Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in the Applications of the Intramolecular Suzuki Cross-coupling Reaction in Cyclization and Heterocyclization: An Update

Author(s): Majid M. Heravi*, Masoumeh Malmir and Razieh Moradi

Volume 23, Issue 22, 2019

Page: [2469 - 2488] Pages: 20

DOI: 10.2174/1385272823666191023115842

Price: $65

Abstract

The palladium-catalyzed reaction of aryl halide and boronic acid for the formation of C–C bonds so-called Suzuki–Miyaura cross-coupling reaction has many applications in Modern Synthetic Organic Chemistry. In 2013, we emphasized the applications of the intramolecular Suzuki cross-coupling reaction in cyclization and heterocyclization. Due to a plethora relevant papers appeared in the chemical literature, herein, we wish to cover by updating our previous review, the applications of the intramolecular Suzuki cross-coupling reaction in cyclization and heterocyclization leading to various homocyclic and heterocyclic compounds reported during a period of 2013 to 2018.

Keywords: Suzuki cross-coupling reaction, Carbon-Carbon bond formation, cyclization, heterocyclization, aza-heterocycles, oxaheterocycles, palladium, Pd-catalyzed reactions.

Graphical Abstract
[1]
Lossen, W. Ueber benzoylderivate des hydroxylamins. Justus Liebigs Ann. Chem., 1872, 161, 347-362.
[http://dx.doi.org/10.1002/jlac.18721610219]
[2]
Hofmann, A.W. Ueber die einwirkung des broms in alkalischer lösung auf amide. Ber. Dtsch. Chem. Ges., 1881, 14, 2725-2736.
[http://dx.doi.org/10.1002/cber.188101402242]
[3]
Curtius, T. Ueber Stickstoffwasserstoffsäure (Azoimid) N3H. Ber. Dtsch. Chem. Ges., 1890, 14, 2725-2736.
[http://dx.doi.org/10.1002/cber.189002302232]
[4]
Schmidt, K.F.Z. über die Einwirkung von NH auf ordungen. Angew. Chem., 1923, 36, 511.
[5]
Richter, R.; Ulrich, H. The Chemistry of Cyanates and their Thio Derivatives; Patai, S., Ed.; Wiley: New York, 1977, pp. 665-678.
[6]
Aubé, J.; Fehl, C.; Liu, R.; McLeod, M.C.; Motiwala, H.F. Hofmann, Curtius, Schmidt, Lossen, and Related Reactions. In: Comprehensive Organic Synthesis II; Knochel, P.; Molander, G.A., Eds.; Elsevier: Amsterdam, 2014; Vol. 6, pp. 598-635.
[http://dx.doi.org/10.1016/B978-0-08-097742-3.00623-6]
[7]
Chaturvedi, D. Review on synthesis of organic carbamates: Chaturvedi, D. Perspectives on the synthesis of organic carbamates. Tetrahedron, 2012, 86, 15-45.
[8]
Fujisaki, S.; Tomiyasu, K.; Nishida, A.; Kajigaeshi, S. Halogenation using quaternary ammonium polyhalides. IX. One-step syntheses of acylureas and carbamates from amides by use of tetrabutylammonium tribromide and DBU. Bull. Chem. Soc. Jpn., 1988, 61, 1401-1403.
[http://dx.doi.org/10.1246/bcsj.61.1401]
[9]
(a)Smith, P.A.S. Rearrangements Involving Migration to an Electron- Deficient Nitrogen or Oxygen. P. de Mayo. In: Molecular Rearrangements Part, I; Ed.; Interscience: New York,, 1963; p. 528-558.
(b)Banthorpe, D.V. The Chemistry of the Amino Group; Patai, S., Ed.; Interscience: New York,, 1968, p. 628.
[10]
Imamoto, T.; Kim, S-G.; Tsuno, Y.; Yukawa, Y. The Hofmann rearrangement. IV. Kinetic isotope effect of n-chlorobenzamide. Bull. Chem. Soc. Jpn., 1971, 44, 2776-2779.
[http://dx.doi.org/10.1246/bcsj.44.2776]
[11]
Imamoto, T.; Tsuno, Y.; Yukawa, Y. The Hofmann rearrangement. I. Kinetic substituent effects of ortho-, meta-, and para-substituted n-bromobenzamides. Bull. Chem. Soc. Jpn., 1971, 44, 1632-1638.
[http://dx.doi.org/10.1246/bcsj.44.1632]
[12]
Arbuzov, B.A.; Zobova, N.N. Cycloaddition reactions of aliphatic and aromatic acyl isocyanates. Synthesis, 1974, 74(7), 461-476.
[http://dx.doi.org/10.1055/s-1974-23345]
[13]
Noack, R.; Schwetlick, K.Z. Cycloadditionen mit isocyanaten-reaktionsmöglichkeiten, Kinetik, mechanismen. Zeitschrift für Chemie, 1986, 26(4), 117-127.
[14]
Arcus, C.L.; Kenyon, J. The mechanism of the Hofmann reaction. Retention of optical activity during the reaction with (+) hydratropamide. J. Chem. Soc., 1939, 916-920.
[http://dx.doi.org/10.1039/jr9390000916]
[15]
Campbell, A.; Kenyon, J. Retention of asymmetry during the Beckmann, Lossen, and Curtius changes. J. Chem. Soc., 1946, 25-27.
[http://dx.doi.org/10.1039/jr9460000025]
[16]
Lee, K.K.; Terashima, S.; Achiwa, K.; Yamada, S. Stereochemical studies. IV. Studies on α-alkyl-α-amino acids. XII. Hofmann and Curtius rearrangements of S (+)-2-cyano-2-methyl-3-phenylpropionic Acid. Chem. Pharm. Bull. (Tokyo), 1969, 17, 2540-2547.
[http://dx.doi.org/10.1248/cpb.17.2540]
[17]
Huang, X.; Keillor, J.W. Preparation of methyl carbamates via a modified Hofmann rearrangement. Tetrahedron Lett., 1997, 38, 313-316.
[http://dx.doi.org/10.1016/S0040-4039(96)02341-6]
[18]
Huang, X.; Seid, M.; Keillor, J.W. A mild and efficient modified Hofmann rearrangement. J. Org. Chem., 1997, 62(21), 7495-7496.
[http://dx.doi.org/10.1021/jo9708553] [PMID: 11671873]
[19]
Senanayake, C.H.; Fredenburgh, L.E.; Reamer, R.A.; Larsen, R.D.; Verhoeven, T.R.; Reider, P.J. Nature of N-bromosuccinimide in basic media: the true oxidizing species in the Hofmann rearrangement. J. Am. Chem. Soc., 1994, 116, 7947-7948.
[http://dx.doi.org/10.1021/ja00096a082]
[20]
De Luca, L.; Giacomelli, G.; Nieddu, G. A simple protocol for efficient n-chlorination of amides and carbamates. Synlett, 2005, 2005(2), 223-226.
[21]
Hiegel, G.A.; Hogenauer, T.J. Preparation of methyl N-substituted carbamates from amides through N-chloroamides. Synth. Commun., 2005, 35, 2091-2098.
[http://dx.doi.org/10.1081/SCC-200066695]
[22]
Crane, Z.D.; Nichols, P.J.; Sammakia, T.; Stengel, P.J. Synthesis of methyl-1-(tert-butoxycarbonylamino)-2-vinylcyclopropanecarboxylate via a Hof-mann rearrangement utilizing trichloroisocyanuric acid as an oxidant. J. Org. Chem., 2011, 76(1), 277-280.
[http://dx.doi.org/10.1021/jo101504e] [PMID: 21133382]
[23]
Soroka, M.; Mastalerz, P. Hofmann degradation and bromination of amides derived from phosphonoacetic acid. Tetrahedron Lett., 1973, 52, 5201-5202.
[http://dx.doi.org/10.1016/S0040-4039(01)87663-2]
[24]
Engstrom, K.; Henry, R.; Hollis, L.S.; Kotecki, B.; Marsden, I.; Pu, Y-M.; Wagaw, S.; Wang, W. An efficient, stereoselective synthesis of the hydroxyethylene dipeptide isostere core for the HIV protease inhibitor A-792611. J. Org. Chem., 2006, 71(14), 5369-5372.
[http://dx.doi.org/10.1021/jo060737s] [PMID: 16808529]
[25]
McDermott, T.S.; Bhagavatula, L.; Borchardt, T.B.; Engstrom, K.M.; Gandarilla, J.; Kotecki, B.J.; Kruger, A.W.; Rozema, M.J.; Sheikh, A.Y.; Wagaw, S.H.; Wittenberger, S. Development of a scalable synthesis of dipeptidyl peptidase-4 inhibitor ABT-279. J. Org. Process Res. Dev., 2009, 13, 1145-1155.
[http://dx.doi.org/10.1021/op900197r]
[26]
Katuri, J.V.P.; Nagarajan, K. Hofmann rearrangement of primary carboxamides and cyclic imides using DCDMH and application to the synthesis of gabapentin and its potential peptide prodrugs. Tetrahedron Lett., 2019, 60, 552-556.
[http://dx.doi.org/10.1016/j.tetlet.2019.01.025]
[27]
Jevtic, I.; Dosen-Micovic, L.; Ivanovic, E.R.; Ivanovic, M.D. Hofmann rearrangement of carboxamides mediated by N-bromoacetamide. Synthesis, 2016, 48, 1550-1560.
[http://dx.doi.org/10.1055/s-0035-1561405]
[28]
Nishio, Y.; Yubata, K.; Wakai, Y.; Notsu, K.; Yamamoto, K.; Fujiwara, H.; Matsubara, H. Preparation of a novel bromine complex and its application in organic synthesis. Tetrahedron, 2019, 75, 1398-1405.
[http://dx.doi.org/10.1016/j.tet.2019.01.055]
[29]
Borah, A.J.; Phukan, P. Efficient synthesis of methyl carbamate via Hofmann rearrangement in the presence of TsNBr2. Tetrahedron Lett., 2012, 53, 3035-3037.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.011]
[30]
Miranda, L.S.M. Silva, da T. R.; Crespo, L.T.; Esteves, P.M.; Matos, de L.F.; Diederichs, C.C.; Souza, de R.O.M.A. TBCA-Mediated microwave-assisted Hofmann rearrangement. Tetrahedron Lett., 2011, 52, 1639-1640.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.126]
[31]
Gogoi, P.; Konwar, D. An efficient modification of the Hofmann rearrangement: Synthesis of methyl carbamates. Tetrahedron Lett., 2007, 48, 531-533.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.134]
[32]
Pospisek, J.; Blaha, K. Peptides 1982. In: Proceedings of the 17th European Peptide Symposium; ed: Blaha, K.; Malon, P.; de Gruyter, Berlin., 1983; Vol. 105, p. 333.
[33]
Moriyama, K.; Ishida, K.; Togo, H. Effect of catalytic alkali metal bromide on Hofmann-type rearrangement of imides. Chem. Commun. (Camb.), 2012, 48(68), 8574-8576.
[http://dx.doi.org/10.1039/c2cc33914e] [PMID: 22806230]
[34]
Amato, J.S.; Bagner, C.; Cvetovich, R.J.; Gomolka, S.; Hartner, F.W.; Reamer, R. Development of the Hofmann rearrangement of Nα-tosylasparagine through calorimetric and NMR analysis. J. Org. Chem., 1998, 63, 9533-9534.
[http://dx.doi.org/10.1021/jo980799l]
[35]
Peng, Y.; Sun, S.; Ye, Y.; Liu, J. Reaction mechanisms of 3-amino-4-nitro-furoxan formation by 3-amide-4-nitro-furoxan and sodium hypochlorite in water and benzene solvents. Comput. Theor. Chem., 2018, 1125, 69-76.
[http://dx.doi.org/10.1016/j.comptc.2018.01.006]
[36]
Shono, T.; Matsumura, Y.; Yamane, S.; Kashimura, S. The Hofmann rearrangement induced by electro-organic method. Chem. Lett., 1982, 11, 565-568.
[http://dx.doi.org/10.1246/cl.1982.565]
[37]
Matsumura, Y.; Maki, T.; Satoh, Y. Electrochemically induced Hofmann rearrangement. Tetrahedron Lett., 1997, 38, 8879-8882.
[http://dx.doi.org/10.1016/S0040-4039(97)10324-0]
[38]
Li, L.; Xue, M.; Yan, X.; Liu, W.; Xu, K.; Zhang, S. Electrochemical Hofmann rearrangement mediated by NaBr: practical access to bioactive carbamates. Org. Biomol. Chem., 2018, 16(25), 4615-4618.
[http://dx.doi.org/10.1039/C8OB01059E] [PMID: 29900466]
[39]
Palmieri, A.; Ley, S.V.; Hammond, K.; Polyzos, A.; Baxendale, I.R. A microfluidic flow chemistry platform for organic synthesis: the Hofmann rearrangement. Tetrahedron Lett., 2009, 50, 3287-3289.
[http://dx.doi.org/10.1016/j.tetlet.2009.02.059]
[40]
Huang, J-P.; Sang, F-N.; Luo, G-S.; Xu, J-H. Continuous synthesis of Gabapentin with a microreaction system. Chem. Eng. Sci., 2017, 173, 507-513.
[http://dx.doi.org/10.1016/j.ces.2017.08.020]
[41]
Dai, Y.; Pang, H.; Huang, J.; Yang, Y.; Huang, H.; Wang, K.; Ma, Z.; Liao, B. Tailoring of ammonia reduced graphene oxide into amine functionalized graphene quantum dots through a Hofmann rearrangement. RSC Advances, 2016, 6, 34514-34520.
[http://dx.doi.org/10.1039/C6RA01587E]
[42]
Morimoto, T.; Mochizuki, N.; Suzuki, M. A new chiral 2-sulfonylamino-2′-phosphino-1,1′-binaphthyl ligand for highly enantioselective copper-catalyzed conjugate addition of diethylzinc to benzylideneacetones. Tetrahedron Lett., 2004, 45, 5717-5722.
[http://dx.doi.org/10.1016/j.tetlet.2004.05.101]
[43]
Sy, A.O.; Raksis, J.W. Synthesis of aliphatic isocyanates via a two-phase Hofmann reaction. Tetrahedron Lett., 1980, 21, 2223-2226.
[http://dx.doi.org/10.1016/0040-4039(80)80008-6]
[44]
Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
[45]
(a)Radhakrishna, A.S.; Parham, M.E.; Riggs, R.M.; Loudon, G.M. New method for direct conversion of amides to amines. J. Org. Chem., 1979, 44, 1746-1747.
[http://dx.doi.org/10.1021/jo01324a048]
(b)Loudon, G.M.; Radhakrishna, A.S.; Almond, M.R.; Blodgett, J.K.; Boutin, R.H. Conversion of aliphatic amides into amines with [1,1-bis(tri-fluoroacetoxy)iodo] benzene. 1. Scope of the reaction. J. Org. Chem., 1984, 49, 4272-4276.
[http://dx.doi.org/10.1021/jo00196a031]
[46]
Beckwith, A.L.J.; Dyall, L.K. Oxidative cyclization of diamides by phenyliodoso acetate. Aust. J. Chem., 1990, 43, 451-461.
[http://dx.doi.org/10.1071/CH9900451]
[47]
Moriarty, R.M.; Chany, C.J.; Vaid, R.K.; Prakash, O.; Tuladhar, S.M. Preparation of methyl carbamates from primary alkyl- and arylcarboxamides using hypervalent iodine. J. Org. Chem., 1993, 58, 2478-2482.
[http://dx.doi.org/10.1021/jo00061a022]
[48]
Togo, H.; Nabana, T.; Yamaguchi, K. Preparation and reactivities of novel (Diacetoxyiodo)arenes bearing heteroaromatics. J. Org. Chem., 2000, 65(24), 8391-8394.
[http://dx.doi.org/10.1021/jo001186n] [PMID: 11101405]
[49]
Lazbin, I.M.; Koser, G.F. Direct conversion of aliphatic carboxamides to alkylammonium tosylates with [hydroxy(tosyloxy)iodo]benzene. J. Org. Chem., 1986, 51, 2669-2671.
[http://dx.doi.org/10.1021/jo00364a010]
[50]
Vasudevan, A.; Koser, G.F. Direct conversion of long-chain carboxamides to alkylammonium tosylates with hydroxy(tosyloxy)iodobenzene, a notable improvement over the classical Hofmann reaction. J. Org. Chem., 1988, 53, 5158-5160.
[http://dx.doi.org/10.1021/jo00256a051]
[51]
Lazbin, I.M.; Koser, G.F. N-Phenyliodonio carboxamide tosylates: synthesis and hydrolysis to alkylammonium tosylates. J. Org. Chem., 1987, 52, 476-477.
[http://dx.doi.org/10.1021/jo00379a039]
[52]
Yoshimura, A.; Luedtke, M.W.; Zhdankin, V.V. (Tosylimino)phenyl-λ3-iodane as a reagent for the synthesis of methyl carbamates via Hofmann rearrangement of aromatic and aliphatic carboxamides. J. Org. Chem., 2012, 77(4), 2087-2091.
[http://dx.doi.org/10.1021/jo300007c] [PMID: 22304475]
[53]
Zagulyaeva, A.A.; Banek, C.T.; Yusubov, M.S.; Zhdankin, V.V. Hofmann rearrangement of carboxamides mediated by hypervalent iodine species generated in situ from iodobenzene and oxone: reaction scope and limitations. Org. Lett., 2010, 12(20), 4644-4647.
[http://dx.doi.org/10.1021/ol101993q] [PMID: 20843092]
[54]
Miyamoto, K.; Sakai, Y.; Goda, S.; Ochiai, M. A catalytic version of hypervalent aryl-λ3-iodane-induced Hofmann rearrangement of primary carboxamides: iodobenzene as an organocatalyst and m-chloroperbenzoic acid as a terminal oxidant. Chem. Commun. (Camb.), 2012, 48(7), 982-984.
[http://dx.doi.org/10.1039/C2CC16360H] [PMID: 22159446]
[55]
Yoshimura, A.; Middleton, K.R.; Luedtke, M.W.; Zhu, C.; Zhdankin, V.V. Hypervalent iodine catalyzed Hofmann rearrangement of carboxamides using oxone as terminal oxidant. J. Org. Chem., 2012, 77(24), 11399-11404.
[http://dx.doi.org/10.1021/jo302375m] [PMID: 23176018]
[56]
Miyamoto, K.; Yamashita, J.; Narita, S.; Sakai, Y.; Hirano, K.; Saito, T.; Wang, C.; Ochiai, M.; Uchiyama, M. Iodoarene-catalyzed oxidative transformations using molecular oxygen. Chem. Commun. (Camb.), 2017, 53(70), 9781-9784.
[http://dx.doi.org/10.1039/C7CC05160C] [PMID: 28816304]
[57]
Moriyama, K.; Ishida, K.; Togo, H. Hofmann-type rearrangement of imides by in situ generation of imide-hypervalent iodines(III) from iodoarenes. Org. Lett., 2012, 14(3), 946-949.
[http://dx.doi.org/10.1021/ol300028j] [PMID: 22273472]
[58]
Iinuma, M.; Moriyama, K.; Togo, H. Various oxidative reactions with novel ion-supported (diacetoxyiodo)benzenes. Tetrahedron, 2013, 69, 2961-2970.
[http://dx.doi.org/10.1016/j.tet.2013.02.017]
[59]
Angelici, G.; Contaldi, S.; Green, S.L.; Tomasini, C. Synthesis of imidazolidin-2-one-4-carboxylate and of (tetrahydro)pyrimidin-2-one-5-car-boxylate via an efficient modification of the Hofmann rearrangement. Org. Biomol. Chem., 2008, 6(10), 1849-1852.
[http://dx.doi.org/10.1039/b801909f] [PMID: 18452022]
[60]
Zhang Lh, L.; Chung, J.C.; Costello, T.D.; Valvis, I.; Ma, P.; Kauffman, S.; Ward, R. The enantiospecific synthesis of an isoxazoline. A RGD mimic platelet GPIIb/IIIa antagonist. J. Org. Chem., 1997, 62(8), 2466-2470.
[http://dx.doi.org/10.1021/jo9612537] [PMID: 11671583]
[61]
Zhang, L-H.; Kauffman, G.S.; Pesti, J.A.; Yin, J. Rearrangement of Nα-protected L-asparagines with iodosobenzene Diacetate. A practical route to β-amino-L-alanine derivatives. J. Org. Chem., 1997, 62, 6918-6920.
[http://dx.doi.org/10.1021/jo9702756]
[62]
Aresu, E.; Fioravanti, S.; Gasbarri, S.; Pellacani, L.; Ramadori, F. Synthesis of gem-diamino acid derivatives by a Hofmann rearrangement. Amino Acids, 2013, 44(3), 977-982.
[http://dx.doi.org/10.1007/s00726-012-1428-2] [PMID: 23179086]
[63]
Chakraborty, T.K.; Ghosh, A. Synthesis of chiral α-amino acids. Tetrahedron Lett., 2002, 43, 9691-9693.
[http://dx.doi.org/10.1016/S0040-4039(02)02433-4]
[64]
Balaev, A.N.; Okhmanovich, K.A. Osipov, V. N. A shortened, protecting group free, synthesis of the anti-wrinkle venom analogue Syn-Ake® exploiting an optimized Hofmann-type rearrangement. Tetrahedron Lett., 2014, 55, 5745-5747.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.117]
[65]
Cantel, S.; Boeglin, D.; Rolland, M.; Martinez, J.; Fehrentz, J-A. Synthesis of gem-diamino derivatives on solid support. Tetrahedron Lett., 2003, 44, 4797-4799.
[http://dx.doi.org/10.1016/S0040-4039(03)00925-0]
[66]
Palmer, A.M.; Munch, G.; Scheufler, C.; Kromer, W. Synthesis and pharmacological evaluation of 5-carboxamide-substituted tetrahydrochromeno[7,8-d]imidazoles. Tetrahedron Lett., 2009, 50, 3920-3922.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.071]
[67]
Pearson, C.M.; Fyfe, J.W.B.; Snaddon, T.N. A regio‐ and stereodivergent synthesis of homoallylic amines by a one‐pot cooperative‐catalysis‐based allylic alkylation/Hofmann rearrangement strategy. Angew. Chem. Int. Ed. Engl., 2019, 58(31), 10521-10527.
[http://dx.doi.org/10.1002/anie.201905426] [PMID: 31132203]
[68]
Landsberg, D.; Kalesse, M. Synthesis of symmetrical ureas by (diacetoxyiodo)benzene-induced Hofmann rearrangement. Synlett, 2010, 2010(7), 1104-1106.
[69]
Liu, P.; Wang, Z.; Hu, X. Highly efficient synthesis of ureas and carbamates from amides by iodosylbenzene‐induced Hofmann rearrangement. Eur. J. Org. Chem., 2012, 2012(10), 1994-2000.
[http://dx.doi.org/10.1002/ejoc.201101784]
[70]
(a)Acott, B.; Beckwith, A.L.J. Reaction of lead tetra-acetate with primary amides. Formation of acylamines. Chem. Commun., 1965, 161-162.
(b)Acott, B.; Beckwith, A.L.J.; Hassanali, A. Reactions of lead tetraacetate. I. Formation of acylamines from primary carboxamides. Aust. J. Chem., 1968, 21, 185-197.
[http://dx.doi.org/10.1071/CH9680185]
[71]
Baumgarten, H.E.; Smith, H.L.; Staklis, A. Reactions of amines. XVIII. Oxidative rearrangement of amides with lead tetraacetate. J. Org. Chem., 1975, 40, 3554-3561.
[http://dx.doi.org/10.1021/jo00912a019]
[72]
Stevens, T.E. Rearrangement of amides with iodine pentafluoride. J. Org. Chem., 1966, 31, 2025-2030.
[http://dx.doi.org/10.1021/jo01344a539]
[73]
Yamaguchi, J.I.; Hoshi, K.; Takeda, T. Transformation of primary carboxamides to N-(t-butoxycarbonyl) amines using CuBr2–LiOBut. Chem. Lett., 1993, 22(7), 1273-1274.
[http://dx.doi.org/10.1246/cl.1993.1273]
[74]
Nishikawa, T.; Urabe, D.; Tomita, M.; Tsujimoto, T.; Iwabuchi, T.; Isobe, M. One-pot transformation of trichloroacetamide into readily deprotectable carbamates. Org. Lett., 2006, 8(15), 3263-3265.
[http://dx.doi.org/10.1021/ol061123c] [PMID: 16836381]
[75]
Ramsden, C.A.; Rose, H.L. Rearrangement and cyclo-α-elimination of N-substituted amidines using (diacetoxyiodo)benzene. J. Chem. Soc., Perkin Trans. 1, 1995, 1995(6), 615-617.
[http://dx.doi.org/10.1039/P19950000615]
[76]
Ramsden, C.A.; Rose, H.L. Oxidative rearrangement and cyclisation of N-substituted amidines using iodine(III) reagents and the influence of leaving group on mode of reaction. J. Chem. Soc., Perkin Trans. 1, 1997, 2319-2327.
[http://dx.doi.org/10.1039/a702025b]
[77]
Bobosikova, M.; Clegg, W.; Coles, S.J.; Dandarova, M.; Hursthouse, M.B.; Kiss, T.; Krutosikova, A.; Liptaj, T.; Pronayova, N.; Ramsden, C.A. The oxidative rearrangement of furan-2-carboximidamides: Preparation and properties of 2-acylaminofurans. J. Chem. Soc., Perkin Trans. 1, 2001, 680-689.
[http://dx.doi.org/10.1039/b010010m]
[78]
Debnath, P.; Baeten, M.; Lefevre, N.; Daele, S.V.; Maes, B.U.W. Synthesis of secondary amides from N‐substituted amidines by tandem oxidative rearrangement and isocyanate elimination. Adv. Synth. Catal., 2015, 357, 197-209.
[http://dx.doi.org/10.1002/adsc.201400648]
[79]
Yagupolskii, L.M.; Maletina, I.I.; Sokolenko, L.V.; Vlasenko, Y.G.; Buth, S.A. N-Perfluoroalkylsulfonylimido derivatives of arenecarboxylic acid amides and their oxidative aza Hofmann rearrangement. J. Fluor. Chem., 2008, 129, 486-492.
[http://dx.doi.org/10.1016/j.jfluchem.2008.03.001]
[80]
Baeten, M. Maes, B. U. W. Guanidine synthesis: Use of amidines as guanylating agents. Adv. Synth. Catal., 2016, 358, 826-833.
[http://dx.doi.org/10.1002/adsc.201501146]
[81]
Ochiai, M.; Okada, T.; Tada, N.; Yoshimura, A.; Miyamoto, K.; Shiro, M. Difluoro-λ3-bromane-induced Hofmann rearrangement of sulfonamides: synthesis of sulfamoyl fluorides. J. Am. Chem. Soc., 2009, 131(24), 8392-8393.
[http://dx.doi.org/10.1021/ja903544d] [PMID: 19485369]
[82]
Zhao, Z.; Peng, Z.; Zhao, Y.; Liu, H.; Li, C.; Zhao, J. Hypervalent iodine-mediated oxidative rearrangement of N-H ketimines: an umpolung approach to amides. J. Org. Chem., 2017, 82(22), 11848-11853.
[http://dx.doi.org/10.1021/acs.joc.7b01468] [PMID: 28691492]
[83]
Prakash, O.; Batra, H.; Kaur, H.; Sharma, P.K.; Sharma, V.; Singh, S.P.; Moriarty, R.M. Hypervalent iodine oxidative rearrangement of anthranilamides, salicylamides and some β-substituted amides: A new and convenient synthesis of 2-benzimidazolones, 2-benzoxazolones and related compounds. Synthesis, 2001, 2001(4), 541-543.
[http://dx.doi.org/10.1055/s-2001-12346]
[84]
Garcia-Urdiates, E.; Rebolledo, F.; Gotor, V. Enzymatic ammonolysis of ethyl (±)-4-chloro-3-hydroxybutanoate. Chemoenzymatic syntheses of both enantiomers of pyrrolidin-3-ol and 5-(chloromethyl)-1,3-oxazolidin-2-one. Tetrahedron Asymmetry, 1999, 10, 721-726.
[http://dx.doi.org/10.1016/S0957-4166(99)00034-8]
[85]
Yu, C.; Jiang, Y.; Liu, B.; Hu, L. A facile synthesis of 2-oxazolidinones via Hofmann rearrangement mediated by bis(trifluoroacetoxy)iodobenzene. Tetrahedron Lett., 2001, 42, 1449-1452.
[http://dx.doi.org/10.1016/S0040-4039(00)02297-8]
[86]
Huang, H.; Yang, Q.; Zhang, Q.; Wu, Z.; Wu, J.; Liu, Y.; Song, C.; Chang, J. A Hofmann rearrangement–ring expansion cascade for the synthesis of 1-pyrrolines: Application to the synthesis of 2,3-dihydro-1H-pyrrolo[2,1-a]isoquinolinium salts. Adv. Synth. Catal., 2016, 358, 1130-1135.
[http://dx.doi.org/10.1002/adsc.201501071]
[87]
Sakamoto, T.; Kondo, Y.; Yamanaka, H. Condensed heteroaromatic ring systems. VI: Synthesis of indoles and pyroolopyridines from o-nitroaryl-acetylenes. Chem. Pharm. Bull. (Tokyo), 1986, 34, 2362-2368.
[http://dx.doi.org/10.1248/cpb.34.2362]
[88]
Okamoto, N.; Miwa, Y.; Minami, H.; Takeda, K.; Yanada, R. Concise one-pot tandem synthesis of indoles and isoquinolines from amides. Angew. Chem. Int. Ed. Engl., 2009, 48(51), 9693-9696.
[http://dx.doi.org/10.1002/anie.200904960] [PMID: 19899177]
[89]
Kormanov, A.V.; Lipilin, D.L.; Shkineva, T.K.; Vatsadze, I.A.; Kozeev, A.M.; Dalinger, I.L. Synthesis and transformations of 3(5)-(3-methylfurazan-4-yl)-4-nitro-1H-pyrazole-5(3)-carboxylic acid. Chem. Heterocycl. Compd., 2017, 53(8), 876-882.
[http://dx.doi.org/10.1007/s10593-017-2141-6]
[90]
Mailyan, A.K.; Eickhoff, J.A.; Minakova, A.S.; Gu, Z.; Lu, P.; Zakarian, A. Cutting-edge and time-honored strategies for stereoselective construction of C-N bonds in total synthesis. Chem. Rev., 2016, 116(7), 4441-4557.
[http://dx.doi.org/10.1021/acs.chemrev.5b00712] [PMID: 27014921]
[91]
Silva, L.F., Jr; Siqueira, F.A.; Pedrozo, E.C.; Vieira, F.Y.M.; Doriguetto, A.C. Iodine(III)-promoted ring contraction of 1,2-dihydronaphthalenes: a diastereoselective total synthesis of (+/-)-indatraline. Org. Lett., 2007, 9(8), 1433-1436.
[http://dx.doi.org/10.1021/ol070027o] [PMID: 17371034]
[92]
Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T. A Practical Synthesis of (−) ‐Oseltamivir. Angew. Chem. Int. Ed., 2007, 46, 5734-5736.
[93]
Poullennec, K.G.; Romo, D. Enantioselective total synthesis of (+)-dibromophakellstatin. J. Am. Chem. Soc., 2003, 125(21), 6344-6345.
[http://dx.doi.org/10.1021/ja034575i] [PMID: 12785755]
[94]
Kimishima, A.; Umihara, H.; Mizoguchi, A.; Yokoshima, S.; Fukuyama, T. Synthesis of (-)-oxycodone. Org. Lett., 2014, 16(23), 6244-6247.
[http://dx.doi.org/10.1021/ol503175n] [PMID: 25423610]
[95]
Evans, D.A.; Scheidt, K.A.; Downey, C.W. Synthesis of (-)-epibatidine. Org. Lett., 2001, 3(19), 3009-3012.
[http://dx.doi.org/10.1021/ol016420q] [PMID: 11554830]
[96]
Inai, M.; Goto, T.; Furuta, T.; Wakimoto, T.; Kan, T. Stereo-controlled total synthesis of (−)-myriocin. Tetrahedron Asymmetry, 2008, 19, 2771-2773.
[http://dx.doi.org/10.1016/j.tetasy.2008.12.020]
[97]
Tun, M.K.M.; Wustmann, D-J.; Herzon, S.B. A robust and scalable synthesis of the potent neuroprotective agent (-)-huperzine A. Chem. Sci. (Camb.), 2011, 2, 2251-2253.
[http://dx.doi.org/10.1039/c1sc00455g]
[98]
Mercado-Marin, E.V.; Garcia-Reynaga, P.; Romminger, S.; Pimenta, E.F.; Romney, D.K.; Lodewyk, M.W.; Williams, D.E.; Andersen, R.J.; Miller, S.J.; Tantillo, D.J.; Berlinck, R.G.S.; Sarpong, R. Total synthesis and isolation of citrinalin and cyclopiamine congeners. Nature, 2014, 509(7500), 318-324.
[http://dx.doi.org/10.1038/nature13273] [PMID: 24828190]
[99]
Stork, G.; Zhao, K. Total syntheses of (-)-histrionicotoxin and (-)-histrionicotoxin 235A. J. Am. Chem. Soc., 1990, 112, 5875-5876.
[http://dx.doi.org/10.1021/ja00171a035]
[100]
Adachi, Y.; Kamei, N.; Yokoshima, S.; Fukuyama, T. Total synthesis of (-)-histrionicotoxin. Org. Lett., 2011, 13(16), 4446-4449.
[http://dx.doi.org/10.1021/ol2018032] [PMID: 21793562]
[101]
Adachi, Y.; Kamei, N.; Yokoshima, S.; Fukuyama, T. Correction to total synthesis of histrionicotoxin. Org. Lett., 2014, 16, 1273.
[http://dx.doi.org/10.1021/ol5001632]
[102]
Inai, M.; Asakawa, T.; Kan, T. Total synthesis of natural products using a desymmetrization strategy. Tetrahedron Lett., 2018, 59, 1343-1347.
[http://dx.doi.org/10.1016/j.tetlet.2018.02.059]
[103]
Greshock, T.J.; Funk, R.L. An approach to the total synthesis of welwistatin. Org. Lett., 2006, 8(12), 2643-2645.
[http://dx.doi.org/10.1021/ol0608799] [PMID: 16737334]
[104]
Wang, Y.; Liu, X.; Deng, L. Dual-function cinchona alkaloid catalysis: catalytic asymmetric tandem conjugate addition-protonation for the direct creation of nonadjacent stereocenters. J. Am. Chem. Soc., 2006, 128(12), 3928-3930.
[http://dx.doi.org/10.1021/ja060312n] [PMID: 16551098]
[105]
Abrecht, S.; Adam, J-M.; Bromberger, U. Diodone, R.; Fettes, A.; Fischer, R.; Goeckel, V.; Hildbrand, S.; Moine, G.; Weber, M. An efficient process for the manufacture of Carmegliptin. Org. Process. Dev., 2011, 15, 503-514.
[http://dx.doi.org/10.1021/op2000207]
[106]
Schultz, A.G.; Wang, A. First asymmetric synthesis of a hasubanan alkaloid. Total synthesis of cepharamine. J. Am. Chem. Soc., 1998, 120, 8259-8260.
[http://dx.doi.org/10.1021/ja981624w]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy