Review Article

Structural and Mechanistic Insights of CRAC Channel as a Drug Target in Autoimmune Disorder

Author(s): Sampath Bhuvaneshwari and Kavitha Sankaranarayanan*

Volume 21, Issue 1, 2020

Page: [55 - 75] Pages: 21

DOI: 10.2174/1389450120666190926150258

Price: $65

Abstract

Background: Calcium (Ca2+) ion is a major intracellular signaling messenger, controlling a diverse array of cellular functions like gene expression, secretion, cell growth, proliferation, and apoptosis. The major mechanism controlling this Ca2+ homeostasis is store-operated Ca2+ release-activated Ca2+ (CRAC) channels. CRAC channels are integral membrane protein majorly constituted via two proteins, the stromal interaction molecule (STIM) and ORAI. Following Ca2+ depletion in the Endoplasmic reticulum (ER) store, STIM1 interacts with ORAI1 and leads to the opening of the CRAC channel gate and consequently allows the influx of Ca2+ ions. A plethora of studies report that aberrant CRAC channel activity due to Loss- or gain-of-function mutations in ORAI1 and STIM1 disturbs this Ca2+ homeostasis and causes several autoimmune disorders. Hence, it clearly indicates that the therapeutic target of CRAC channels provides the space for a new approach to treat autoimmune disorders.

Objective: This review aims to provide the key structural and mechanical insights of STIM1, ORAI1 and other molecular modulators involved in CRAC channel regulation.

Results and Conclusion: Understanding the structure and function of the protein is the foremost step towards improving the effective target specificity by limiting their potential side effects. Herein, the review mainly focusses on the structural underpinnings of the CRAC channel gating mechanism along with its biophysical properties that would provide the solid foundation to aid the development of novel targeted drugs for an autoimmune disorder. Finally, the immune deficiencies caused due to mutations in CRAC channel and currently used pharmacological blockers with their limitation are briefly summarized.

Keywords: Autoimmune disorder, calcium, SOCE, CRAC channel, ORAI, STIM.

Graphical Abstract
[1]
Clapham DE. Calcium signaling. Cell 2007; 131(6): 1047-58.
[http://dx.doi.org/10.1016/j.cell.2007.11.028] [PMID: 18083096]
[2]
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4(7): 517-29.
[http://dx.doi.org/10.1038/nrm1155] [PMID: 12838335]
[3]
Islam S. Calcium Signaling. Adv Exp Med Biol 2012; 740(3)e304
[4]
Pinto MCX, Kihara AH, Goulart VAM, et al. Calcium signaling and cell proliferation. Cell Signal 2015; 27(11): 2139-49.
[http://dx.doi.org/10.1016/j.cellsig.2015.08.006] [PMID: 26275497]
[5]
Parekh AB, Putney JW Jr. Store-operated calcium channels. Physiol Rev 2005; 85(2): 757-810.
[http://dx.doi.org/10.1152/physrev.00057.2003] [PMID: 15788710]
[6]
Salido GM, Sage SO, Rosado JA. Biochemical and functional properties of the store-operated Ca2+ channels. Cell Signal 2009; 21(4): 457-61.
[http://dx.doi.org/10.1016/j.cellsig.2008.11.005] [PMID: 19049864]
[7]
Samanta K, Parekh AB. Spatial Ca(2+) profiling: decrypting the universal cytosolic Ca(2+) oscillation. J Physiol 2017; 595(10): 3053-62.
[8]
Hogan PG, Lewis RS, Rao A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 2010; 28: 491-533.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132550] [PMID: 20307213]
[9]
Wang Y, Deng X, Gill DL. Calcium signaling by STIM and Orai: intimate coupling details revealed. Sci Signal 2010; 3(148): pe42.
[http://dx.doi.org/10.1126/scisignal.3148pe42] [PMID: 21081752]
[10]
Barr VA, Bernot KM, Shaffer MH, Burkhardt JK, Samelson LE. Formation of STIM and Orai complexes: puncta and distal caps. Immunol Rev 2009; 231(1): 148-59.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00812.x] [PMID: 19754895]
[11]
Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 2008; 454(7203): 538-42.
[http://dx.doi.org/10.1038/nature07065] [PMID: 18596693]
[12]
Palty R, Fu Z, Isacoff EY. Sequential Steps of CRAC Channel Activation. Cell Rep 2017; 19(9): 1929-39.
[http://dx.doi.org/10.1016/j.celrep.2017.05.025] [PMID: 28564609]
[13]
Parekh AB. Functional consequences of activating store-operated CRAC channels. Cell Calcium 2007; 42(2): 111-21.
[http://dx.doi.org/10.1016/j.ceca.2007.02.012] [PMID: 17445883]
[14]
Bhakta NR, Oh DY, Lewis RS. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat Immunol 2005; 6(2): 143-51.
[http://dx.doi.org/10.1038/ni1161] [PMID: 15654342]
[15]
Lacruz RS, Feske S. Diseases caused by mutations in ORAI1 and STIM1. Ann N Y Acad Sci 2015; 1356: 45-79.
[http://dx.doi.org/10.1111/nyas.12938] [PMID: 26469693]
[16]
Parekh AB. Store-operated CRAC channels: function in health and disease. Nat Rev Drug Discov 2010; 9(5): 399-410.
[http://dx.doi.org/10.1038/nrd3136] [PMID: 20395953]
[17]
Strange K, Yan X, Lorin-Nebel C, Xing J. Physiological roles of STIM1 and Orai1 homologs and CRAC channels in the genetic model organism Caenorhabditis elegans. Cell Calcium 2007; 42(2): 193-203.
[http://dx.doi.org/10.1016/j.ceca.2007.02.007] [PMID: 17376526]
[18]
Roos J, DiGregorio PJ, Yeromin AV, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 2005; 169(3): 435-45.
[http://dx.doi.org/10.1083/jcb.200502019] [PMID: 15866891]
[19]
Brandman O, Liou J, Park WS, Meyer T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 2007; 131(7): 1327-39.
[http://dx.doi.org/10.1016/j.cell.2007.11.039] [PMID: 18160041]
[20]
Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 2012; 13(9): 549-65.
[http://dx.doi.org/10.1038/nrm3414] [PMID: 22914293]
[21]
Stathopulos PB, Ikura M. Structurally delineating stromal interaction molecules as the endoplasmic reticulum calcium sensors and regulators of calcium release-activated calcium entry. Immunol Rev 2009; 231(1): 113-31.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00814.x] [PMID: 19754893]
[22]
Liou J, Kim ML, Heo WDJ, et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 2005; 15(13): 1235-41.
[http://dx.doi.org/10.1016/j.cub.2005.05.055] [PMID: 16005298]
[23]
Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 2008; 135(1): 110-22.
[http://dx.doi.org/10.1016/j.cell.2008.08.006] [PMID: 18854159]
[24]
Zheng L, Stathopulos PB, Schindl R, Li GY, Romanin C, Ikura M. Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry. Proc Natl Acad Sci USA 2011; 108(4): 1337-42.
[http://dx.doi.org/10.1073/pnas.1015125108] [PMID: 21217057]
[25]
Stathopulos PB, Ikura M. Partial unfolding and oligomerization of stromal interaction molecules as an initiation mechanism of store operated calcium entry. Biochem Cell Biol 2010; 88(2): 175-83.
[http://dx.doi.org/10.1139/O09-125] [PMID: 20453920]
[26]
Ma G, Wei M, He L, et al. Inside-out Ca(2+) signalling prompted by STIM1 conformational switch. Nat Commun 2015; 6: 7826.
[http://dx.doi.org/10.1038/ncomms8826] [PMID: 26184105]
[27]
Hirve N, Rajanikanth V, Hogan PG, Gudlur A. Coiled-Coil Formation Conveys a STIM1 Signal from ER Lumen to Cytoplasm. Cell Rep 2018; 22(1): 72-83.
[http://dx.doi.org/10.1016/j.celrep.2017.12.030] [PMID: 29298434]
[28]
Yu F, Sun L, Hubrack S, Selvaraj S, Machaca K. Intramolecular shielding maintains the ER Ca2+ sensor STIM1 in an inactive conformation. J Cell Sci 2013; 126(Pt 11): 2401-10.
[http://dx.doi.org/10.1242/jcs.117200] [PMID: 23572507]
[29]
Penna A, Demuro A, Yeromin AV, et al. The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 2008; 456(7218): 116-20.
[http://dx.doi.org/10.1038/nature07338] [PMID: 18820677]
[30]
Yang X, Jin H, Cai X, Li S, Shen Y. Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci USA 2012; 109(15): 5657-62.
[http://dx.doi.org/10.1073/pnas.1118947109] [PMID: 22451904]
[31]
Cui B, Yang X, Li S, et al. The inhibitory helix controls the intramolecular conformational switching of the C-terminus of STIM1. PLoS One 2013; 8(9)e74735
[http://dx.doi.org/10.1371/journal.pone.0074735] [PMID: 24069340]
[32]
Muik M, Fahrner M, Schindl R, et al. STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO J 2011; 30(9): 1678-89.
[http://dx.doi.org/10.1038/emboj.2011.79] [PMID: 21427704]
[33]
Stathopulos PB, Ikura M. Structural aspects of calcium-release activated calcium channel function. Channels (Austin) 2013; 7(5): 344-53.
[http://dx.doi.org/10.4161/chan.26734] [PMID: 24213636]
[34]
Muik M, Fahrner M, Derler I, et al. A Cytosolic Homomerization and a Modulatory Domain within STIM1 C Terminus Determine Coupling to ORAI1 Channels. J Biol Chem 2009; 284(13): 8421-6.
[http://dx.doi.org/10.1074/jbc.C800229200] [PMID: 19189966]
[35]
Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG. Orai1 is an essential pore subunit of the CRAC channel. Nature 2006; 443(7108): 230-3.
[http://dx.doi.org/10.1038/nature05122] [PMID: 16921383]
[36]
Vaeth M, Yang J, Yamashita M, et al. ORAI2 modulates store-operated calcium entry and T cell-mediated immunity. Nat Commun 2017.
[http://dx.doi.org/10.1038/ncomms14714]
[37]
Liu S, Sahid MN, Takemasa E, et al. CRACM3 regulates the stability of non-excitable exocytotic vesicle fusion pores in a Ca(2+)-independent manner via molecular interaction with syntaxin4. Sci Rep 2016; 6: 28133.
[http://dx.doi.org/10.1038/srep28133] [PMID: 27301714]
[38]
Fahrner M, Muik M, Derler I, et al. Mechanistic view on domains mediating STIM1-Orai coupling. Immunol Rev 2009; 231(1): 99-112.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00815.x] [PMID: 19754892]
[39]
Lis A, Peinelt C, Beck A, et al. CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 2007; 17(9): 794-800.
[http://dx.doi.org/10.1016/j.cub.2007.03.065] [PMID: 17442569]
[40]
Dong H, Fiorin G, Carnevale V, Treptow W, Klein ML. Pore waters regulate ion permeation in a calcium release-activated calcium channel. Proc Natl Acad Sci USA 2013; 110(43): 17332-7.
[http://dx.doi.org/10.1073/pnas.1316969110] [PMID: 24101457]
[41]
Vig M, Peinelt C, Beck A, et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006; 312(5777): 1220-3.
[http://dx.doi.org/10.1126/science.1127883] [PMID: 16645049]
[42]
Liu Y, Zheng X, Mueller GA, et al. Crystal structure of calmodulin binding domain of orai1 in complex with Ca2+ calmodulin displays a unique binding mode. J Biol Chem 2012; 287(51): 43030-41.
[http://dx.doi.org/10.1074/jbc.M112.380964] [PMID: 23109337]
[43]
Mullins FM, Park CY, Dolmetsch RE, Lewis RS. STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels. Proc Natl Acad Sci USA 2009; 106(36): 15495-500.
[http://dx.doi.org/10.1073/pnas.0906781106] [PMID: 19706428]
[44]
Derler I, Plenk P, Fahrner M, et al. The extended transmembrane Orai1 N-terminal (ETON) region combines binding interface and gate for Orai1 activation by STIM1. J Biol Chem 2013; 288(40): 29025-34.
[http://dx.doi.org/10.1074/jbc.M113.501510] [PMID: 23943619]
[45]
Lu F, Sun J, Zheng Q, et al. Imaging elemental events of store-operated Ca2+ entry in invading cancer cells with plasmalemmal targeted sensors. J Cell Sci 2019; 132(6)jcs224923
[http://dx.doi.org/10.1242/jcs.224923] [PMID: 30814332]
[46]
Giurisato E, Gamberucci A, Ulivieri C, et al. The KSR2-calcineurin complex regulates STIM1-ORAI1 dynamics and store-operated calcium entry (SOCE). Mol Biol Cell 2014; 25(11): 1769-81.
[http://dx.doi.org/10.1091/mbc.e13-05-0292] [PMID: 24672054]
[47]
Hou X, Pedi L, Diver MM, Long SB. Crystal structure of the calcium release-activated calcium channel Orai. Science 2012; 338(6112): 1308-13.
[http://dx.doi.org/10.1126/science.1228757] [PMID: 23180775]
[48]
Rothberg BS, Wang Y, Gill DL. Orai channel pore properties and gating by STIM: implications from the Orai crystal structure. Sci Signal 2013; 6(267): pe9.
[http://dx.doi.org/10.1126/scisignal.2003971] [PMID: 23512988]
[49]
Zhou Y, Ramachandran S, Oh-Hora M, Rao A, Hogan PG. Pore architecture of the ORAI1 store-operated calcium channel. Proc Natl Acad Sci USA 2010; 107(11): 4896-901.
[http://dx.doi.org/10.1073/pnas.1001169107] [PMID: 20194792]
[50]
Yeung PS, Yamashita M, Prakriya M. Pore opening mechanism of CRAC channels. Cell Calcium 2017; 63: 14-9.
[http://dx.doi.org/10.1016/j.ceca.2016.12.006] [PMID: 28108030]
[51]
Hou X, Burstein SR, Long SB. Structures reveal opening of the store-operated calcium channel Orai. eLife 2018.7e36758
[http://dx.doi.org/10.7554/eLife.36758] [PMID: 30160233]
[52]
Yamashita M, Yeung PS, Ing CE, McNally BA, Pomès R, Prakriya M. STIM1 activates CRAC channels through rotation of the pore helix to open a hydrophobic gate. Nat Commun 2017; 21(8): 14512.
[http://dx.doi.org/10.1038/ncomms14512]
[53]
Calloway N, Vig M, Kinet JP, Holowka D, Baird B. Molecular clustering of STIM1 with Orai1/CRACM1 at the plasma membrane depends dynamically on depletion of Ca2+ stores and on electrostatic interactions. Mol Biol Cell 2009; 20(1): 389-99.
[http://dx.doi.org/10.1091/mbc.e07-11-1132] [PMID: 18987344]
[54]
Korzeniowski MK, Manjarrés IM, Varnai P, Balla T. Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci Signal 2010; 3(148): ra82.
[http://dx.doi.org/10.1126/scisignal.2001122] [PMID: 21081754]
[55]
Hogan PG. The STIM1-ORAI1 microdomain. Cell Calcium 2015; 58(4): 357-67.
[http://dx.doi.org/10.1016/j.ceca.2015.07.001] [PMID: 26215475]
[56]
Gudlur A, Zhou Y, Hogan PG. STIM-ORAI interactions that control the CRAC channel. Curr Top Membr 2013; 71: 33-58.
[http://dx.doi.org/10.1016/B978-0-12-407870-3.00002-0] [PMID: 23890110]
[57]
Manji SS, Parker NJ, Williams RT, et al. STIM1: a novel phosphoprotein located at the cell surface. Biochim Biophys Acta 2000; 1481(1): 147-55.
[http://dx.doi.org/10.1016/S0167-4838(00)00105-9] [PMID: 11004585]
[58]
Berridge M. Conformational coupling: a physiological calcium entry mechanism. Sci STKE 2004; 2004(243): pe33.
[PMID: 15280575]
[59]
Spassova MA, Soboloff J, He LP, Xu W, Dziadek MA, Gill DL. STIM1 has a plasma membrane role in the activation of store-operated Ca(2+) channels. Proc Natl Acad Sci USA 2006; 103(11): 4040-5.
[http://dx.doi.org/10.1073/pnas.0510050103] [PMID: 16537481]
[60]
Park CY, Hoover PJ, Mullins FM, et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 2009; 136(5): 876-90.
[http://dx.doi.org/10.1016/j.cell.2009.02.014] [PMID: 19249086]
[61]
Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 2009; 11(3): 337-43.
[http://dx.doi.org/10.1038/ncb1842] [PMID: 19182790]
[62]
Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 2006; 443(7108): 226-9.
[http://dx.doi.org/10.1038/nature05108] [PMID: 16921385]
[63]
Calloway N, Holowka D, Baird B. A basic sequence in STIM1 promotes Ca2+ influx by interacting with the C-terminal acidic coiled coil of Orai1. Biochemistry 2010; 49(6): 1067-71.
[http://dx.doi.org/10.1021/bi901936q] [PMID: 20073506]
[64]
Secondo A, Petrozziello T, Tedeschi V, et al. ORAI1/STIM1 interaction intervenes in stroke and in neuroprotection induced by ischemic preconditioning through store-operated calcium entry. Stroke 2019; 50(5): 1240-9.
[http://dx.doi.org/10.1161/STROKEAHA.118.024115] [PMID: 31009360]
[65]
Li Z, Lu J, Xu P, Xie X, Chen L, Xu T. Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation. J Biol Chem 2007; 282(40): 29448-56.
[http://dx.doi.org/10.1074/jbc.M703573200] [PMID: 17702753]
[66]
Guo RW, Huang L. New insights into the activation mechanism of store-operated calcium channels: roles of STIM and Orai. J Zhejiang Univ Sci B 2008; 9(8): 591-601.
[http://dx.doi.org/10.1631/jzus.B0820042] [PMID: 18763308]
[67]
Butorac C, Muik M, Derler I, et al. A novel STIM1-Orai1 gating interface essential for CRAC channel activation. Cell Calcium 2019; 79: 57-67.
[http://dx.doi.org/10.1016/j.ceca.2019.02.009] [PMID: 30831274]
[68]
McNally BA, Somasundaram A, Jairaman A, Yamashita M, Prakriya M. The C- and N-terminal STIM1 binding sites on Orai1 are required for both trapping and gating CRAC channels. J Physiol 2013; 591(11): 2833-50.
[http://dx.doi.org/10.1113/jphysiol.2012.250456] [PMID: 23613525]
[69]
Jing J, He L, Sun A, et al. Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca2+ influx. Nat Cell Biol 2015; 17(10): 1339-47.
[http://dx.doi.org/10.1038/ncb3234] [PMID: 26322679]
[70]
Tojyo Y, Morita T, Nezu A, Tanimura A. Key components of store-operated Ca2+ entry in non-excitable cells. J Pharmacol Sci 2014; 125(4): 340-6.
[http://dx.doi.org/10.1254/jphs.14R06CP] [PMID: 25030742]
[71]
Lis A, Zierler S, Peinelt C, Fleig A, Penner R. A single lysine in the N-terminal region of store-operated channels is critical for STIM1-mediated gating. J Gen Physiol 2010; 136(6): 673-86.
[http://dx.doi.org/10.1085/jgp.201010484] [PMID: 21115697]
[72]
Palty R, Raveh A, Kaminsky I, Meller R, Reuveny E. SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. Cell 2012; 149(2): 425-38.
[http://dx.doi.org/10.1016/j.cell.2012.01.055] [PMID: 22464749]
[73]
Jha A, Ahuja M, Maléth J, et al. The STIM1 CTID domain determines access of SARAF to SOAR to regulate Orai1 channel function. J Cell Biol 2013; 202(1): 71-9.
[http://dx.doi.org/10.1083/jcb.201301148] [PMID: 23816623]
[74]
Albarran L, Lopez JJ, Amor NB, et al. Dynamic interaction of SARAF with STIM1 and Orai1 to modulate store-operated calcium entry. Sci Rep 2016; 6: 24452.
[http://dx.doi.org/10.1038/srep24452] [PMID: 27068144]
[75]
Deb BK, Hasan G. Regulation of store-operated Ca2+ entry by septins. Front Cell Dev Biol 2016; 4: 142.
[http://dx.doi.org/10.3389/fcell.2016.00142] [PMID: 28018901]
[76]
Sharma S, Quintana A, Findlay GM, et al. An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca2+ entry. Nature 2013; 499(7457): 238-42.
[http://dx.doi.org/10.1038/nature12229] [PMID: 23792561]
[77]
Feng JM, Fernandes AO, Campagnoni CW, Hu YH, Campagnoni AT. The golli-myelin basic protein negatively regulates signal transduction in T lymphocytes. J Neuroimmunol 2004; 152(1-2): 57-66.
[http://dx.doi.org/10.1016/j.jneuroim.2004.03.021] [PMID: 15223237]
[78]
Walsh CM, Doherty MK, Tepikin AV, Burgoyne RD. Evidence for an interaction between Golli and STIM1 in store-operated calcium entry. Biochem J 2010; 430(3): 453-60.
[http://dx.doi.org/10.1042/BJ20100650] [PMID: 20629634]
[79]
Feng JM, Hu YK, Xie LH, et al. Golli protein negatively regulates store depletion-induced calcium influx in T cells. Immunity 2006; 24(6): 717-27.
[http://dx.doi.org/10.1016/j.immuni.2006.04.007] [PMID: 16782028]
[80]
Carreras-Sureda A, Cantero-Recasens G, Rubio-Moscardo F, et al. ORMDL3 modulates store-operated calcium entry and lymphocyte activation. Hum Mol Genet 2013; 22(3): 519-30.
[http://dx.doi.org/10.1093/hmg/dds450] [PMID: 23100328]
[81]
Schneggenburger R, Zhou Z, Konnerth A, Neher E. Fractional contribution of calcium to the cation current through glutamate receptor channels. Neuron 1993; 11(1): 133-43.
[http://dx.doi.org/10.1016/0896-6273(93)90277-X] [PMID: 7687849]
[82]
Neher E. The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 1995; 34(11): 1423-42.
[http://dx.doi.org/10.1016/0028-3908(95)00144-U] [PMID: 8606791]
[83]
Hoth M, Penner R. Calcium release-activated calcium current in rat mast cells. J Physiol 1993; 465: 359-86.
[http://dx.doi.org/10.1113/jphysiol.1993.sp019681] [PMID: 8229840]
[84]
Prakriya M, Lewis RS. Regulation of CRAC channel activity by recruitment of silent channels to a high open-probability gating mode. J Gen Physiol 2006; 128(3): 373-86.
[http://dx.doi.org/10.1085/jgp.200609588] [PMID: 16940559]
[85]
Lepple-Wienhues A, Cahalan MD. Conductance and permeation of monovalent cations through depletion-activated Ca2+ channels (ICRAC) in Jurkat T cells. Biophys J 1996; 71(2): 787-94.
[http://dx.doi.org/10.1016/S0006-3495(96)79278-0] [PMID: 8842217]
[86]
Hess P, Lansman JB, Tsien RW. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J Gen Physiol 1986; 88(3): 293-319.
[http://dx.doi.org/10.1085/jgp.88.3.293] [PMID: 2428919]
[87]
Bakowski D, Parekh AB. Monovalent cation permeability and Ca(2+) block of the store-operated Ca(2+) current I(CRAC)in rat basophilic leukemia cells. Pflugers Arch 2002; 443(5-6): 892-902.
[http://dx.doi.org/10.1007/s00424-001-0775-8] [PMID: 11889590]
[88]
Su Z, Shoemaker RL, Marchase RB, Blalock JE. Ca2+ modulation of Ca2+ release-activated Ca2+ channels is responsible for the inactivation of its monovalent cation current. Biophys J 2004; 86(2): 805-14.
[http://dx.doi.org/10.1016/S0006-3495(04)74156-9] [PMID: 14747316]
[89]
Fierro L, Parekh AB. Substantial depletion of the intracellular Ca2+ stores is required for macroscopic activation of the Ca2+ release-activated Ca2+ current in rat basophilic leukaemia cells. J Physiol 2000; 522(Pt 2): 247-57.
[http://dx.doi.org/10.1111/j.1469-7793.2000.t01-1-00247.x] [PMID: 10639101]
[90]
Premack BA, McDonald TV, Gardner P. Activation of Ca2+ current in Jurkat T cells following the depletion of Ca2+ stores by microsomal Ca(2+)-ATPase inhibitors. J Immunol 1994; 152(11): 5226-40.
[PMID: 8189045]
[91]
Hoth M. Calcium and barium permeation through calcium release-activated calcium (CRAC) channels. Pflugers Arch 1995; 430(3): 315-22.
[http://dx.doi.org/10.1007/BF00373905] [PMID: 7491254]
[92]
Amcheslavsky A, Wood ML, Yeromin AV, et al. Molecular biophysics of Orai store-operated Ca2+ channels. Biophys J 2015; 108(2): 237-46.
[http://dx.doi.org/10.1016/j.bpj.2014.11.3473] [PMID: 25606672]
[93]
Badou A, Jha MK, Matza D, Flavell RA. Emerging roles of L-type voltage-gated and other calcium channels in T lymphocytes. Front Immunol 2013; 4(AUG): 243.
[http://dx.doi.org/10.3389/fimmu.2013.00243] [PMID: 24009608]
[94]
Yang J, Ellinor PT, Sather WA, Zhang JF, Tsien RW. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 1993; 366(6451): 158-61.
[http://dx.doi.org/10.1038/366158a0] [PMID: 8232554]
[95]
Bulla M, Gyimesi G, Kim JH, et al. ORAI1 channel gating and selectivity is differentially altered by natural mutations in the first or third transmembrane domain. J Physiol 2019; 597(2): 561-82.
[http://dx.doi.org/10.1113/JP277079] [PMID: 30382595]
[96]
Yamashita M, Navarro-Borelly L, McNally BA, Prakriya M. Orai1 mutations alter ion permeation and Ca2+-dependent fast inactivation of CRAC channels: evidence for coupling of permeation and gating. J Gen Physiol 2007; 130(5): 525-40.
[http://dx.doi.org/10.1085/jgp.200709872] [PMID: 17968026]
[97]
Vig M, Beck A, Billingsley JM, et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 2006; 16(20): 2073-9.
[http://dx.doi.org/10.1016/j.cub.2006.08.085] [PMID: 16978865]
[98]
Prakriya M, Lewis RS. CRAC channels: activation, permeation, and the search for a molecular identity. Cell Calcium 2003; 33(5-6): 311-21.
[http://dx.doi.org/10.1016/S0143-4160(03)00045-9] [PMID: 12765678]
[99]
Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 1992; 355(6358): 353-6.
[http://dx.doi.org/10.1038/355353a0] [PMID: 1309940]
[100]
Zweifach A, Lewis RS. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci USA 1993; 90(13): 6295-9.
[http://dx.doi.org/10.1073/pnas.90.13.6295] [PMID: 8392195]
[101]
Hogan PG, Rao A. Dissecting ICRAC, a store-operated calcium current. Trends Biochem Sci 2007; 32(5): 235-45.
[http://dx.doi.org/10.1016/j.tibs.2007.03.009] [PMID: 17434311]
[102]
Voets T, Prenen J, Fleig A, et al. CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J Biol Chem 2001; 276(51): 47767-70.
[http://dx.doi.org/10.1074/jbc.C100607200] [PMID: 11687570]
[103]
Zweifach A, Lewis RS. Calcium-dependent potentiation of store-operated calcium channels in T lymphocytes. J Gen Physiol 1996; 107(5): 597-610.
[http://dx.doi.org/10.1085/jgp.107.5.597] [PMID: 8740373]
[104]
Muik M, Schindl R, Fahrner M, Romanin C. Ca(2+) release-activated Ca(2+) (CRAC) current, structure, and function. Cell Mol Life Sci 2012; 69(24): 4163-76.
[http://dx.doi.org/10.1007/s00018-012-1072-8] [PMID: 22802126]
[105]
Christian EP, Spence KT, Togo JA, Dargis PG, Patel J. Calcium-dependent enhancement of depletion-activated calcium current in Jurkat T lymphocytes. J Membr Biol 1996; 150(1): 63-71.
[http://dx.doi.org/10.1007/s002329900030] [PMID: 8699480]
[106]
Navarro-Borelly L, Somasundaram A, Yamashita M, Ren D, Miller RJ, Prakriya M. STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J Physiol 2008; 586(22): 5383-401.
[http://dx.doi.org/10.1113/jphysiol.2008.162503] [PMID: 18832420]
[107]
Zweifach A, Lewis RS. Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol 1995; 105(2): 209-26.
[http://dx.doi.org/10.1085/jgp.105.2.209] [PMID: 7760017]
[108]
Fierro L, Parekh AB. Fast calcium-dependent inactivation of calcium release-activated calcium current (CRAC) in RBL-1 cells. J Membr Biol 1999; 168(1): 9-17.
[http://dx.doi.org/10.1007/s002329900493] [PMID: 10051685]
[109]
Parekh AB. Regulation of CRAC channels by Ca2+-dependent inactivation. Cell Calcium 2017; 63: 20-3.
[http://dx.doi.org/10.1016/j.ceca.2016.12.003] [PMID: 28043696]
[110]
Zweifach A, Lewis RS. Slow calcium-dependent inactivation of depletion-activated calcium current. Store-dependent and -independent mechanisms. J Biol Chem 1995; 270(24): 14445-51.
[http://dx.doi.org/10.1074/jbc.270.24.14445] [PMID: 7540169]
[111]
Feske S, Giltnane J, Dolmetsch R, Staudt LM, Rao A. Gene regulation mediated by calcium signals in T lymphocytes. Nat Immunol 2001; 2(4): 316-24.
[http://dx.doi.org/10.1038/86318] [PMID: 11276202]
[112]
Shen WW, Frieden M, Demaurex N. Local cytosolic Ca2+ elevations are required for stromal interaction molecule 1 (STIM1) de-oligomerization and termination of store-operated Ca2+ entry. J Biol Chem 2011; 286(42): 36448-59.
[http://dx.doi.org/10.1074/jbc.M111.269415] [PMID: 21880734]
[113]
Niemeyer BA. Changing calcium: CRAC channel (STIM and ORAI) expression, splicing, and posttranslational modifiers. Am J Physiol Cell Physiol 2016; 1;310(9): C701-9.
[114]
Srikanth S, Ribalet B, Gwack Y. Regulation of CRAC channels by protein interactions and post-translational modification. Channels (Austin) 2013; 7(5): 354-63.
[http://dx.doi.org/10.4161/chan.23801] [PMID: 23454861]
[115]
Prakriya M, Lewis RS. Potentiation and inhibition of Ca(2+) release-activated Ca(2+) channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP(3) receptors. J Physiol 2001; 536(Pt 1): 3-19.
[http://dx.doi.org/10.1111/j.1469-7793.2001.t01-1-00003.x] [PMID: 11579153]
[116]
van Rossum DB, Patterson RL, Ma HT, Gill DL. Ca2+ entry mediated by store depletion, S-nitrosylation, and TRP3 channels. Comparison of coupling and function. J Biol Chem 2000; 275(37): 28562-8.
[http://dx.doi.org/10.1074/jbc.M003147200] [PMID: 10878007]
[117]
Ma HT, Patterson RL, van Rossum DB, Birnbaumer L, Mikoshiba K, Gill DL. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 2000; 287(5458): 1647-51.
[http://dx.doi.org/10.1126/science.287.5458.1647] [PMID: 10698739]
[118]
Wang Y, Deng X, Zhou Y, et al. STIM protein coupling in the activation of Orai channels. Proc Natl Acad Sci USA 2009; 106(18): 7391-6.
[http://dx.doi.org/10.1073/pnas.0900293106] [PMID: 19376967]
[119]
Yen JH, Chang CM, Hsu YW, et al. A polymorphism of ORAI1 rs7135617, is associated with susceptibility to rheumatoid arthritis. Mediators Inflamm 2014.
[120]
Shaw PJ, Feske S. Physiological and pathophysiological functions of SOCE in the immune system. Front Biosci (Elite Ed) 2012; 4: 2253-68.
[http://dx.doi.org/10.2741/e540] [PMID: 22202035]
[121]
RamaKrishnan AM. Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016; 15(7): 585-620.
[http://dx.doi.org/10.1016/j.autrev.2016.02.004] [PMID: 26854401]
[122]
Wang S, Choi M, Richardson AS, et al. STIM1 and SLC24A4 Are Critical for Enamel Maturation. J Dent Res 2014; 93(7)(Suppl.): 94S-100S.
[http://dx.doi.org/10.1177/0022034514527971] [PMID: 24621671]
[123]
Picard C, McCarl CA, Papolos A, et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 2009; 360(19): 1971-80.
[http://dx.doi.org/10.1056/NEJMoa0900082] [PMID: 19420366]
[124]
Selvaraj C, Sakkiah S, Tong W, Hong H. Molecular dynamics simulations and applications in computational toxicology and nanotoxicology. Food Chem Toxicol 2018; 112: 495-506.
[http://dx.doi.org/10.1016/j.fct.2017.08.028] [PMID: 28843597]
[125]
Bhuvaneshwari S, Sankaranarayanan K. Identification of potential CRAC channel inhibitors: Pharmacophore mapping, 3D-QSAR modelling, and molecular docking approach. SAR QSAR Environ Res 2019; 30(2): 81-108.
[http://dx.doi.org/10.1080/1062936X.2019.1566172] [PMID: 30773908]
[126]
Schaballie H, Rodriguez R, Martin E, et al. A novel hypomorphic mutation in STIM1 results in a late-onset immunodeficiency. J Allergy Clin Immunol 2015; 136: 816-9.
[127]
Fuchs S, Rensing-Ehl A, Speckmann C, et al. Antiviral and regulatory T cell immunity in a patient with stromal interaction molecule 1 deficiency. J Immunol 2012; 188(3): 1523-33.
[http://dx.doi.org/10.4049/jimmunol.1102507] [PMID: 22190180]
[128]
Jackson CC, Dickson MA, Sadjadi M, et al. Kaposi Sarcoma of Childhood: Inborn or Acquired Immunodeficiency to Oncogenic HHV-8. Pediatr Blood Cancer 2016; 63(3): 392-7.
[http://dx.doi.org/10.1002/pbc.25779] [PMID: 26469702]
[129]
Byun M, Abhyankar A, Lelarge V, et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J Exp Med 2010; 207(11): 2307-12.
[http://dx.doi.org/10.1084/jem.20101597] [PMID: 20876309]
[130]
Böhm J, Chevessier F, Maues De Paula A, et al. Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet 2013; 92(2): 271-8.
[http://dx.doi.org/10.1016/j.ajhg.2012.12.007] [PMID: 23332920]
[131]
Walter MC, Rossius M, Zitzelsberger M, et al. 50 years to diagnosis: Autosomal dominant tubular aggregate myopathy caused by a novel STIM1 mutation. Neuromuscul Disord 2015; 25(7): 577-84.
[http://dx.doi.org/10.1016/j.nmd.2015.04.005] [PMID: 25953320]
[132]
Hedberg C, Niceta M, Fattori F, et al. Childhood onset tubular aggregate myopathy associated with de novo STIM1 mutations. J Neurol 2014; 261(5): 870-6.
[http://dx.doi.org/10.1007/s00415-014-7287-x] [PMID: 24570283]
[133]
Markello T, Chen D, Kwan JY, et al. York platelet syndrome is a CRAC channelopathy due to gain-of-function mutations in STIM1. Mol Genet Metab 2015; 114(3): 474-82.
[http://dx.doi.org/10.1016/j.ymgme.2014.12.307] [PMID: 25577287]
[134]
Misceo D, Holmgren A, Louch WE, et al. A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat 2014; 35(5): 556-64.
[http://dx.doi.org/10.1002/humu.22544] [PMID: 24619930]
[135]
Nesin V, Wiley G, Kousi M, et al. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci USA 2014; 111(11): 4197-202.
[http://dx.doi.org/10.1073/pnas.1312520111] [PMID: 24591628]
[136]
Borsani O, Piga D, Costa S, et al. Stormorken syndrome caused by a p.R304W STIM1 mutation: The first italian patient and a review of the literature. Front Neurol 2018; 9: 859.
[http://dx.doi.org/10.3389/fneur.2018.00859] [PMID: 30374325]
[137]
Böhm J, Chevessier F, Koch C, et al. Clinical, histological and genetic characterisation of patients with tubular aggregate myopathy caused by mutations in STIM1. J Med Genet 2014; 51(12): 824-33.
[http://dx.doi.org/10.1136/jmedgenet-2014-102623] [PMID: 25326555]
[138]
Feske S, Gwack Y, Prakriya M, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006; 441(7090): 179-85.
[http://dx.doi.org/10.1038/nature04702] [PMID: 16582901]
[139]
McCarl CA, Picard C, Khalil S, et al. ORAI1 deficiency and lack of store-operated Ca(2+) entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 2009; 124(6): 1311-8.
[140]
Chou J, Badran YR, Yee CSK, et al. A novel mutation in ORAI1 presenting with combined immunodeficiency and residual T-cell function. J Allergy Clin Immunol 2015; 136(2): 479-82.
[141]
Böhm J, Bulla M, Urquhart JE, et al. ORAI1 mutations with distinct channel gating defects in tubular aggregate myopathy. Hum Mutat 2017; 38(4): 426-38.
[http://dx.doi.org/10.1002/humu.23172] [PMID: 28058752]
[142]
Zhang SL, Yeromin AV, Hu J, Amcheslavsky A, Zheng H, Cahalan MD. Mutations in Orai1 transmembrane segment 1 cause STIM1-independent activation of Orai1 channels at glycine 98 and channel closure at arginine 91. Proc Natl Acad Sci USA 2011; 108(43): 17838-43.
[http://dx.doi.org/10.1073/pnas.1114821108] [PMID: 21987804]
[143]
Endo Y, Noguchi S, Hara Y, et al. Dominant mutations in ORAI1 cause tubular aggregate myopathy with hypocalcemia via constitutive activation of store-operated Ca2+ channels. Hum Mol Genet 2015; 24(3): 637-48.
[http://dx.doi.org/10.1093/hmg/ddu477] [PMID: 25227914]
[144]
Gerhard DS, Wagner L, Feingold EA, et al. The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res 2004; 14(10B): 2121-7.
[http://dx.doi.org/10.1101/gr.2596504] [PMID: 15489334]
[145]
Ota T, Suzuki Y, Nishikawa T, et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 2004; 36(1): 40-5.
[http://dx.doi.org/10.1038/ng1285] [PMID: 14702039]
[147]
Lin FF, Elliott R, Colombero A, et al. Generation and characterization of fully human monoclonal antibodies against human Orai1 for autoimmune disease. J Pharmacol Exp Ther 2013; 345(2): 225-38.
[http://dx.doi.org/10.1124/jpet.112.202788] [PMID: 23475901]
[148]
Stathopulos PB, Schindl R, Fahrner M, et al. STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry. Nat Commun 2013; 4: 2963.
[http://dx.doi.org/10.1038/ncomms3963] [PMID: 24351972]
[149]
Mercer JC, Dehaven WI, Smyth JT, et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 2006; 281(34): 24979-90.
[http://dx.doi.org/10.1074/jbc.M604589200] [PMID: 16807233]
[150]
Honnappa S, Gouveia SM, Weisbrich A, et al. An EB1-binding motif acts as a microtubule tip localization signal. Cell 2009; 138(2): 366-76.
[http://dx.doi.org/10.1016/j.cell.2009.04.065] [PMID: 19632184]
[151]
Soboloff J, Spassova MA, Hewavitharana T, et al. STIM2 is an inhibitor of STIM1-mediated store-operated Ca2+ Entry. Curr Biol 2006; 16(14): 1465-70.
[http://dx.doi.org/10.1016/j.cub.2006.05.051] [PMID: 16860747]
[152]
Srikanth S, Jung HJ, Kim KD, Souda P, Whitelegge J, Gwack Y. A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat Cell Biol 2010; 12(5): 436-46.
[http://dx.doi.org/10.1038/ncb2045] [PMID: 20418871]
[153]
Reichling DB, MacDermott AB. Lanthanum actions on excitatory amino acid-gated currents and voltage-gated calcium currents in rat dorsal horn neurons. J Physiol 1991; 441: 199-218.
[http://dx.doi.org/10.1113/jphysiol.1991.sp018746] [PMID: 1667795]
[154]
Ma HT, Venkatachalam K, Parys JB, Gill DL. Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes. J Biol Chem 2002; 277(9): 6915-22.
[http://dx.doi.org/10.1074/jbc.M107755200] [PMID: 11741932]
[155]
Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM. 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 2002; 16(10): 1145-50.
[http://dx.doi.org/10.1096/fj.02-0037rev] [PMID: 12153982]
[156]
Goto J, Suzuki AZ, Ozaki S, et al. Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca(2+) entry via STIM proteins. Cell Calcium 2010; 47(1): 1-10.
[http://dx.doi.org/10.1016/j.ceca.2009.10.004] [PMID: 19945161]
[157]
Chung SC, McDonald TV, Gardner P. Inhibition by SK&F 96365 of Ca2+ current, IL-2 production and activation in T lymphocytes. Br J Pharmacol 1994; 113(3): 861-8.
[http://dx.doi.org/10.1111/j.1476-5381.1994.tb17072.x] [PMID: 7858878]
[158]
Christian EP, Spence KT, Togo JA, Dargis PG, Warawa E. Extracellular site for econazole-mediated block of Ca2+ release-activated Ca2+ current (Icrac) in T lymphocytes. Br J Pharmacol 1996; 119(4): 647-54.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15722.x] [PMID: 8904637]
[159]
Takezawa R, Cheng H, Beck A, et al. A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol Pharmacol 2006; 69(4): 1413-20.
[http://dx.doi.org/10.1124/mol.105.021154] [PMID: 16407466]
[160]
Derler I, Schindl R, Fritsch R, et al. The action of selective CRAC channel blockers is affected by the Orai pore geometry. Cell Calcium 2013; 53(2): 139-51.
[http://dx.doi.org/10.1016/j.ceca.2012.11.005] [PMID: 23218667]
[161]
Prevarskaya N, Skryma R, Bidaux G, Flourakis M, Shuba Y. Ion channels in death and differentiation of prostate cancer cells. Cell Death Differ 2007; 14(7): 1295-304.
[http://dx.doi.org/10.1038/sj.cdd.4402162] [PMID: 17479110]
[162]
Zakharov SI, Smani T, Dobrydneva Y, et al. Diethylstilbestrol is a potent inhibitor of store-operated channels and capacitative Ca(2+) influx. Mol Pharmacol 2004; 66(3): 702-7.
[PMID: 15322263]
[163]
Enfissi A, Prigent S, Colosetti P, Capiod T. The blocking of capacitative calcium entry by 2-aminoethyl diphenylborate (2-APB) and carboxyamidotriazole (CAI) inhibits proliferation in Hep G2 and Huh-7 human hepatoma cells. Cell Calcium 2004; 36(6): 459-67.
[http://dx.doi.org/10.1016/j.ceca.2004.04.004] [PMID: 15488595]
[164]
Li JH, Spence KT, Dargis PG, Christian EP. Properties of Ca(2+) release-activated Ca(2+) channel block by 5-Nitro-2-(3- phenylpropylamino) -benzoic acid in Jurkat cells. Eur J Pharmacol 2000; 14;394((2-3)): 171-9.
[165]
Watanabe H, Takahashi R, Zhang XX, Kakizawa H, Hayashi H, Ohno R. Inhibition of agonist-induced Ca2+ entry in endothelial cells by myosin light-chain kinase inhibitor. Biochem Biophys Res Commun 1996; 225(3): 777-84.
[http://dx.doi.org/10.1006/bbrc.1996.1250] [PMID: 8780689]
[166]
Fischer BS, Qin D, Kim K, McDonald TV. Capsaicin inhibits Jurkat T-cell activation by blocking calcium entry current I(CRAC). J Pharmacol Exp Ther 2001; 299(1): 238-46.
[PMID: 11561085]
[167]
Aromataris EC, Castro J, Rychkov GY, Barritt GJ. Store-operated Ca(2+) channels and Stromal Interaction Molecule 1 (STIM1) are targets for the actions of bile acids on liver cells. Biochim Biophys Acta 2008; 1783(5): 874-85.
[http://dx.doi.org/10.1016/j.bbamcr.2008.02.011] [PMID: 18342630]
[168]
Chen G, Panicker S, Lau K-Y, et al. Characterization of a novel CRAC inhibitor that potently blocks human T cell activation and effector functions. Mol Immunol 2013; 54(3-4): 355-67.
[http://dx.doi.org/10.1016/j.molimm.2012.12.011] [PMID: 23357789]
[169]
Ramos S, Grigoryev S, Rogers E, et al. CM3457, a potent and selective oral CRAC channel inhibitor, suppresses T and mast cell function and is efficacious in rat models of arthritis and asthma. J Immunol 2012; 188.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy