Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Determination and Extraction of Carbofuran Pesticide in Different Matrices using Cloud Point Extraction Method

Author(s): Hind Hadi* and Hawraa M. Abdulkareem

Volume 16, Issue 3, 2020

Page: [256 - 262] Pages: 7

DOI: 10.2174/1573411015666191028114446

Price: $65

Abstract

Background: Pesticides are increasingly used in agriculture and households, but they are also considered a major pollutant to the environment. Carbofuran (CAR; 2,3-dihydro-2,2- dimethylbenzofuran-7-yl methylcarbamate) is a widely used pesticide due to its effectiveness on soybean aphids.

Objectives: A simple and green method was suggested for the extraction and determination of CAR in different matrices.

Methods: A diazotization reaction involving the use of the drug compound metoclopramide was utilized in this study. A red dye product, which was formed from the diazotization coupling between CAR and diazotized metoclopramide (DMCP), was extracted using cloud point extraction with the nonionic surfactant Triton X-114 and measured at a wavelength of 515 nm.

Results: The linearity of the extracted method was over a concentration range of 0.1-0.5 µg/mL (r2 = 0.996) for CAR with a detection limit of 0.064 µg/mL and enrichment factors of about 148 folds for CAR. The mean recovery percentage was in the range of 99-102% for water and soil samples with precision (RSD%) of less than 0.4%.

Conclusion: The described method was effectively utilized in the simultaneous extraction of CAR from water and soil samples.

Keywords: Carbofuran, cloud point extraction, diazotization coupling, metoclopramide, pesticide, Triton X-114.

Graphical Abstract
[1]
Colosio, C.; Birindelli, S.; Corsini, E.; Galli, C.L.; Maroni, M. Low level exposure to chemicals and immune system. Toxicol. Appl. Pharmacol., 2005, 207(2)(Suppl.), 320-328.
[http://dx.doi.org/10.1016/j.taap.2005.01.025] [PMID: 15992843]
[2]
Lau, T.K.; Chu, W.; Graham, N. Degradation of the endocrine disruptor carbofuran by UV, O3 and O3/UV. Water Sci. Technol., 2007, 55(12), 275-280.
[http://dx.doi.org/10.2166/wst.2007.416] [PMID: 17674859]
[3]
Needham, L.L.; Barr, D.B.; Caudill, S.P.; Pirkle, J.L.; Turner, W.E.; Osterloh, J.; Jones, R.L.; Sampson, E.J. Concentrations of environmental chemicals associated with neurodevelopmental effects in U.S. population. Neurotoxicology, 2005, 26(4), 531-545.
[http://dx.doi.org/10.1016/j.neuro.2004.09.005] [PMID: 16112319]
[4]
Popovska-Gorevski, M.; Dubocovich, M.L.; Rajnarayanan, R.V. Carbamate insecticides target human melatonin receptors. Chem. Res. Toxicol., 2017, 30(2), 574-582.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00301] [PMID: 28027439]
[5]
Rehman, T.; Khan, M.M.; Shad, M.A.; Hussain, M.; Oyler, B.L.; Goo, Y.A.; Goodlett, D.R. Detection of carbofuran-protein adducts in serum of occupationally exposed pesticide factory workers in Pakistan. Chem. Res. Toxicol., 2016, 29(10), 1720-1728.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00222] [PMID: 27657490]
[6]
Otieno, P.O.; Lalah, J.O.; Virani, M.; Jondiko, I.O.; Schramm, K.W. Carbofuran and its toxic metabolites provide forensic evidence for furadan exposure in vultures (Gyps africanus) in Kenya. Bull. Environ. Contam. Toxicol., 2010, 84(5), 536-544.
[http://dx.doi.org/10.1007/s00128-010-9956-5] [PMID: 20372877]
[7]
Jirasirichote, A.; Punrat, E.; Suea-Ngam, A.; Chailapakul, O.; Chuanuwatanakul, S. Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide. Talanta, 2017, 175, 331-337.
[http://dx.doi.org/10.1016/j.talanta.2017.07.050] [PMID: 28841999]
[8]
Amatatongchai, M.; Sroysee, W.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P.A. Selective amperometric flow-injection analysis of carbofuran using a molecularly-imprinted polymer and gold-coated-magnetite modified carbon nanotube-paste electrode. Talanta, 2018, 179, 700-709.
[http://dx.doi.org/10.1016/j.talanta.2017.11.064] [PMID: 29310297]
[9]
Gonçalves, V.; Hazarbassanov, N.Q.; de Siqueira, A.; Florio, J.C.; Ciscato, C.H.P.; Maiorka, P.C.; Fukushima, A.R.; de Souza Spinosa, H. Development and validation of carbofuran and 3-hydroxycarbofuran analysis by high-pressure liquid chromatography with diode array detector (HPLC-DAD) for forensic Veterinary Medicine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1065-1066, 8-13.
[http://dx.doi.org/10.1016/j.jchromb.2017.09.021] [PMID: 28938132]
[10]
Kharbouche, L.; Gil García, M.D.; Lozano, A.; Hamaizi, H.; Galera, M.M. Solid phase extraction of pesticides from environmental waters using an MSU-1 mesoporous material and determination by UPLC-MS/MS. Talanta, 2019, 199, 612-619.
[http://dx.doi.org/10.1016/j.talanta.2019.02.092] [PMID: 30952305]
[11]
Ferrari Júnior, E.; Caldas, E.D. Simultaneous determination of drugs and pesticides in postmortem blood using dispersive solid-phase extraction and large volume injection-programmed temperature vaporization-gas chromatography-mass spectrometry. Forensic Sci. Int., 2018, 290, 318-326.
[http://dx.doi.org/10.1016/j.forsciint.2018.07.031] [PMID: 30121553]
[12]
Leppert, B.C.; Markle, J.C.; Helt, R.C.; Fujie, G.H. Determination of carbosulfan and carbofuran residues in plants, soil, and water by gas chromatography. J. Agric. Food Chem., 1983, 31(2), 220-223.
[http://dx.doi.org/10.1021/jf00116a009] [PMID: 6853851]
[13]
Rajeshwari, C.V.; Naidu, P.R. A new colorimetric method for the determination of carbofuran, bendiocarb and carbosulfan. J. Food Sci. Technol., 1986, 23, 101-105.
[14]
Tamrakar, U.; Pillai, A.K.; Gupta, V.K. a simple colorimetric method for the determination of carbofuran and its application in environmental and biological samples. J. Braz. Chem. Soc., 2007, 18(2), 337-341.
[http://dx.doi.org/10.1590/S0103-50532007000200014]
[15]
Agrawal, O.; Gupta, V.K. Sub-parts-per-million spectrophotometric determination of phenol and related pesticides using diazotizedp-aminoacetophenone. Microchem. J., 1999, 62, 147-151.
[http://dx.doi.org/10.1006/mchj.1999.1701]
[16]
Kori, S. Cloud point extraction coupled with back extraction: A green methodology in analytical chemistry; Forensic Sci. Res, 2019.
[17]
Abdullah, H.H. Cloud-point extraction and spectrophotometric determination of clonazepam in pharmaceutical dosage forms. Bull. Chem. Soc. Ethiop., 2017, 31(3), 373-382.
[http://dx.doi.org/10.4314/bcse.v31i3.2]
[18]
Zuhair, A.A.K.; Abdulkareem, H.M. a new visible spectrophotometric approach for mutual determination of amoxicillin and metoclopramide hydrochloride in pharmaceuticals after cloud point extraction. Sci. J. Anal. Chem., 2016, 4(5), 66-76.
[http://dx.doi.org/10.11648/j.sjac.20160405.12]
[19]
Pourreza, N.; Rastegarzadeh, S.; Larki, A. Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV-vis spectrophotometry. Talanta, 2015, 134, 24-29.
[http://dx.doi.org/10.1016/j.talanta.2014.10.056] [PMID: 25618636]
[20]
Al Amri, M.A.; Abed, S.S.; Ali, A.J. Spectrophotometric flow injection method for the determination of bendiocarb insecticide in water samples using chromogenic reagent 2,4-dinitrophenyl hydrazine. Asian J. Pharm. Clin. Res., 2018, 11(10), 526-531.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i10.28478]
[21]
Harikrishna, V.; Naidu, N.V.S. Facile and sensitive spectrophotometric technique for the determination of carbofuran in its formulations, water and grain samples with substituted anilines. E-J. Chem., 2005, 2(4), 218-223.
[http://dx.doi.org/10.1155/2005/172909]
[22]
Ramachandran, K.N.; Gupta, V.K. A new method for photometric determination phenol. Chem. Anal., 1992, 37, 489-492.
[23]
Bhargavi, O.; Kiran, K.; Suvardhan, K.; Rekha, D.; Janardhanam, K. Chiranjeevi, P. A sensitive determination of carbofuran by spectrophotometer using 4,4-azo-bis-3,3,5,5-tetra bromoaniline in various environmental samples. E-J. Chem., 2006, 3(11), 68-77.
[http://dx.doi.org/10.1155/2006/218793]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy