
Gorodinsky A, Barg J, Belcheva MM, et al. Dynorphins modulate DNA synthesis in fetal brain cell aggregates. J Neurochem 1995; 65(4): 1481-6.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65041481.x] [PMID: 7561841]
[55]
Smeets CJ, Zmorzyńska J, Melo MN, et al. Altered secondary structure of Dynorphin A associates with loss of opioid signalling and NMDA-mediated excitotoxicity in SCA23. Hum Mol Genet 2016; 25(13): 2728-37.
[http://dx.doi.org/10.1093/hmg/ddw130] [PMID: 27260403]
[56]
Berman Y, Mzhavia N, Polonskaia A, Devi LA. Impaired prohormone convertases in Cpe(fat)/Cpe(fat) mice. J Biol Chem 2001; 276(2): 1466-73.
[http://dx.doi.org/10.1074/jbc.M008499200] [PMID: 11038363]
[57]
Cheng HY, Pitcher GM, Laviolette SR, et al. DREAM is a critical transcriptional repressor for pain modulation. Cell 2002; 108(1): 31-43.
[http://dx.doi.org/10.1016/S0092-8674(01)00629-8] [PMID: 11792319]
[58]
Verbeek DS. Spinocerebellar ataxia type 23: a genetic update. Cerebellum 2009; 8(2): 104-7.
[http://dx.doi.org/10.1007/s12311-008-0085-1] [PMID: 19089525]
[59]
Smeets CJ, Jezierska J, Watanabe H, et al. Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar ataxia type 23. Brain 2015; 138(Pt 9): 2537-52.
[http://dx.doi.org/10.1093/brain/awv195] [PMID: 26169942]
[60]
Smeets CJ, Verbeek DS. Reply: SCA23 and prodynorphin: is it time for gene retraction? Brain 2016; 139(Pt 8) e43
[http://dx.doi.org/10.1093/brain/aww094] [PMID: 27190014]
[61]
Jacobson DA, Cho J, Landa LR Jr, et al. Downstream regulatory element antagonistic modulator regulates islet prodynorphin expression. Am J Physiol Endocrinol Metab 2006; 291(3): E587-95.
[http://dx.doi.org/10.1152/ajpendo.00612.2005] [PMID: 16621893]
[62]
Edenberg HJ, Wang J, Tian H, et al. A regulatory variation in OPRK1, the gene encoding the kappa-opioid receptor, is associated with alcohol dependence. Hum Mol Genet 2008; 17(12): 1783-9.
[http://dx.doi.org/10.1093/hmg/ddn068] [PMID: 18319328]
[63]
Bakshi R, Newman AH, Faden AI. Dynorphin A-(1-17) induces alterations in free fatty acids, excitatory amino acids, and motor function through an opiate-receptor-mediated mechanism. J Neurosci 1990; 10(12): 3793-800.
[http://dx.doi.org/10.1523/JNEUROSCI.10-12-03793.1990] [PMID: 1980130]
[64]
Yeves AM, Burgos JI, Medina AJ, Villa-Abrille MC, Ennis IL. Cardioprotective role of IGF-1 in the hypertrophied myocardium of the spontaneously hypertensive rats: A key effect on NHE-1 activity. Acta Physiol (Oxf) 2018; 224(2) e13092
[http://dx.doi.org/10.1111/apha.13092] [PMID: 31595734]
[65]
Sabatino L, Kusmic C, Nicolini G, et al. T3 enhances Ang2 in rat aorta in myocardial I/R: comparison with left ventricle. J Mol Endocrinol 2016; 57(3): 139-49.
[http://dx.doi.org/10.1530/JME-16-0118] [PMID: 27444191]
[66]
Vairetti M, Ferrigno A, Rizzo V, Richelmi P, Cillo U, Imberti R. Liver damage during ischemia/reperfusion and glutathione: implications for potential organ donors. Transplant Proc 2007; 39(6): 1768-70.
[http://dx.doi.org/10.1016/j.transproceed.2007.06.001] [PMID: 17692607]
[67]
Sener G, Sehirli O, Velioğlu-Oğünç A, et al. Propylthiouracil (PTU)-induced hypothyroidism alleviates burn-induced multiple organ injury. Burns 2006; 32(6): 728-36.
[http://dx.doi.org/10.1016/j.burns.2006.01.002] [PMID: 16926069]
[68]
Seara FAC, Maciel L, Barbosa RAQ, et al. Cardiac ischemia/reperfusion injury is inversely affected by thyroid hormones excess or deficiency in male Wistar rats. PLoS One 2018; 13(1) e0190355
[http://dx.doi.org/10.1371/journal.pone.0190355] [PMID: 29304184]
[69]
Sabatino L, Balzan S, Kusmic C, Iervasi G. Modification of gene expression profiling related to renin-angiotensin system in an ischemia/reperfusion rat model after T3 infusion. Mol Cell Biochem 2018; 449(1-2): 277-83.
[http://dx.doi.org/10.1007/s11010-018-3364-2] [PMID: 29737449]
[70]
Uddman R, Edvinsson L. Neuropeptides in the cerebral circulation. Cerebrovasc Brain Metab Rev 1989; 1(3): 230-52.
[PMID: 2701377]
[71]
Armstead WM, Mirro R, Zuckerman SL, Leffler CW. Vasopressin modulates cerebrovascular responses to opioids in newborn pigs. J Pharmacol Exp Ther 1992; 260(3): 1107-12.
[PMID: 1347565]
[72]
Broad J, Maurel D, Kung VW, et al. Human native kappa opioid receptor functions not predicted by recombinant receptors: Implications for drug design. Sci Rep 2016; 6: 30797.
[http://dx.doi.org/10.1038/srep30797] [PMID: 27492592]
[73]
Fontana F, Bernardi P, Pich EM, et al. Opioid peptide modulation of circulatory and endocrine response to mental stress in humans. Peptides 1997; 18(2): 169-75.
[http://dx.doi.org/10.1016/S0196-9781(96)00319-1] [PMID: 9149287]
[74]
Moskowitz SI, Basu SB, Bergold PJ. Chronic and cyclical neuronal loss in hippocampal slice cultures following transient inhibition of the type 1 isoform of superoxide dismutase. Brain Res 2001; 913(2): 207-19.
[http://dx.doi.org/10.1016/S0006-8993(01)02756-1] [PMID: 11549389]
[75]
Rabkin SW. Endogenous kappa opioids mediate the action of brain angiotensin II to increase blood pressure. Neuropeptides 2007; 41(6): 411-9.
[http://dx.doi.org/10.1016/j.npep.2007.09.003] [PMID: 17980907]
[76]
Champion HC, Pierce RL, Kadowitz PJ. Nociceptin, a novel endogenous ligand for the ORL1 receptor, dilates isolated resistance arteries from the rat. Regul Pept 1998; 78(1-3): 69-74.
[http://dx.doi.org/10.1016/S0167-0115(98)00117-7] [PMID: 9879748]
[77]
Barnes MJ, Jen KL, Dunbar JC. The effect of CNS opioid on autonomic nervous and cardiovascular responses in diet-induced obese rats. Peptides 2004; 25(1): 71-9.
[http://dx.doi.org/10.1016/j.peptides.2003.11.009] [PMID: 15003358]
[78]
Feuerstein G, Faden AI. Differential cardiovascular effects of mu, delta and kappa opiate agonists at discrete hypothalamic sites in the anesthetized rat. Life Sci 1982; 31(20-21): 2197-200.
[http://dx.doi.org/10.1016/0024-3205(82)90117-5] [PMID: 6131355]
[79]
Fontana F, Bernardi P, Pich EM, et al. Relationship between plasma atrial natriuretic factor and opioid peptide levels in healthy subjects and in patients with acute congestive heart failure. Eur Heart J 1993; 14(2): 219-25.
[http://dx.doi.org/10.1093/eurheartj/14.2.219] [PMID: 8095454]
[80]
Kapusta DR, Sezen SF, Chang JK, Lippton H, Kenigs VA. Diuretic and antinatriuretic responses produced by the endogenous opioid-like peptide, nociceptin (orphanin FQ). Life Sci 1997; 60(1): PL15-21.
[PMID: 8995537]
[81]
Warner FJ, Smith AI, Hooper NM, Turner AJ. Angiotensin-converting enzyme-2: a molecular and cellular perspective. Cell Mol Life Sci 2004; 61(21): 2704-13.
[http://dx.doi.org/10.1007/s00018-004-4240-7] [PMID: 15549171]
[82]
Bali A, Randhawa PK, Jaggi AS. Interplay between RAS and opioids: opening the Pandora of complexities. Neuropeptides 2014; 48(4): 249-56.
[http://dx.doi.org/10.1016/j.npep.2014.05.002] [PMID: 24877897]
[83]
Krazinski BE, Koziorowski M, Brzuzan P, Okrasa S. The expression of genes encoding opioid precursors and the influence of opioid receptor agonists on steroidogenesis in porcine adrenocortical cells in vitro. J Physiol Pharmacol 2011; 62(4): 461-8.
[PMID: 22100847]
[84]
Fontana F, Bernardi P, Spampinato S, Boschi S, De Iasio R, Grossi G. Pressor effects of endogenous opioid system during acute episodes of blood pressure increases in hypertensive patients. Hypertension 1997; 29(1 Pt 1): 105-10.
[http://dx.doi.org/10.1161/01.HYP.29.1.105] [PMID: 9039088]
[85]
Mannelli M, Maggi M, DeFeo ML, et al. Opioid modulation of normal and pathological human chromaffin tissue. J Clin Endocrinol Metab 1986; 62(3): 577-82.
[http://dx.doi.org/10.1210/jcem-62-3-577] [PMID: 3003144]
[86]
Yanase T, Nawata H, Kato K, Ibayashi H. Catecholamines and opioid peptides in human phaeochromocytomas. Acta Endocrinol (Copenh) 1986; 113(3): 378-84.
[http://dx.doi.org/10.1530/acta.0.1130378] [PMID: 3788413]
[87]
Anderson RI, Becker HC. Role of the Dynorphin/Kappa Opioid Receptor System in the Motivational Effects of Ethanol. Alcohol Clin Exp Res 2017; 41(8): 1402-18.
[http://dx.doi.org/10.1111/acer.13406] [PMID: 28425121]
[88]
Overton JM, Fisher LA. Modulation of central nervous system actions of corticotropin-releasing factor by dynorphin-related peptides. Brain Res 1989; 488(1-2): 233-40.
[http://dx.doi.org/10.1016/0006-8993(89)90713-0] [PMID: 2568150]
[89]
Wang JQ, Ingenito AJ. Cardiovascular effects of microinjection of dynorphin-A(1-8) into the hippocampus in conscious, spontaneously hypertensive and normotensive Wistar-Kyoto rats. Clin Exp Hypertens 1994; 16(2): 229-43.
[http://dx.doi.org/10.3109/10641969409067951] [PMID: 7910769]
[90]
Fisher LA, Brown MR. Central regulation of stress responses: regulation of the autonomic nervous system and visceral function by corticotrophin releasing factor-41. Baillieres Clin Endocrinol Metab 1991; 5(1): 35-50.
[http://dx.doi.org/10.1016/S0950-351X(05)80095-3] [PMID: 2039427]
[91]
Nikolarakis KE, Almeida OF, Herz A. Stimulation of hypothalamic beta-endorphin and dynorphin release by corticotropin-releasing factor (in vitro). Brain Res 1986; 399(1): 152-5.
[http://dx.doi.org/10.1016/0006-8993(86)90610-4] [PMID: 2879612]
[92]
De Michele M, Touzani O, Foster AC, Fieschi C, Sette G, McCulloch J. Corticotropin-releasing factor: effect on cerebral blood flow in physiologic and ischaemic conditions. Exp Brain Res 2005; 165(3): 375-82.
[http://dx.doi.org/10.1007/s00221-005-2303-0] [PMID: 15864562]
[93]
Davis ME, Pemberton CJ, Yandle TG, et al. Urocortin 2 infusion in healthy humans: hemodynamic, neurohormonal, and renal responses. J Am Coll Cardiol 2007; 49(4): 461-71.
[http://dx.doi.org/10.1016/j.jacc.2006.09.035] [PMID: 17258092]
[94]
Ruisanchez É, Cselenyák A, Papp RS, et al. Perivascular expression and potent vasoconstrictor effect of dynorphin A in cerebral arteries. PLoS One 2012; 7(5) e37798
[http://dx.doi.org/10.1371/journal.pone.0037798] [PMID: 22662226]
[95]
Moskowitz MA, Saito K, Brezina L, Dickson J. Nerve fibers surrounding intracranial and extracranial vessels from human and other species contain dynorphin-like immunoreactivity. Neuroscience 1987; 23(2): 731-7.
[http://dx.doi.org/10.1016/0306-4522(87)90090-X] [PMID: 2893992]
[96]
Armstead WM, Mirro R, Busija DW, Leffler CW. Prostanoids modulate opioid cerebrovascular responses in newborn pigs. J Pharmacol Exp Ther 1990; 255(3): 1083-9.
[PMID: 1979812]
[97]
Sun FY, Zhang AZ. Dynorphin receptor in the blood vessel. Neuropeptides 1985; 5(4-6): 595-8.
[http://dx.doi.org/10.1016/0143-4179(85)90088-5] [PMID: 2987744]
[98]
Laurent S, Schmitt H. Central cardiovascular effects of kappa agonists dynorphin-(1-13) and ethylketocyclazocine in the anaesthetized rat. Eur J Pharmacol 1983; 96(1-2): 165-9.
[http://dx.doi.org/10.1016/0014-2999(83)90547-2] [PMID: 6319158]
[99]
Tian F, Zheng XY, Li J, et al. κ-Opioid Receptor Stimulation Improves Endothelial Function via Akt-stimulated NO Production in Hyperlipidemic Rats. Sci Rep 2016; 6: 26807.
[http://dx.doi.org/10.1038/srep26807] [PMID: 27226238]
[100]
Bolte C, Newman G, Schultz Jel J. Hypertensive state, independent of hypertrophy, exhibits an attenuated decrease in systolic function on cardiac kappa-opioid receptor stimulation. Am J Physiol Heart Circ Physiol 2009; 296(4): H967-75.
[http://dx.doi.org/10.1152/ajpheart.00909.2008] [PMID: 19181965]
[101]
Seccia TM, Maniero C, Belloni AS, et al. Role of angiotensin II, endothelin-1 and L-type calcium channel in the development of glomerular, tubulointerstitial and perivascular fibrosis. J Hypertens 2008; 26(10): 2022-9.
[http://dx.doi.org/10.1097/HJH.0b013e328309f00a] [PMID: 18806627]
[102]
Kasemsri T, Armstead WM. Endothelin production links superoxide generation to altered opioid-induced pial artery vasodilation after brain injury in pigs. Stroke 1997; 28(1): 190-6.
[http://dx.doi.org/10.1161/01.STR.28.1.190] [PMID: 8996511]
[103]
Weber E, Esch FS, Böhlen P, et al. Metorphamide: isolation, structure, and biologic activity of an amidated opioid octapeptide from bovine brain. Proc Natl Acad Sci USA 1983; 80(23): 7362-6.
[http://dx.doi.org/10.1073/pnas.80.23.7362] [PMID: 6316361]
[104]
Arendt RM, Schmoeckel M, Wilbert-Lampen U, Plasse A, Heucke L, Werdan K. Bidirectional effects of endogenous opioid peptides on endothelin release rates in porcine aortic endothelial cell culture: mediation by delta opioid receptor and opioid receptor antagonist-insensitive mechanisms. J Pharmacol Exp Ther 1995; 272(1): 1-7.
[PMID: 7815321]
[105]
Ventura C, Pintus G, Vaona I, Bennardini F, Pinna G, Tadolini B. Phorbol ester regulation of opioid peptide gene expression in myocardial cells. Role of nuclear protein kinase. J Biol Chem 1995; 270(50): 30115-20.
[http://dx.doi.org/10.1074/jbc.270.50.30115] [PMID: 8530417]
[106]
Wegener K, Kummer W. Sympathetic noradrenergic fibers as the source of immunoreactive alpha-neoendorphin and dynorphin in the guinea pig heart. Acta Anat (Basel) 1994; 151(2): 112-9.
[http://dx.doi.org/10.1159/000147651] [PMID: 7701929]
[107]
Fontana F, Bernardi P, Tartuferi L, Boschi S, Di Toro R, Spampinato S. Opioid peptides attenuate blood pressure increase in acute respiratory failure. Peptides 2001; 22(4): 631-7.
[http://dx.doi.org/10.1016/S0196-9781(01)00373-4] [PMID: 11311734]
[108]
Peng J, Sarkar S, Chang SL. Opioid receptor expression in human brain and peripheral tissues using absolute quantitative real-time RT-PCR. Drug Alcohol Depend 2012; 124(3): 223-8.
[http://dx.doi.org/10.1016/j.drugalcdep.2012.01.013] [PMID: 22356890]
[109]
Rostamzadeh F, Najafipour H, Yeganeh-Hajahmadi M, Esmaeili-Mahani S, Joukar S, Iranpour M. Heterodimerization of apelin and opioid receptors and cardiac inotropic and lusitropic effects of apelin in 2K1C hypertension: Role of pERK1/2 and PKC. Life Sci 2017; 191: 24-33.
[http://dx.doi.org/10.1016/j.lfs.2017.09.044] [PMID: 28987634]
[110]
Wu JP, Chen YT, Lee AY. Opioids in myocardial ischaemia: potentiating effects of dynorphin on ischaemic arrhythmia, bradycardia and cardiogenic shock following coronary artery occlusion in the rat. Eur Heart J 1993; 14(9): 1273-7.
[http://dx.doi.org/10.1093/eurheartj/14.9.1273] [PMID: 7901021]
[111]
Kim JH, Jang YH, Chun KJ, et al. Kappa-opioid receptor activation during reperfusion limits myocardial infarction via ERK1/2 activation in isolated rat hearts. Korean J Anesthesiol 2011; 60(5): 351-6.
[http://dx.doi.org/10.4097/kjae.2011.60.5.351] [PMID: 21716908]
[112]
Fu LL, Xia Q, Shen YL, Wong TM. [Involvement of endogenous opioids in cardioprotective effects of ischemic preconditioning in the isolated rat heart] Sheng Li Xue Bao 1998; 50(6): 603-10. [Involvement of endogenous opioids in cardioprotective effects of ischemic preconditioning in the isolated rat heart].
[PMID: 11367670]
[113]
Yu X, Zhang W, Bian J, Wong TM. Pro- and anti-arrhythmic effects of a kappa opioid receptor agonist: a model for the biphasic action of a local hormone in the heart. Clin Exp Pharmacol Physiol 1999; 26(10): 842-4.
[http://dx.doi.org/10.1046/j.1440-1681.1999.03143.x] [PMID: 10549419]
[114]
Lee AY, Wong TM. Effects of dynorphin1-13 on cardiac rhythm and cyclic adenosine monophosphate (cAMP) levels in the isolated perfused rat heart. Neurosci Lett 1987; 80(3): 289-92.
[http://dx.doi.org/10.1016/0304-3940(87)90469-1] [PMID: 2891091]
[115]
Lishmanov Iu B, Maslov LN, Ugdyzhekova DS. An experimental study of the pharmacological activity of opiate receptor ligands on models of adrenaline-induced arrhythmias. Eksp Klin Farmakol 1995; 58(4): 26-8.
[PMID: 7580747]
[116]
Rabkin SW. Dynorphin A (1-13) in the brain suppresses epinephrine-induced ventricular premature complexes and ventricular tachyarrhythmias. Regul Pept 1992; 41(2): 95-107.
[http://dx.doi.org/10.1016/0167-0115(92)90039-W] [PMID: 1279757]
[117]
Maslov LN, Lishmanov IuB, Krylatov AV, Ugdyzhekova DS. [The participation of the central and peripheral kappa-opiate receptors in the mechanism of the anti-arrhythmia action of benzeneacetamide derivatives] Eksp Klin Farmakol 1996; 59(6): 20-2. [The participation of the central and peripheral kappa-opiate receptors in the mechanism of the antiarrhythmia action of benzeneacetamide derivatives].
[PMID: 9181865]
[118]
Rabkin SW. Morphine and the endogenous opioid dynorphin in the brain attenuate digoxin-induced arrhythmias in guinea pigs. Pharmacol Toxicol 1992; 71(5): 353-60.
[http://dx.doi.org/10.1111/j.1600-0773.1992.tb00561.x] [PMID: 1360157]
[119]
Czyzyk TA, Nogueiras R, Lockwood JF, et al. kappa-Opioid receptors control the metabolic response to a high-energy diet in mice. FASEB J 2010; 24(4): 1151-9.
[http://dx.doi.org/10.1096/fj.09-143610] [PMID: 19917675]
[120]
Dyck JR, Cheng JF, Stanley WC, et al. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ Res 2004; 94(9): e78-84.
[http://dx.doi.org/10.1161/01.RES.0000129255.19569.8f] [PMID: 15105298]
[121]
Folmes CD, Lopaschuk GD. Role of malonyl-CoA in heart disease and the hypothalamic control of obesity. Cardiovasc Res 2007; 73(2): 278-87.
[http://dx.doi.org/10.1016/j.cardiores.2006.10.008] [PMID: 17126822]
[122]
Mather KJ, Hutchins GD, Perry K, et al. Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer. Am J Physiol Endocrinol Metab 2016; 310(6): E452-60.
[http://dx.doi.org/10.1152/ajpendo.00437.2015] [PMID: 26732686]
[123]
Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 1995; 270(29): 17513-20.
[http://dx.doi.org/10.1074/jbc.270.29.17513] [PMID: 7615556]
[124]
Liu J, Wang H, Li J. Inflammation and inflammatory cells in myocardial infarction and reperfusion injury: A double-edged sword. Clin Med Insights Cardiol 2016; 10: 79-84.
[http://dx.doi.org/10.4137/CMC.S33164] [PMID: 27279755]
[125]
Madjid M, Fatemi O. Components of the complete blood count as risk predictors for coronary heart disease: in-depth review and update. Tex Heart Inst J 2013; 40(1): 17-29.
[PMID: 23467296]
[126]
Fazalul Rahiman SS, Morgan M, Gray P, Shaw PN, Cabot PJ. Dynorphin 1-17 and its N-terminal biotransformation fragments modulate lipopolysaccharide-stimulated nuclear factor-kappa B nuclear translocation, interleukin-1beta and tumor necrosis factor-alpha in differentiated THP-1 cells. PLoS One 2016; 11(4) e0153005
[http://dx.doi.org/10.1371/journal.pone.0153005] [PMID: 27055013]
[127]
Rahiman SSF, Morgan M, Gray P, Shaw PN, Cabot PJ. Inhibitory effects of dynorphin 3-14 on the lipopolysaccharide-induced toll-like receptor 4 signalling pathway. Peptides 2017; 90: 48-54.
[http://dx.doi.org/10.1016/j.peptides.2017.02.004] [PMID: 28219695]
[128]
Pepe S, van den Brink OW, Lakatta EG, Xiao RP. Cross-talk of opioid peptide receptor and beta-adrenergic receptor signalling in the heart. Cardiovasc Res 2004; 63(3): 414-22.
[http://dx.doi.org/10.1016/j.cardiores.2004.04.022] [PMID: 15276466]
[129]
Grosse Hartlage MA, Theisen MM, Monteiro de Oliveira NP, Van Aken H, Fobker M, Weber TP. Kappa-opioid receptor antagonism improves recovery from myocardial stunning in chronically instrumented dogs. Anesth Analg 2006; 103(4): 822-32.
[http://dx.doi.org/10.1213/01.ane.0000237246.40665.34] [PMID: 17000788]
[130]
Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008; 4(2): 89-96.
[PMID: 23675073]
[131]
Wasserman DH, Wang TJ, Brown NJ. The Vasculature in Prediabetes. Circ Res 2018; 122(8): 1135-50.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311912] [PMID: 29650631]
[132]
Scavini C, Rozza A, Bo P, et al. Kappa-opioid receptor changes and neurophysiological alterations during cerebral ischemia in rabbits. Stroke 1990; 21(6): 943-7.
[http://dx.doi.org/10.1161/01.STR.21.6.943] [PMID: 2161575]
[133]
Vuong C, Van Uum SH, O’Dell LE, Lutfy K, Friedman TC. The effects of opioids and opioid analogs on animal and human endocrine systems. Endocr Rev 2010; 31(1): 98-132.
[http://dx.doi.org/10.1210/er.2009-0009] [PMID: 19903933]
[134]
Kao TK, Ou YC, Liao SL, et al. Opioids modulate post-ischemic progression in a rat model of stroke. Neurochem Int 2008; 52(6): 1256-65.
[http://dx.doi.org/10.1016/j.neuint.2008.01.007] [PMID: 18294735]
[135]
Kuroda H, Baskin DS, Matsui T, Loh HH, Hosobuchi Y, Lee NM. Effects of dynorphin1-13 on opiate binding and dopamine and GABA uptake in stroked cat brain. Brain Res 1986; 379(1): 68-74.
[http://dx.doi.org/10.1016/0006-8993(86)90256-8] [PMID: 2874866]
[136]
Cechetto DF, Hachinski V. Cardiovascular consequence of experimental stroke. Baillieres Clin Neurol 1997; 6(2): 297-308.
[PMID: 9483295]
[137]
Baek H, Sariev A, Kim MJ, Lee H, Kim J, Kim H. A neuroprotective brain stimulation for vulnerable cerebellar Purkinje cell after ischemic stroke: a study with low-intensity focused ultrasound. Conf Proc IEEE Eng Med Biol Soc 2018; 2018: 4744-7.
[http://dx.doi.org/10.1109/EMBC.2018.8513138] [PMID: 30441409]
[138]
Tsang HG, Rashdan NA, Whitelaw CB, Corcoran BM, Summers KM, MacRae VE. Large animal models of cardiovascular disease. Cell Biochem Funct 2016; 34(3): 113-32.
[http://dx.doi.org/10.1002/cbf.3173] [PMID: 26914991]
[139]
Camacho P, Fan H, Liu Z, He JQ. Large mammalian animal models of heart disease. J Cardiovasc Dev Dis 2016; 3(4) E30
[http://dx.doi.org/10.3390/jcdd3040030] [PMID: 29367573]
[140]
Marinova Z, Vukojevic V, Surcheva S, et al. Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. J Biol Chem 2005; 280(28): 26360-70.
[http://dx.doi.org/10.1074/jbc.M412494200] [PMID: 15894804]
[141]
Maeda S, Nakamae J, Inoki R. Inhibition of cardiac Na+, K+-ATPase activity by dynorphin-A and ethylketocyclazocine. Life Sci 1988; 42(4): 461-8.
[http://dx.doi.org/10.1016/0024-3205(88)90085-9] [PMID: 2893234]
[142]
Thornhill JA, Pittman QJ. Hemodynamic responses of conscious rats following intrathecal injections of prodynorphin-derived opioids: independence of action of intrathecal arginine vasopressin. Can J Physiol Pharmacol 1990; 68(2): 174-82.
[http://dx.doi.org/10.1139/y90-028] [PMID: 1968777]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy