Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Quantification of Angiogenesis and Lymphangiogenesis in the Dual ex vivo Aortic and Thoracic Duct Assay

Author(s): Shuangyong Wang, Michael Yamakawa, Samuel M. Santosa, Neeraj Chawla, Kai Guo, Mario Montana, Joelle A. Hallak, Kyu-Yeon Han, Masatsugu Ema, Mark I. Rosenblatt, Jin-Hong Chang* and Dimitri T. Azar*

Volume 27, Issue 1, 2020

Page: [30 - 40] Pages: 11

DOI: 10.2174/0929866526666190925145842

Price: $65

Abstract

Background: Lymphatic vessel formation (lymphangiogenesis) plays important roles in cancer metastasis, organ rejection, and lymphedema, but the underlying molecular events remain unclear. Furthermore, despite significant overlap in the molecular families involved in angiogenesis and lymphangiogenesis, little is known about the crosstalk between these processes. The ex vivo aortic ring assay and lymphatic ring assay have enabled detailed studies of vessel sprouting, but harvesting and imaging clear thoracic duct samples remain challenging. Here we present a modified ex vivo dual aortic ring and thoracic duct assay using tissues from dual fluorescence reporter Prox1- GFP/Flt1-DsRed (PGFD) mice, which permit simultaneous visualization of blood and lymphatic endothelial cells.

Objective: To characterize the concurrent sprouting of intrinsically fluorescent blood and lymphatic vessels from harvested aorta and thoracic duct samples.

Methods: Dual aorta and thoracic duct specimens were harvested from PGFD mice, grown in six types of endothelial cell growth media (one control, five that each lack a specific growth factor), and visualized by confocal fluorescence microscopy. Linear mixed models were used to compare the extent of vessel growth and sprouting over a 28-day period.

Results: Angiogenesis occurred prior to lymphangiogenesis in our assay. The control medium generally induced superior growth of both vessel types compared with the different modified media formulations. The greatest decrease in lymphangiogenesis was observed in vascular endothelial growth factor-C (VEGF-C)-devoid medium, suggesting the importance of VEGF-C in lymphangiogenesis.

Conclusion: The modified ex vivo dual aortic ring and thoracic duct assay represents a powerful tool for studying angiogenesis and lymphangiogenesis in concert.

Keywords: Thoracic duct, aorta, lymphangiogenesis, angiogenesis, VEGF, cancer metastasis.

Graphical Abstract
[1]
Costa, C.; Incio, J.; Soares, R. Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis, 2007, 10(3), 149-166.
[http://dx.doi.org/10.1007/s10456-007-9074-0] [PMID: 17457680]
[2]
Carmeliet, P. Angiogenesis in life, disease and medicine. Nature, 2005, 438(7070), 932-936.
[http://dx.doi.org/10.1038/nature04478] [PMID: 16355210]
[3]
Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med., 1995, 1(1), 27-31.
[http://dx.doi.org/10.1038/nm0195-27] [PMID: 7584949]
[4]
Stacker, S.A.; Achen, M.G.; Jussila, L.; Baldwin, M.E.; Alitalo, K. Lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer, 2002, 2(8), 573-583.
[http://dx.doi.org/10.1038/nrc863] [PMID: 12154350]
[5]
Tammela, T.; Alitalo, K. Lymphangiogenesis: molecular mechanisms and future promise. Cell, 2010, 140(4), 460-476.
[http://dx.doi.org/10.1016/j.cell.2010.01.045] [PMID: 20178740]
[6]
Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801), 249-257.
[http://dx.doi.org/10.1038/35025220] [PMID: 11001068]
[7]
Carmeliet, P. Angiogenesis in health and disease. Nat. Med., 2003, 9(6), 653-660.
[http://dx.doi.org/10.1038/nm0603-653] [PMID: 12778163]
[8]
Zhong, W.; Gao, X.; Wang, S.; Han, K.; Ema, M.; Adams, S.; Adams, R.H.; Rosenblatt, M.I.; Chang, J.H.; Azar, D.T. Prox1-GFP/Flt1-DsRed transgenic mice: an animal model for simultaneous live imaging of angiogenesis and lymphangiogenesis. Angiogenesis, 2017, 20(4), 581-598.
[http://dx.doi.org/10.1007/s10456-017-9572-7] [PMID: 28795242]
[9]
Yamakawa, M.; Doh, S.J.; Santosa, S.M.; Montana, M.; Qin, E.C.; Kong, H.; Han, K.Y.; Yu, C.; Rosenblatt, M.I.; Kazlauskas, A.; Chang, J.H.; Azar, D.T. Potential lymphangiogenesis therapies: learning from current antiangiogenesis therapies-a review. Med. Res. Rev., 2018, 38(6), 1769-1798.
[http://dx.doi.org/10.1002/med.21496] [PMID: 29528507]
[10]
Khong, T.L.; Larsen, H.; Raatz, Y.; Paleolog, E. Angiogenesis as a therapeutic target in arthritis: learning the lessons of the colorectal cancer experience. Angiogenesis, 2007, 10(4), 243-258.
[http://dx.doi.org/10.1007/s10456-007-9081-1] [PMID: 17805984]
[11]
Irvin, M.W.; Zijlstra, A.; Wikswo, J.P.; Pozzi, A. Techniques and assays for the study of angiogenesis. Exp. Biol. Med. (Maywood), 2014, 239(11), 1476-1488.
[http://dx.doi.org/10.1177/1535370214529386] [PMID: 24872440]
[12]
Hasan, J.; Shnyder, S.D.; Bibby, M.; Double, J.A.; Bicknel, R.; Jayson, G.C. Quantitative angiogenesis assays in vivo-a review. Angiogenesis, 2004, 7(1), 1-16.
[http://dx.doi.org/10.1023/B:AGEN.0000037338.51851.d1] [PMID: 15302991]
[13]
Vailhé, B.; Vittet, D.; Feige, J.J. In vitro models of vasculogenesis and angiogenesis. Lab. Invest., 2001, 81(4), 439-452.
[http://dx.doi.org/10.1038/labinvest.3780252] [PMID: 11304563]
[14]
Staton, C.A.; Stribbling, S.M.; Tazzyman, S.; Hughes, R.; Brown, N.J.; Lewis, C.E. Current methods for assaying angiogenesis in vitro and in vivo. Int. J. Exp. Pathol., 2004, 85(5), 233-248.
[http://dx.doi.org/10.1111/j.0959-9673.2004.00396.x] [PMID: 15379956]
[15]
Bruyère, F.; Noël, A. Lymphangiogenesis: in vitro and in vivo models. FASEB J., 2010, 24(1), 8-21.
[http://dx.doi.org/10.1096/fj.09-132852] [PMID: 19726757]
[16]
Chang, J.H.; Putra, I.; Huang, Y.H.; Chang, M.; Han, K.; Zhong, W.; Gao, X.; Wang, S.; Dugas-Ford, J.; Nguyen, T.; Hong, Y.K.; Azar, D.T. Limited versus total epithelial debridement ocular surface injury: Live fluorescence imaging of hemangiogenesis and lymphangiogenesis in Prox1-GFP/Flk1:Myr-mCherry mice. Biochim. Biophys. Acta, 2016, 1860(10), 2148-2156.
[http://dx.doi.org/10.1016/j.bbagen.2016.05.027] [PMID: 27233452]
[17]
Zhu, J.; Dugas-Ford, J.; Chang, M.; Purta, P.; Han, K.Y.; Hong, Y.K.; Dickinson, M.E.; Rosenblatt, M.I.; Chang, J.H.; Azar, D.T. Simultaneous in vivo imaging of blood and lymphatic vessel growth in Prox1-GFP/Flk1:myr-mCherry mice. FEBS J., 2015, 282(8), 1458-1467.
[http://dx.doi.org/10.1111/febs.13234] [PMID: 25688651]
[18]
Baker, M.; Robinson, S.D.; Lechertier, T.; Barber, P.R.; Tavora, B.; D’Amico, G.; Jones, D.T.; Vojnovic, B.; Hodivala-Dilke, K. Use of the mouse aortic ring assay to study angiogenesis. Nat. Protoc., 2011, 7(1), 89-104.
[http://dx.doi.org/10.1038/nprot.2011.435] [PMID: 22193302]
[19]
Moleiro, A.F.; Conceicao, G.; Leite-Moreira, A.F.; Rocha-Sousa, A. A Critical analysis of the available in vitro and ex vivo methods to study retinal angiogenesis. J. Ophthalmol., 2017, 20173034953
[http://dx.doi.org/10.1155/2017/3034953]
[20]
Nakao, S.; Zandi, S.; Hata, Y.; Kawahara, S.; Arita, R.; Schering, A.; Sun, D.; Melhorn, M.I.; Ito, Y.; Lara-Castillo, N.; Ishibashi, T.; Hafezi-Moghadam, A. Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: an endogenous trapping mechanism links lymph- and angiogenesis. Blood, 2011, 117(3), 1081-1090.
[http://dx.doi.org/10.1182/blood-2010-02-267427] [PMID: 20705758]
[21]
Scavelli, C.; Vacca, A.; Di Pietro, G.; Dammacco, F.; Ribatti, D. Crosstalk between angiogenesis and lymphangiogenesis in tumor progression. Leukemia, 2004, 18(6), 1054-1058.
[http://dx.doi.org/10.1038/sj.leu.2403355] [PMID: 15057248]
[22]
Nicosia, R.F.; Ottinetti, A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab. Invest., 1990, 63(1), 115-122.
[PMID: 1695694]
[23]
Masson, V.V.R.; Devy, L.; Grignet-Debrus, C.; Bernt, S.; Bajou, K.; Blacher, S.; Roland, G.; Chang, Y.; Fong, T.; Carmeliet, P.; Foidart, J.M.; Noël, A. Mouse aortic ring assay: a new approach of the molecular genetics of angiogenesis. Biol. Proced. Online, 2002, 4, 24-31.
[http://dx.doi.org/10.1251/bpo30] [PMID: 12734572]
[24]
Zhu, W.H.; Iurlaro, M.; MacIntyre, A.; Fogel, E.; Nicosia, R.F. The mouse aorta model: influence of genetic background and aging on bFGF- and VEGF-induced angiogenic sprouting. Angiogenesis, 2003, 6(3), 193-199.
[http://dx.doi.org/10.1023/B:AGEN.0000021397.18713.9c] [PMID: 15041795]
[25]
Nicosia, R.F. Angiogenesis and the formation of lymphaticlike channels in cultures of thoracic duct. In Vitro Cell Dev. Boil., 1987, 23, 167-174.
[http://dx.doi.org/10.1007/BF02623576]
[26]
Bruyère, F.; Melen-Lamalle, L.; Blacher, S.; Roland, G.; Thiry, M.; Moons, L.; Frankenne, F.; Carmeliet, P.; Alitalo, K.; Libert, C.; Sleeman, J.P.; Foidart, J.M.; Noël, A. Modeling lymphangiogenesis in a three-dimensional culture system. Nat. Methods, 2008, 5(5), 431-437.
[http://dx.doi.org/10.1038/nmeth.1205] [PMID: 18425139]
[27]
Merrill, K., Jr The use of Evans Blue to outline the course of the thoracic duct. J. Thorac. Surg., 1955, 29(5), 555-557.
[PMID: 14368655]
[28]
Karkkainen, M.J.; Haiko, P.; Sainio, K.; Partanen, J.; Taipale, J.; Petrova, T.V.; Jeltsch, M.; Jackson, D.G.; Talikka, M.; Rauvala, H.; Betsholtz, C.; Alitalo, K. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol., 2004, 5(1), 74-80.
[http://dx.doi.org/10.1038/ni1013] [PMID: 14634646]
[29]
Sweat, R.S.; Sloas, D.C.; Murfee, W.L. VEGF-C induces lymphangiogenesis and angiogenesis in the rat mesentery culture model. Microcirculation, 2014, 21(6), 532-540.
[http://dx.doi.org/10.1111/micc.12132] [PMID: 24654984]
[30]
Joukov, V.; Pajusola, K.; Kaipainen, A.; Chilov, D.; Lahtinen, I.; Kukk, E.; Saksela, O.; Kalkkinen, N.; Alitalo, K. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J., 1996, 15(7), 1751.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00521.x] [PMID: 8612600]
[31]
Lohela, M.; Bry, M.; Tammela, T.; Alitalo, K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr. Opin. Cell Biol., 2009, 21(2), 154-165.
[http://dx.doi.org/10.1016/j.ceb.2008.12.012] [PMID: 19230644]
[32]
Nicosia, R.F. The aortic ring model of angiogenesis: a quarter century of search and discovery. J. Cell. Mol. Med., 2009, 13(10), 4113-4136.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00891.x] [PMID: 19725916]
[33]
Kaipainen, A.; Korhonen, J.; Pajusola, K.; Aprelikova, O.; Persico, M.G.; Terman, B.I.; Alitalo, K. The related FLT4, FLT1, and KDR receptor tyrosine kinases show distinct expression patterns in human fetal endothelial cells. J. Exp. Med., 1993, 178(6), 2077-2088.
[http://dx.doi.org/10.1084/jem.178.6.2077] [PMID: 8245783]
[34]
Breiteneder-Geleff, S.; Matsui, K.; Soleiman, A.; Meraner, P.; Poczewski, H.; Kalt, R.; Schaffner, G.; Kerjaschki, D. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am. J. Pathol., 1997, 151(4), 1141-1152.
[PMID: 9327748]
[35]
Banerji, S.; Ni, J.; Wang, S.X.; Clasper, S.; Su, J.; Tammi, R.; Jones, M.; Jackson, D.G. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol., 1999, 144(4), 789-801.
[http://dx.doi.org/10.1083/jcb.144.4.789] [PMID: 10037799]
[36]
Wigle, J.T.; Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell, 1999, 98(6), 769-778.
[http://dx.doi.org/10.1016/S0092-8674(00)81511-1] [PMID: 10499794]
[37]
Yang, J.F.; Walia, A.; Huang, Y.H.; Han, K.Y.; Rosenblatt, M.I.; Azar, D.T.; Chang, J.H. Understanding lymphangiogenesis in knockout models, the cornea, and ocular diseases for the development of therapeutic interventions. Surv. Ophthalmol., 2016, 61(3), 272-296.
[http://dx.doi.org/10.1016/j.survophthal.2015.12.004] [PMID: 26706194]
[38]
Cursiefen, C.; Maruyama, K.; Jackson, D.G.; Streilein, J.W.; Kruse, F.E. Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea, 2006, 25(4), 443-447.
[http://dx.doi.org/10.1097/01.ico.0000183485.85636.ff] [PMID: 16670483]
[39]
Gospodarowicz, D.; Bialecki, H.; Thakral, T.K. The angiogenic activity of the fibroblast and epidermal growth factor. Exp. Eye Res., 1979, 28(5), 501-514.
[http://dx.doi.org/10.1016/0014-4835(79)90038-1] [PMID: 312738]
[40]
Cross, M.J.; Claesson-Welsh, L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci., 2001, 22(4), 201-207.
[http://dx.doi.org/10.1016/S0165-6147(00)01676-X] [PMID: 11282421]
[41]
Samani, A.A.; Yakar, S.; LeRoith, D.; Brodt, P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr. Rev., 2007, 28(1), 20-47.
[http://dx.doi.org/10.1210/er.2006-0001] [PMID: 16931767]
[42]
Ribatti, D.; Vacca, A.; Presta, M. The discovery of angiogenic factors: a historical review. Gen. Pharmacol., 2000, 35(5), 227-231.
[http://dx.doi.org/10.1016/S0306-3623(01)00112-4] [PMID: 11888677]
[43]
Kazenwadel, J.; Secker, G.A.; Betterman, K.L.; Harvey, N.L. In vitro assays using primary embryonic mouse lymphatic endothelial cells uncover key roles for FGFR1 signalling in lymphangiogenesis. PLoS One, 2012, 7(7)e40497
[http://dx.doi.org/10.1371/journal.pone.0040497] [PMID: 22792354]
[44]
Boardman, K.C.; Swartz, M.A. Interstitial flow as a guide for lymphangiogenesis. Circ. Res., 2003, 92(7), 801-808.
[http://dx.doi.org/10.1161/01.RES.0000065621.69843.49] [PMID: 12623882]
[45]
Mukouyama, Y.S.; Shin, D.; Britsch, S.; Taniguchi, M.; Anderson, D.J. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell, 2002, 109(6), 693-705.
[http://dx.doi.org/10.1016/S0092-8674(02)00757-2] [PMID: 12086669]
[46]
Lim, A.H.; Suli, A.; Yaniv, K.; Weinstein, B.; Li, D.Y.; Chien, C.B. Motoneurons are essential for vascular pathfinding. Development, 2011, 138(17), 3847-3857.
[http://dx.doi.org/10.1242/dev.068403] [PMID: 21828101]
[47]
Kwon, H.B.; Fukuhara, S.; Asakawa, K.; Ando, K.; Kashiwada, T.; Kawakami, K.; Hibi, M.; Kwon, Y.G.; Kim, K.W.; Alitalo, K.; Mochizuki, N. The parallel growth of motoneuron axons with the dorsal aorta depends on Vegfc/Vegfr3 signaling in zebrafish. Development, 2013, 140(19), 4081-4090.
[http://dx.doi.org/10.1242/dev.091702] [PMID: 24046321]
[48]
Vaahtomeri, K.; Karaman, S.; Mäkinen, T.; Alitalo, K. Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev., 2017, 31(16), 1615-1634.
[http://dx.doi.org/10.1101/gad.303776.117] [PMID: 28947496]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy