Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Preparation and Biomedical Application of Biopolyesters

Author(s): Mengxun Shi, Tao Cheng, Huibin Zou*, Nan Zhang, Jingling Huang and Mo Xian

Volume 20, Issue 4, 2020

Page: [331 - 340] Pages: 10

DOI: 10.2174/1389557519666191015211156

Price: $65

Abstract

Biopolyesters represent a large family that can be obtained by polymerization of variable bio-derived hydroxyalkanoic acids. The monomer composition, molecular weight of the biopolyesters can affect the properties and applications of the polyesters. The majority of biopolyesters can either be biosynthesized from natural biofeedstocks or semi-synthesized (biopreparation of monomers followed by the chemical polymerization of the monomers). With the fast development of synthetic biology and biosynthesis techniques, the biosynthesis of unnatural biopolyesters (like lactate containing and aromatic biopolyesters) with improved performance and function has been a tendency. The presence of novel preparation methods, novel monomer composition has also significantly affected the properties, functions and applications of the biopolyesters. Due to the properties of biodegradability and biocompatibility, biopolyesters have great potential in biomedical applications (as implanting or covering biomaterials, drug carriers). Moreover, biopolyesters can be fused with other functional ingredients to achieve novel applications or improved functions. This study summarizes and compares the updated preparation methods of representative biopolyesters, also introduces the current status and future trends of their applications in biomedical fields.

Keywords: Biopolyesters, biosynthesis, biomedical application, polymerization, hydroxyalkanoic acids, synthetic biology.

« Previous
Graphical Abstract
[1]
Wang, Y.; Yin, J.; Chen, G.Q. Polyhydroxyalkanoates, challenges and opportunities. Curr. Opin. Biotechnol., 2014, 30, 59-65.
[http://dx.doi.org/10.1016/j.copbio.2014.06.001] [PMID: 24976377]
[2]
Muhammadi; Shabina; Afzal, M.; Hameed, S. Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chem. Lett. Rev., 2015, 8, 56-77.
[http://dx.doi.org/10.1080/17518253.2015.1109715]
[3]
Wang, Y.; Wu, H.; Jiang, X.; Chen, G.Q. Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space. Metab. Eng., 2014, 25, 183-193.
[http://dx.doi.org/10.1016/j.ymben.2014.07.010] [PMID: 25088357]
[4]
Tripathi, L.; Wu, L.P.; Meng, D.; Chen, J.; Chen, G.Q. Biosynthesis and characterization of diblock copolymer of p(3-hydroxypropionate)-block-p(4-hydroxybutyrate) from recombinant Escherichia coli. Biomacromolecules, 2013, 14(3), 862-870.
[http://dx.doi.org/10.1021/bm3019517] [PMID: 23351169]
[5]
Philip, S.; Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol., 2007, 82, 233-247.
[http://dx.doi.org/10.1002/jctb.1667]
[6]
Li, S.Y.; Dong, C.L.; Wang, S.Y.; Ye, H.M.; Chen, G.Q. Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida. Appl. Microbiol. Biotechnol., 2011, 90(2), 659-669.
[http://dx.doi.org/10.1007/s00253-010-3069-2] [PMID: 21181145]
[7]
Zou, H.; Shi, M.; Zhang, T.; Li, L.; Li, L.; Xian, M. Natural and engineered polyhydroxyalkanoate (PHA) synthase: Key enzyme in biopolyester production. Appl. Microbiol. Biotechnol., 2017, 101(20), 7417-7426.
[http://dx.doi.org/10.1007/s00253-017-8485-0] [PMID: 28884324]
[8]
Vink, E.T.H.; Rábago, K.R.; Glassner, D.A.; Springs, B.; O’Connor, R.P.; Kolstad, J.; Gruber, P.R. The sustainability of nature workstm polylactide polymers and IngeoTM polylactide fibers: An update of the future. Proceed. Macromol. Biosci., 2004, 4, 551-564.
[http://dx.doi.org/10.1002/mabi.200400023]
[9]
Maharana, T.; Mohanty, B.; Negi, Y.S. Melt-Solid polycondensation of lactic acid and its biodegradability. Prog. Polym. Sci., 2009, 34, 99-124.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.10.001]
[10]
Chen, G.Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev., 2009, 38(8), 2434-2446.
[http://dx.doi.org/10.1039/b812677c] [PMID: 19623359]
[11]
Park, S.J.; Kim, T.W.; Kim, M.K.; Lee, S.Y.; Lim, S.C. Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol. Adv., 2012, 30(6), 1196-1206.
[http://dx.doi.org/10.1016/j.biotechadv.2011.11.007] [PMID: 22137963]
[12]
Choi, S.Y.; Park, S.J.; Kim, W.J.; Yang, J.E.; Lee, H.; Shin, J.; Lee, S.Y. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat. Biotechnol., 2016, 34(4), 435-440.
[http://dx.doi.org/10.1038/nbt.3485] [PMID: 26950748]
[13]
Chung, H.; Yang, J.E.; Ha, J.Y.; Chae, T.U.; Shin, J.H.; Gustavsson, M.; Lee, S.Y. Bio-based production of monomers and polymers by metabolically engineered microorganisms. Curr. Opin. Biotechnol., 2015, 36, 73-84.
[http://dx.doi.org/10.1016/j.copbio.2015.07.003] [PMID: 26318077]
[14]
Yang, J.E.; Park, S.J.; Kim, W.J.; Kim, H.J.; Kim, B.J.; Lee, H.; Shin, J.; Lee, S.Y. One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains. Nat. Commun., 2018, 9(1), 79.
[http://dx.doi.org/10.1038/s41467-017-02498-w] [PMID: 29311546]
[15]
Raza, Z.A.; Abid, S.; Banat, I.M. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegradation, 2018, 126, 45-56.
[http://dx.doi.org/10.1016/j.ibiod.2017.10.001]
[16]
Albertsson, A.C.; Varma, I.K. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules, 2003, 4(6), 1466-1486.
[http://dx.doi.org/10.1021/bm034247a] [PMID: 14606869]
[17]
Penczek, S.; Duda, A.; Szymanski, R.; Biela, T. What we have learned in general from cyclic esters polymerization. Macromol. Symp., 2000, 153, 1-15.
[http://dx.doi.org/10.1002/1521-3900(200003)153:1<1::AID-MASY1>3.0.CO;2-4]
[18]
Hallpap, P.; Stadermann, D.; Bolke, M.; Heublein, G. Thermodynamics of cationic polymerization. 2. initiation, transfer and termination. J. Polym. Sci. Polym. Lett, 1988, 39, 350-354.
[19]
Kostjuk, S.V.; Radchenko, A.V.; Ganachaud, F. Controlled/Living cationic polymerization of pmethoxystyrene in solution and aqueous dispersion using tris(pentafluorophenyl)borane as a lewis acid: Acetonitrile does the Job. Macromolecules, 2007, 40, 482-490.
[http://dx.doi.org/10.1021/ma062261k]
[20]
Zhang, Z.; Zhang, H.; Gnanou, Y.; Hadjichristidis, N. Polyhomologation based on in situ generated boron-thexyl-silaboracyclic initiating sites: a novel strategy towards the synthesis of polyethylene-based complex architectures. Chem. Commun. (Camb.), 2015, 51(49), 9936-9938.
[http://dx.doi.org/10.1039/C5CC01579K] [PMID: 25900042]
[21]
Ye, L.; Peng, H.; Yang, G.; Zhang, D.; Xia, Z. well controlled living anionic polymerization of propylene oxide initiated by onium salts in the presence of triethyl borane. Polym. Mater. Sci. Eng., 2018, 34, 1-5.
[22]
Wu, J.; Yu, T.L.; Chen, C.T.; Lin, C.C. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coord. Chem. Rev., 2006, 250, 602-626.
[http://dx.doi.org/10.1016/j.ccr.2005.07.010]
[23]
Wang, Y.; Bailey, T.S.; Hong, M.; Chen, E.Y.X. Stereoregular brush polymers and graft copolymers by chiral zirconocene-mediated coordination polymerization of P3HT macromers. Polymers (Basel), 2017, 9(4), 9.
[http://dx.doi.org/10.3390/polym9040139] [PMID: 30970820]
[24]
Gädda, T.; Kylmä, J.; Tuominen, J.; Mikkonen, H.; Laine, A.; Peltonen, S.; Seppälä, J. Poly(ε-Caprolactone)-Grafted acetylated anhydroglucose oligomer by ring-opening polymerization -synthesis and characterization. J. Appl. Polym. Sci., 2006, 100, 1633-1641.
[http://dx.doi.org/10.1002/app.23697]
[25]
Kowalski, A.; Duda, A.; Penczek, S. Kinetics and mechanism of cyclic esters polymerization initiated with Tin(II) Octoate. 3. polymerization of L,L-Dilactide. Macromolecules, 2000, 33, 7359-7370.
[http://dx.doi.org/10.1021/ma000125o]
[26]
Chamberlain, B.M.; Jazdzewski, B.A.; Pink, M.; Hillmyer, M.A.; Tolman, W.B. Controlled polymerization of dl-lactide and ε-caprolactone by structurally well-defined Alkoxo-Bridged Di- and Triyttrium(III) complexes. Macromolecules, 2000, 33, 3970-3977.
[http://dx.doi.org/10.1021/ma0000834]
[27]
Ajioka, M.; Enomoto, K.; Suzuki, K.; Yamaguchi, A. The Basic Properties of Poly(Lactic Acid) Produced by the Direct Condensation Polymerization of Lactic Acid. J. Environ. Polym. Degrad., 1995, 3, 225-234.
[http://dx.doi.org/10.1007/BF02068677]
[28]
Proikakis, C.S.; Tarantili, P.A.; Andreopoulos, A.G. synthesis and characterization of low molecular weight polylactic acid. J. Elastomers Plast., 2002, 34, 49-63.
[http://dx.doi.org/10.1106/009524402021336]
[29]
Södergård, A.; Stolt, M. Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci., 2002, 1123-1163.
[http://dx.doi.org/10.1016/S0079-6700(02)00012-6]
[30]
Ayyoob, M.; Lee, D.H.; Kim, J.H.; Nam, S.W.; Kim, Y.J. Synthesis of Poly(Glycolic Acids) via Solution Polycondensation and Investigation of Their Thermal Degradation Behaviors. Fibers Polym., 2017, 18, 407-415.
[http://dx.doi.org/10.1007/s12221-017-6889-1]
[31]
Giol, E.D.; Van den Brande, N.; Van Mele, B.; Van Vlierberghe, S.; Dubruel, P. Single-Step solution polymerization of Poly(Alkylene Terephthalate)s: Synthesis parameters and polymer characterization. Polym. Int., 2018, 67, 292-300.
[http://dx.doi.org/10.1002/pi.5508]
[32]
Moon, S.I.L.; Woo Lee, C.; Miyamoto, M.; Kimura, Y. Melt Polycondensation of L-Lactic Acid with Sn(II) Catalysts activated by various proton acids: a direct manufacturing route to high molecular weight Poly(L-Lactic Acid). J. Polym. Sci. A Polym. Chem., 2000, 38, 1673-1679.
[http://dx.doi.org/10.1002/(SICI)1099-0518(20000501)38:9<1673:AID-POLA33>3.0.CO;2-T]
[33]
Lee, M.W.; Tan, H.T.; Chandrasekaran, M.; Ooi, C.P. Synthesis and Characterisation of PLLA by Melt Polycondensation Using Binary Catalyst System. SIMTech Tech. reports; , 2005, 6, 40-44.
[34]
Wang, Z.Y.; Zhao, Y.M.; Wang, F. Syntheses of Poly(Dactic Acid)-Poly(Ethylene Glycol) serial biodegradable polymer materials via direct melt polycondensation and their characterization. J. Appl. Polym. Sci., 2006, 102, 577-587.
[http://dx.doi.org/10.1002/app.24321]
[35]
Song, F.; Wu, L. Synthesis of High Molecular Weight Poly(L -Lactic Acid) via Melt/Solid Polycondensation: Intensification of dehydration and oligomerization during melt polycondensation. J. Appl. Polym. Sci., 2011, 120, 2780-2785.
[http://dx.doi.org/10.1002/app.33182]
[36]
Mehta, R.; Kumar, V.; Bhunia, H.; Upadhyay, S.N. Synthesis of Poly(Lactic Acid): A Review. J. Macromol. Sci. -. Polym. Rev. (Phila. Pa.), 2005, 45, 325-349.
[37]
Moon, S.I.; Lee, C.W.; Taniguchi, I.; Miyamoto, M.; Kimura, Y. Melt/Solid Polycondensation of L-Lactic Acid: An alternative route to Poly(L-Lactic Acid) with high molecular weight. Polymer (Guildf.), 2001, 42, 5059-5062.
[http://dx.doi.org/10.1016/S0032-3861(00)00889-2]
[38]
Rehm, B.H.A.; Steinbüchel, A. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromol., 1999, 25(1-3), 3-19.
[http://dx.doi.org/10.1016/S0141-8130(99)00010-0] [PMID: 10416645]
[39]
Chen, G.Q. Plastics completely synthesized by bacteria: Polyhydroxyalkanoates.Microbiology Monographs; Springer: Berlin, Heidelberg, 2010, pp. 17-37.
[40]
Shahhoseini, S.; Jamalzadeh, E. Modeling and simulation of polyhydroxybutyrate production by protomonas extorquens in fed-batch culture shahrokh. Iranian J. Biotechnol., 2006, 4, 123-139.
[41]
Park, S.J.; Lee, S.Y.; Kim, T.W.; Jung, Y.K.; Yang, T.H. Biosynthesis of lactate-containing polyesters by metabolically engineered bacteria. Biotechnol. J., 2012, 7(2), 199-212.
[http://dx.doi.org/10.1002/biot.201100070] [PMID: 22057878]
[42]
Steinbüchel, A.; Valentin, H.E. Diversity of Bacterial Polyhydroxyalkanoic Acids. FEMS Microbiol. Lett., 1995, 128, 219-228.
[http://dx.doi.org/10.1016/0378-1097(95)00125-O]
[43]
Slater, S.C.; Voige, W.H.; Dennis, D.E. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J. Bacteriol., 1988, 170(10), 4431-4436.
[http://dx.doi.org/10.1128/jb.170.10.4431-4436.1988] [PMID: 3049530]
[44]
Chen, G.Q.; Wu, Q. Microbial production and applications of chiral hydroxyalkanoates. Appl. Microbiol. Biotechnol., 2005, 67(5), 592-599.
[http://dx.doi.org/10.1007/s00253-005-1917-2] [PMID: 15700123]
[45]
Bhubalan, K.; Lee, W.H.; Loo, C.Y.; Yamamoto, T.; Tsuge, T.; Doi, Y.; Sudesh, K. Controlled biosynthesis and characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate-Co-3-Hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polym. Degrad. Stabil., 2008, 93, 17-23.
[http://dx.doi.org/10.1016/j.polymdegradstab.2007.11.004]
[46]
Matsumoto, K.; Hori, C.; Fujii, R.; Takaya, M.; Ooba, T.; Ooi, T.; Isono, T.; Satoh, T.; Taguchi, S. Dynamic changes of intracellular monomer levels regulate block sequence of polyhydroxyalkanoates in engineered Escherichia coli. Biomacromolecules, 2018, 19(2), 662-671.
[http://dx.doi.org/10.1021/acs.biomac.7b01768] [PMID: 29323923]
[47]
Chuah, J.A.; Yamada, M.; Taguchi, S.; Sudesh, K.; Doi, Y.; Numata, K. Biosynthesis and characterization of Polyhydroxyalkanoate containing 5-Hydroxyvalerate units: Effects of 5HV units on biodegradability, cytotoxicity, mechanical and thermal properties. Polym. Degrad. Stabil., 2013, 98, 331-338.
[http://dx.doi.org/10.1016/j.polymdegradstab.2012.09.008]
[48]
Ren, Y.; Meng, D.; Wu, L.; Chen, J.; Wu, Q.; Chen, G.Q. Microbial synthesis of a novel terpolyester P(LA-co-3HB-co-3HP) from low-cost substrates. Microb. Biotechnol., 2017, 10(2), 371-380.
[http://dx.doi.org/10.1111/1751-7915.12453] [PMID: 27860284]
[49]
Li, Z.J.; Qiao, K.; Shi, W.; Pereira, B.; Zhang, H.; Olsen, B.D.; Stephanopoulos, G. Biosynthesis of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose by metabolically engineered Escherichia coli. Metab. Eng., 2016, 35, 1-8.
[http://dx.doi.org/10.1016/j.ymben.2016.01.004] [PMID: 26778413]
[50]
Li, Z.J.; Qiao, K.; Che, X.M.; Stephanopoulos, G. Metabolic engineering of Escherichia coli for the synthesis of the quadripolymer poly(glycolate-co-lactate-co-3-hydroxybutyrate-co-4-hydroxybuty-rate) from glucose. Metab. Eng., 2017, 44, 38-44.
[http://dx.doi.org/10.1016/j.ymben.2017.09.003] [PMID: 28916461]
[51]
Hooks, D.O.; Venning-Slater, M.; Du, J.; Rehm, B.H.A. Polyhydroyxalkanoate synthase fusions as a strategy for oriented enzyme immobilisation. Molecules, 2014, 19(6), 8629-8643.
[http://dx.doi.org/10.3390/molecules19068629] [PMID: 24962396]
[52]
Niamsiri, N.; Delamarre, S.C.; Kim, Y.R.; Batt, C.A. Engineering of chimeric class II polyhydroxyalkanoate synthases. Appl. Environ. Microbiol., 2004, 70(11), 6789-6799.
[http://dx.doi.org/10.1128/AEM.70.11.6789-6799.2004] [PMID: 15528546]
[53]
Thomson, N.M.; Saika, A.; Ushimaru, K.; Sangiambut, S.; Tsuge, T.; Summers, D.K.; Sivaniah, E. Efficient production of active polyhydroxyalkanoate synthase in Escherichia coli by coexpression of molecular chaperones. Appl. Environ. Microbiol., 2013, 79(6), 1948-1955.
[http://dx.doi.org/10.1128/AEM.02881-12] [PMID: 23335776]
[54]
Jung, Y.K.; Kim, T.Y.; Park, S.J.; Lee, S.Y. Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng., 2010, 105(1), 161-171.
[http://dx.doi.org/10.1002/bit.22548] [PMID: 19937727]
[55]
Qi, Q.; Steinbüchel, A.; Rehm, B.H.A. Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): Inhibition of fatty acid β-oxidation by acrylic acid. FEMS Microbiol. Lett., 1998, 167(1), 89-94.
[http://dx.doi.org/10.1016/S0378-1097(98)00368-1] [PMID: 9785457]
[56]
Kundu, P.P.; Nandy, A.; Mukherjee, A.; Pramanik, N. Polyhydroxyalkanoates: Microbial Synthesis and Applications. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials; Taylor & Francis, 2015, pp. 6391-6411.
[http://dx.doi.org/10.1081/E-EBPP-120050586]
[57]
Rehm, B.H.A.; Mitsky, T.A.; Steinbüchel, A. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: Establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl. Environ. Microbiol., 2001, 67(7), 3102-3109.
[http://dx.doi.org/10.1128/AEM.67.7.3102-3109.2001] [PMID: 11425728]
[58]
Park, S.J.; Jang, Y-A.; Noh, W.; Oh, Y.H.; Lee, H.; David, Y.; Baylon, M.G.; Shin, J.; Yang, J.E.; Choi, S.Y.; Lee, S.H.; Lee, S.Y.; Lee, S.H.; Lee, S.Y. Metabolic engineering of Ralstonia eutropha for the production of polyhydroxyalkanoates from sucrose. Biotechnol. Bioeng., 2015, 112(3), 638-643.
[http://dx.doi.org/10.1002/bit.25469] [PMID: 25258020]
[59]
Antonio, R.V.; Steinbüchel, A.; Rehm, B.H.A. Analysis of in vivo substrate specificity of the PHA synthase from Ralstonia eutropha: formation of novel copolyesters in recombinant Escherichia coli. FEMS Microbiol. Lett., 2000, 182(1), 111-117.
[http://dx.doi.org/10.1111/j.1574-6968.2000.tb08883.x] [PMID: 10612741]
[60]
Erickson, H.P.; Anderson, D.E.; Osawa, M. FtsZ in bacterial cytokinesis: Cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev., 2010, 74(4), 504-528.
[http://dx.doi.org/10.1128/MMBR.00021-10] [PMID: 21119015]
[61]
Chen, Y.; Milam, S.L.; Erickson, H.P.; Sul, A. SulA inhibits assembly of FtsZ by a simple sequestration mechanism. Biochemistry, 2012, 51(14), 3100-3109.
[http://dx.doi.org/10.1021/bi201669d] [PMID: 22432817]
[62]
Dajkovic, A.; Mukherjee, A.; Lutkenhaus, J. Investigation of regulation of FtsZ assembly by SulA and development of a model for FtsZ polymerization. J. Bacteriol., 2008, 190(7), 2513-2526.
[http://dx.doi.org/10.1128/JB.01612-07] [PMID: 18245292]
[63]
Adams, D.W.; Errington, J. Bacterial cell division: Assembly, maintenance and disassembly of the Z ring. Nat. Rev. Microbiol., 2009, 7(9), 642-653.
[http://dx.doi.org/10.1038/nrmicro2198] [PMID: 19680248]
[64]
Han, X.; Satoh, Y.; Tajima, K.; Matsushima, T.; Munekata, M. Chemo-enzymatic synthesis of polyhydroxyalkanoate by an improved two-phase reaction system (TPRS). J. Biosci. Bioeng., 2009, 108(6), 517-523.
[http://dx.doi.org/10.1016/j.jbiosc.2009.06.004] [PMID: 19914586]
[65]
Sabirova, J.S.; Ferrer, M.; Lünsdorf, H.; Wray, V.; Kalscheuer, R.; Steinbüchel, A.; Timmis, K.N.; Golyshin, P.N. Mutation in a “tesB-like” hydroxyacyl-coenzyme A-specific thioesterase gene causes hyperproduction of extracellular polyhydroxyalkanoates by Alcanivorax borkumensis SK2. J. Bacteriol., 2006, 188(24), 8452-8459.
[http://dx.doi.org/10.1128/JB.01321-06] [PMID: 16997960]
[66]
Tajima, K.; Satoh, Y.; Nakazawa, K.; Tannai, H.; Erata, T.; Munekata, M.; Kamachi, M.; Lenz, R.W. Chemoenzymatic synthesis of Poly(3-Hydroxybutyrate) in a Water-Organic solvent two-phase system. Macromolecules, 2004, 37, 4544-4546.
[http://dx.doi.org/10.1021/ma049828m]
[67]
Williams, S.F.; Martin, D.P.; Horowitz, D.M.; Peoples, O.P. PHA applications: Addressing the price performance issue: I. Tissue engineering. Int. J. Biol. Macromol., 1999, 25(1-3), 111-121.
[http://dx.doi.org/10.1016/S0141-8130(99)00022-7] [PMID: 10416657]
[68]
Jagur-Grodzinski, J. Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polym. Adv. Technol., 2006, 17, 395-418.
[http://dx.doi.org/10.1002/pat.729]
[69]
Grimmer, J.F.; Gunnlaugsson, C.B.; Alsberg, E.; Murphy, H.S.; Kong, H.J.; Mooney, D.J.; Weatherly, R.A. Tracheal reconstruction using tissue-engineered cartilage. Arch. Otolaryngol. Head Neck Surg., 2004, 130(10), 1191-1196.
[http://dx.doi.org/10.1001/archotol.130.10.1191] [PMID: 15492167]
[70]
Shishatskaya, E.I.; Nikolaeva, E.D.; Vinogradova, O.N.; Volova, T.G. Experimental wound dressings of degradable PHA for skin defect repair. J. Mater. Sci. Mater. Med., 2016, 27(11), 165.
[http://dx.doi.org/10.1007/s10856-016-5776-4] [PMID: 27655431]
[71]
Fürsatz, M.; Skog, M.; Sivlér, P.; Palm, E.; Aronsson, C.; Skallberg, A.; Greczynski, G.; Khalaf, H.; Bengtsson, T.; Aili, D. Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L-Lysine. Biomed. Mater., 2018, 13(2)025014
[http://dx.doi.org/10.1088/1748-605X/aa9486] [PMID: 29047451]
[72]
Ng, K.W.; Achuth, H.N.; Moochhala, S.; Lim, T.C.; Hutmacher, D.W. In vivo evaluation of an ultra-thin polycaprolactone film as a wound dressing. J. Biomater. Sci. Polym. Ed., 2007, 18(7), 925-938.
[http://dx.doi.org/10.1163/156856207781367693] [PMID: 17688748]
[73]
Basavaraj, K.H.; Johnsy, G.; Navya, M.A.; Rashmi, R. Siddaramaiah, Biopolymers as transdermal drug delivery systems in dermatology therapy. Crit. Rev. Ther. Drug Carrier Syst., 2010, 27(2), 155-185.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v27.i2.20] [PMID: 20499487]
[74]
Cheng, M.; Qin, Z.; Hu, S.; Dong, S.; Ren, Z.; Yu, H. Achieving long-term sustained drug delivery for electrospun biopolyester nanofibrous membranes by introducing cellulose nanocrystals. ACS Biomater. Sci. Eng., 2017, 3, 1666-1676.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00169]
[75]
Valappil, S.P.; Boccaccini, A.R.; Bucke, C.; Roy, I. Polyhydroxyalkanoates in Gram-positive bacteria: Insights from the genera Bacillus and Streptomyces. Antonie van Leeuwenhoek, 2007, 91(1), 1-17.
[http://dx.doi.org/10.1007/s10482-006-9095-5] [PMID: 17016742]
[76]
Yao, Y.C.; Zhan, X.Y.; Zhang, J.; Zou, X.H.; Wang, Z.H.; Xiong, Y.C.; Chen, J.; Chen, G.Q. A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials, 2008, 29(36), 4823-4830.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.008] [PMID: 18824258]
[77]
Yu, L.P.; Zhang, X.; Wei, D.X.; Wu, Q.; Jiang, X.R.; Chen, G.Q. A highly efficient fluorescent material based on rare-earth-modified polyhydroxyalkanoates. Biomacromolecules, 2019, 20(9), 3233-3241.
[http://dx.doi.org/10.1021/acs.biomac.8b01722] [PMID: 30624051]
[78]
Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev., 2013, 42(2), 622-661.
[http://dx.doi.org/10.1039/C2CS35313J] [PMID: 23093107]
[79]
Hazer, B.; Kalaycı, Ö.A. High fluorescence emission silver nano particles coated with poly (styrene-g-soybean oil) graft copolymers: Antibacterial activity and polymerization kinetics. Mater. Sci. Eng. C, 2017, 74, 259-269.
[http://dx.doi.org/10.1016/j.msec.2016.12.010] [PMID: 28254293]
[80]
Li, X.; Xie, Y.; Song, B.; Zhang, H.L.; Chen, H.; Cai, H.; Liu, W.; Tang, Y. A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and Encryption. Angew. Chem. Int. Ed. Engl., 2017, 56(10), 2689-2693.
[http://dx.doi.org/10.1002/anie.201700011] [PMID: 28141905]
[81]
Bünzli, J.C.G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev., 2005, 34(12), 1048-1077.
[http://dx.doi.org/10.1039/b406082m] [PMID: 16284671]
[82]
Yang, F.; Ma, Q.; Dong, X.; Yu, W.; Wang, J.; Liu, G. A novel scheme to obtain tunable fluorescent colors based on electrospun composite nanofibers. J. Mater. Sci. Mater. Electron., 2015, 26, 336-344.
[http://dx.doi.org/10.1007/s10854-014-2405-1]
[83]
Zhou, S.S.; Xue, X.; Wang, J.F.; Dong, Y.; Jiang, B.; Wei, D.; Wan, M.L.; Jia, Y. Synthesis, optical properties and biological imaging of the rare earth complexes with curcumin and pyridine. J. Mater. Chem., 2012, 22, 22774-22780.
[http://dx.doi.org/10.1039/c2jm34117d]
[84]
Lu, G.; Li, J.; Jiang, X.; Ou, Z.; Kadish, K.M. Europium triple-decker complexes containing phthalocyanine and nitrophenyl-corrole macrocycles. Inorg. Chem., 2015, 54(18), 9211-9222.
[http://dx.doi.org/10.1021/acs.inorgchem.5b01713] [PMID: 26360771]
[85]
Kai, J.; Felinto, M.C.F.C.; Nunes, L.A.O.; Malta, O.L.; Brito, H.F. Intermolecular energy transfer and photostability of luminescence-tuneable multicolour PMMA films doped with lanthanide-β-diketonate complexes. J. Mater. Chem., 2011, 21, 3796-3802.
[http://dx.doi.org/10.1039/c0jm03474f]
[86]
Zuo, Y.; Lu, H.; Xue, L.; Wang, X.; Ning, L.; Feng, S. Preparation and characterization of luminescent silicone elastomer by thiol-Ene “Click” chemistry. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2, 2724-2734.
[http://dx.doi.org/10.1039/C3TC32382J]
[87]
Seyednejad, H.; Ghassemi, A.H.; van Nostrum, C.F.; Vermonden, T.; Hennink, W.E. Functional aliphatic polyesters for biomedical and pharmaceutical applications. J. Control. Release, 2011, 152(1), 168-176.
[http://dx.doi.org/10.1016/j.jconrel.2010.12.016] [PMID: 21223989]
[88]
Lou, C.W.; Yao, C.H.; Chen, Y.S.; Hsieh, T.C.; Lin, J.H.; Hsing, W.H. Manufacturing and Properties of PLA Absorbable Surgical Suture. Text. Res. J., 2008, 78, 958-965.
[http://dx.doi.org/10.1177/0040517507087856]
[89]
Rancan, F.; Papakostas, D.; Hadam, S.; Hackbarth, S.; Delair, T.; Primard, C.; Verrier, B.; Sterry, W.; Blume-Peytavi, U.; Vogt, A. Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm. Res., 2009, 26(8), 2027-2036.
[http://dx.doi.org/10.1007/s11095-009-9919-x] [PMID: 19533305]
[90]
Song, J-S.; Jang, J-Y.; Han, C-H.; Yoon, M-H. Production of Phenyl Lactic Acid (PLA) by Lactic Acid Bacteria and Its Antifungal Effect. Korean J. Soil Sci. Fertil., 2015, 48, 125-131.
[http://dx.doi.org/10.7745/KJSSF.2015.48.2.125]
[91]
Bala, I.; Hariharan, S.; Kumar, M.N.V.R. PLGA nanoparticles in drug delivery: the state of the art. Crit. Rev. Ther. Drug Carrier Syst., 2004, 21(5), 387-422.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i5.20] [PMID: 15719481]
[92]
Zhang, J.; Shishatskaya, E.I.; Volova, T.G.; da Silva, L.F.; Chen, G.Q. Polyhydroxyalkanoates (PHA) for therapeutic applications. Mater. Sci. Eng. C, 2018, 86, 144-150.
[http://dx.doi.org/10.1016/j.msec.2017.12.035] [PMID: 29525089]
[93]
Lunagariya, J.; Bhadja, P.; Zhong, S.; Vekariya, R.; Xu, S. Marine Natural Product Bis-indole Alkaloid Caulerpin: Chemistry and Biology. Mini Rev. Med. Chem., 2019, 19(9), 751-761.
[http://dx.doi.org/10.2174/1389557517666170927154231] [PMID: 28971770]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy