Generic placeholder image

Current Gene Therapy


ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Research Article

Prediction of Disease Comorbidity Using HeteSim Scores based on Multiple Heterogeneous Networks

Author(s): Xuegong Chen, Wanwan Shi and Lei Deng*

Volume 19 , Issue 4 , 2019

Page: [232 - 241] Pages: 10

DOI: 10.2174/1566523219666190917155959

Price: $65


Background: Accumulating experimental studies have indicated that disease comorbidity causes additional pain to patients and leads to the failure of standard treatments compared to patients who have a single disease. Therefore, accurate prediction of potential comorbidity is essential to design more efficient treatment strategies. However, only a few disease comorbidities have been discovered in the clinic.

Objective: In this work, we propose PCHS, an effective computational method for predicting disease comorbidity.

Materials and Methods: We utilized the HeteSim measure to calculate the relatedness score for different disease pairs in the global heterogeneous network, which integrates six networks based on biological information, including disease-disease associations, drug-drug interactions, protein-protein interactions and associations among them. We built the prediction model using the Support Vector Machine (SVM) based on the HeteSim scores.

Results and Conclusion: The results showed that PCHS performed significantly better than previous state-of-the-art approaches and achieved an AUC score of 0.90 in 10-fold cross-validation. Furthermore, some of our predictions have been verified in literatures, indicating the effectiveness of our method.

Keywords: Disease comorbidity, HeteSim measure, heterogeneous network, disease gene, disease drug, protein-protein interaction.

Graphical Abstract
Capobianco E, Lio P. Comorbidity: A multidimensional approach. Trends Mol Med 2013; 19(9): 515-21.
Hidalgo CA, Blumm N, Barabasi AL, Christakis NA. A dynamic network approach for the study of human phenotypes 2009. 5(4): e1000353.
Gijsen R, Hoeymans N, Schellevis FG, Ruwaard D, Satariano WA, van den Bos GA. Causes and consequences of comorbidity: A review. J Clin Epidemiol 2001; 54(7): 661-74.
Starfield B. Comorbidity: Implications for the importance of primary care in ‘case’ management. Ann Fam Med 2003; 1(1): 8-14.
Struijs JN, Baan CA, Schellevis FG, Westert GP, Bos GA. Comorbidity in patients with diabetes mellitus: Impact on medical health care utilization 2006; 6(1): 84.
Kumar MSA, Sierka DR, Damask AM, et al. Safety and success of kidney transplantation and concomitant immunosuppression in HIV-positive patient. Kidney Int 2005; 67(4): 1622.
Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction 1998. 339(4): 229-34.
Weiner DE, Hocine T, Stark PC, et al. Kidney disease as a risk factor for recurrent cardiovascular disease and mortality. Am J Kidney Dis 2004; 44(2): 198-206.
Levin A, Djurdjev O, Barrett B, et al. Cardiovascular disease in patients with chronic kidney disease: Getting to the heart of the matter. Am J Kidney Dis 2001; 38(6): 1398-407.
Zhang W, Chen XLY, Wu W, Wang W, Li X. Feature-derived graph regularized matrix factorization for predicting drug side effects. Neurocomputing 2018; 287: 154-62.
Goh K-I, Cusick M E, Valle D, Childs B, Vidal M, Barabási A-L. The human disease network 2007; 104(21): 8685-90.
Feldman I, Rzhetsky A, Vitkup D. Network properties of genes harboring inherited disease mutations. Proc Natl Acad Sci USA 2008; 105(11): 4323-8.
Park J, Lee DS, Christakis NA, Barabási AL. The impact of cellular networks on disease comorbidity. Mol Syst Biol 2009; 5(1): 262.
Lee D-S, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabási A-L. The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci 2008; 105(29): 9880-5.
Zheng CH, Zhang L, Ng VT, Shiu SC, Huang DS. Molecular pattern discovery based on penalized matrix decomposition IEEE/ACM Trans Comput Biol Bioinform 2011; 8(6): 1592-603.
Huang DS, Yu HJ. Normalized feature vectors: A novel alignment-free sequence comparison method based on the numbers of adjacent amino acids. IEEE/ACM Trans Comput Biol Bioinformatics 2013; 10(2): 457-67.
Rual J-F, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 2005; 437(7062): 1173-8.
Stelzl U, Worm U, Lalowski M, et al. A human protein-protein interaction network: A resource for annotating the proteome. Cell 2005; 122(6): 957-68.
Liang C, Yang H. Human disease system biology. Curr Gene Ther 2018; 18(5): 255-6.
Park S, Yang JS, Shin YE, Park J, Jang SK, Kim S. Protein localization as a principal feature of the etiology and comorbidity of genetic diseases. Mol Syst Biol 2011; 7(1): 494.
Park S, Yang J-S, Kim J, et al. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases. Sci Rep 2012; 2: 757.
Moni MA, Liò P. comoR: A software for disease comorbidity risk assessment. J Clin Bioinforma 2014; 4(1): 8.
Menche J, Sharma A, Kitsak M, et al. Uncovering disease-disease relationships through the incomplete interactome. Science 2015; 347(6224)1257601
Akram P, Liao LJBG. Prediction of missing common genes for disease pairs using network based module separation on incomplete human interactome. BMC Genomics 2017; 18(10): 902.
Akram P, Liao L. Predicting comorbid diseases with geometric embedding of human interactome. The 14th International Symposium on Bioinformatics Research and Applications (ISBRA), Beijing, China, June 8 - 11, 2018.
He F, Zhu G, Wang Y, Zhao X, Huang D. PCID: A novel approach for predicting disease comorbidity by integrating multi-scale data. IEEE/ACM Trans Comput Biol Bioinformatics 2017; 14(3): 678-86.
Xiao Y, Zhang J, Deng L. Prediction of lncRNA-protein interactions using HeteSim scores based on heterogeneous networks. Sci Rep 2017; 7(1): 3664.
Zeng X, Liao Y, Liu Y, Zou Q. Prediction and validation of disease genes using hetesim scores. IEEE/ACM Trans Comput Biol Bioinformatics 2017; 14(3): 687-95.
Knox C, Law V, Jewison T, et al. DrugBank 3.0: A comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 2011; 39(Database issue): D1035-41.
Zhang W, Huang F, Chen Y, Li B, Li J, Gong J. SFLLN: A sparse feature learning ensemble method with linear neighborhood regularization for predicting drug-drug interactions. Inf Sci 2019; 497: 189-201.
Zhang W, Li YCD, Yue X. Manifold regularized matrix factorization for drug-drug interaction prediction. J Biomed Inform 2018; 88: 90-7.
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43: D447-52.
Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2005; 33: D514-7.
Zhang W, Yue X, Chen Y, et al. Predicting drug-disease associations based on the known association bipartite network. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 503-9.
Zhang W, Lin XY, Wu W, Liu R, Huang F, Liu F. Predicting drug-disease associations by using similarity constrained matrix factorization. BMC Bioinformatics 2018; 19: 233.
Zhang W, Huang XYF, Liu R, Chen Y, Ruan C. Predicting drug-disease associations and their therapeutic function based on the drug-disease association bipartite network. Methods 2018; 145: 51-9.
Zhang J, Deng L. Gene Ontology-based function prediction of long non-coding RNAs using bi-random walk. BMC Med Genomics 2018; 11(5): 99.
Zhang J, Zhang Z, Chen Z, Deng L. Integrating multiple heterogeneous networks for novel LncRNA-disease association inference. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(2): 396-406.
Zhang Z, Zhang J, Fan C, Tang Y, Deng L. KATZLGO: Large-scale prediction of LncRNA functions by using the KATZ measure based on multiple networks. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(2): 407-16.
Zhang J, Zhang Z, Wang Z, Liu Y, Deng L. Ontological function annotation of long non-coding RNAs through hierarchical multi-label classification. Bioinformatics 2018; 34(10): 1750-7.
Deng L, Wu H, Liu C, Zhan W, Zhang J. Probing the functions of long non-coding RNAs by exploiting the topology of global association and interaction network. Comput Biol Chem 2018; 74: 360-7.
Deng L, Wang J, Zhang J. Predicting gene ontology function of human MicroRNAs by integrating multiple networks. Front Genet 2019; 10: 3.
Peng J, Zhu L, Wang Y, Chen J. Mining relationships among Multiple entities in biological networks. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 1: 1.
Deng L, Zhang W, Shi Y, Tang Y. Fusion of multiple heterogeneous networks for predicting circRNA-disease associations. Sci Rep 2019; 9(1): 9605.
Cheng L, Wang P, Tian R, et al. LncRNA2Target v2. 0: A comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res 2018; 47(D1): D140-4.
Cheng L, Hu Y, Sun J, Zhou M, Jiang Q. DincRNA: A comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function. Bioinformatics 2018; 34(11): 1953-6.
Cheng L, Yang H, Zhao H, et al. MetSigDis: A manually curated resource for the metabolic signatures of diseases. Brief Bioinform 2017; 20(1): 203-9.
Gligorijevic V, Barot M, Bonneau R. deepNF: Deep network fusion for protein function prediction. Bioinformatics 2018; 34(22): 3873-81.
Ezzat A, Zhao P, Wu M, Li XL, Kwoh CK. Drug-target interaction prediction with graph regularized matrix factorization IEEE/ACM Trans Comput Biol Bioinform 2017; 14(3): 646-56.
[] [PMID: 26890921]
Masoudi-Sobhanzadeh Y, Omidi Y, Amanlou M, Masoudi-Nejad A. Trader as a new optimization algorithm predicts drug-target interactions efficiently Sci Rep. 2019; 9(1): 9348.
[] [PMID: 31249365]
Durán C, Daminelli S, Thomas JM, Haupt VJ, Schroeder M, Cannistraci CV. Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory Brief Bioinform 2018; 19(6): 1183-202.
[] [PMID: 28453640]
Shi C, Kong X, Huang Y, Yu PS, Wu B. HeteSim: A General framework for relevance measure in heterogeneous networks. IEEE Trans Knowl Data Eng 2014; 26(10): 2479-92.
Deng L, Wang J, Xiao Y, Wang Z, Liu H. Accurate prediction of protein-lncRNA interactions by diffusion and HeteSim features across heterogeneous network. BMC Bioinformatics 2018; 19(1): 370.
Burges C. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998; 2(2): 121-67.
Friedman JH. Greedy function approximation: A gradient boosting machine. Ann Stat 2001; 29(5): 1189-232.
Liaw A, Wiener M. Classification and regression by randomforest 2001; 2/3. Available from: 1905017368.1570531537-207683806.1553148490
Li A, Ge M, Zhang Y, Peng C, Wang M. Predicting long noncoding RNA and protein interactions using heterogeneous network model. BioMed Res Int 2015; 2015: 1-11.
Ding L, Wang M, Sun D, Li A. TPGLDA: Novel prediction of associations between lncRNAs and diseases via lncRNA-disease-gene tripartite graph. Sci Rep 2018; 8(1): 1065.
Menche J, Sharma A, Kitsak M, et al. Uncovering disease-disease relationships through the incomplete interactome. Science 2015; 347(6224): 1257601 1.
Wang L, Wang L, Zhang J, Wang B, Liu H. Association between diabetes mellitus and subsequent ovarian cancer in women: A systematic review and meta-analysis of cohort studies. Medicine (Baltimore) 2017; 96(16): e6396 6.
Kanaji N, Watanabe N, Kita N, et al. Paraneoplastic syndromes associated with lung cancer. World J Clin Oncol 2014; 5(3): 197-223.
Yu B, Wu C, Li T, Qin F, Yuan J. Advances in gene therapy for erectile dysfunction: Promises and challenges. Curr Gene Ther 2018; 18(6): 351-65.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy