Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Theoretical Investigation of the CO2 Capture Properties of γ-LiAlO2 and α-Li5AlO4

Author(s): Yuhua Duan*

Volume 13, Issue 1, 2021

Published on: 13 September, 2019

Page: [32 - 41] Pages: 10

DOI: 10.2174/1876402911666190913184300

Abstract

Aims: The aim is to develop effective CO2 sorbent materials for fighting global climate change.

Background: CO2 is one of the major combustion products which once released into the air can contribute to global climate change. There is a critical need for the development of new materials that can capture CO2 reversibly with acceptable energy and cost performance for these applications. Accordingly, solid sorbents have been reported to be promising candidates for CO2 sorbent applications through a reversible chemical transformation due to their high CO2 absorption capacities at moderate working temperatures.

Objective: To evaluate the CO2 capture performance of γ-LiAlO2 and α-Li5AlO4 in comparison with other solid sorbents.

Methods: By combining first-principles density functional theory with phonon lattice dynamics calculations, the thermodynamic properties of the CO2 capture reaction by sorbent as a function of temperature and pressure can be determined without any experimental input beyond crystallographic structural information of the solid phases involved. The calculated thermodynamic properties are used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles.

Results: Both γ-LiAlO2 and α-Li5AlO4 are insulators with wide band gaps of 4.70 and 4.76 eV, respectively. Their 1st valence bands just below the Fermi level are mainly formed by p orbitals of Li, O and Al as well as s orbital of Li. By increasing the temperature from 0 K up to 1500 K, their phonon free energies are decreased while their entropies are increased. The thermodynamic properties of CO2 capture reactions by γ-LiAlO2 and α-Li5AlO4 are calculated and used for comparing with other wellknown sorbent materials.

Conclusion: The calculated thermodynamic properties of γ-LiAlO2 and α-Li5AlO4 reacting with CO2 indicate that LiAlO2 could be used for capturing CO2 at warm temperature range (500-800 K) while α- Li5AlO4 could be used for capturing CO2 at high-temperature range (800-1000 K), which are in good agreement with available experimental data.

Keywords: CO2 capture, solid sorbents, γ-LiAlO2, α-Li5AlO4, ab initio thermodynamics, thermodynamic property, absorption.

Graphical Abstract
[1]
D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon dioxide capture: prospects for new materials.Angew. Chem. Int. Ed. Engl.,, 2010, 49(35), 6058-6082.
[http://dx.doi.org/10.1002/anie.201000431]
[2]
Figueroa, J.D.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R.D. Advances in CO2 capture technology - the US department of energy’s carbon sequestration program. Int. J. Greenh. Gas Control, 2008, 2, 9-20..
[http://dx.doi.org/10.1016/S1750-5836(07)00094-1]
[3]
Li, B.Y.; Duan, Y.H.; Luebke, D.; Morreale, B. Advances in CO2 capture technology: a patent review. Appl. Energy, 2013, 102, 1439-1447.
[http://dx.doi.org/10.1016/j.apenergy.2012.09.009]
[4]
Duan, Y. Electronic structural and phonon properties of lithium zirconates and their capabilities of co2 capture: a first-principle density functional approach. J. Renew. Sustain. Energy, 2011, 30, 13102.
[http://dx.doi.org/10.1063/1.3529427]
[5]
Duan, Y. Ab Initio thermodynamic approach to identify mixed solid sorbents for CO2 capture technology. Front. Environ. Sci., 2015, 3, 69.
[http://dx.doi.org/10.3389/fenvs.2015.00069]
[6]
Duan, Y.; Lekse, J.; Wang, X.; Li, B.; Alcantar-Vazquez, B.; Pfeiffer, H.; Halley, J.W. Electronic structure, phonon dynamical properties, and CO2 capture capability of Na2-XMxZrO3 (M=Li, K): Density-functional calculations and experimental validations. Phys. Rev. Appl., 2015, 3044013
[http://dx.doi.org/10.1103/PhysRevApplied.3.044013]
[7]
Duan, Y.; Parlinski, K. Density functional theory study of the structural, electronic, lattice dynamical, and thermodynamic properties of li4sio4 and its capability for co2 capture. Phys. Rev. B, 2011, 84104113
[http://dx.doi.org/10.1103/PhysRevB.84.104113]
[8]
Cao, H.; Xia, B.J.; Zhang, Y.; Xu, N.X. LiAlO2-Coated LiCoO2 as cathode material for Lithium ion batteries. Solid State Ion., 2005, 176, 911-914.
[http://dx.doi.org/10.1016/j.ssi.2004.12.001]
[9]
Li, L.J.; Chen, Z.Y.; Zhang, Q.B.; Xu, M.; Zhou, X.; Zhu, H.L.; Zhang, K.L. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-Inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for Lithium ion batteries. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 894-904.
[http://dx.doi.org/10.1039/C4TA05902F]
[10]
Dissanayake, M.A.K.L. Nano-composite solid polymer electrolytes for solid state ionic devices. Ionics, 2004, 10, 221-225.
[http://dx.doi.org/10.1007/BF02382820]
[11]
Indris, S.; Heitjans, P.; Uecker, R.; Roling, B. Li ion dynamics in a LiAlO2 single crystal studied by Li-7 Nmr Spectroscopy and Conductivity Measurements. J. Phys. Chem. C, 2012, 116, 14243-14247.
[http://dx.doi.org/10.1021/jp3042928]
[12]
Islam, M.M.; Bredow, T. Interstitial lithium diffusion pathways in γ-LiAlO2: a computational study. J. Phys. Chem. Lett., 2015, 6(22), 4622-4626.
[http://dx.doi.org/10.1021/acs.jpclett.5b01780]
[13]
Hu, L.F.; Tang, Z.L.; Zhang, Z.T. New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and peo/liclo4. J. Power Sources, 2007, 166, 226-232.
[http://dx.doi.org/10.1016/j.jpowsour.2007.01.028]
[14]
Bianchini, F.; Fjellvåg, H.; Vajeeston, P. A first principle comparative study of the ionic diffusivity in LiAlO2 and NaAlO2 polymorphs for solid-state battery applications. Phys. Chem. Chem. Phys., 2018, 20(15), 9824-9832.
[http://dx.doi.org/10.1039/C8CP00715B]
[15]
Takahashi, H.; Yamazaki, N.; Watanabe, T.; Suzuki, K. Gamma lithium aluminate product and process of making. U.S. Patent 6,290,928, Sep 18,, 2001.
[16]
Wohlmuth, D.; Epp, V.; Bottke, P.; Hanzu, I.; Bitschnau, B.; Letofsky-Papst, I.; Kriechbaum, M.; Amenitsch, H.; Hofer, F.; Wilkening, M. Order, vs. disorder-a huge increase in ionic conductivity of nanocrystalline lialo2 embedded in an amorphous-like matrix of lithium aluminate. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2, 20295-20306.
[http://dx.doi.org/10.1039/C4TA02923B]
[17]
Terada, S.; Nagashima, I.; Higaki, K.; Ito, Y. Stability of LiAlO2 as electrolyte matrix for molten carbonate fuel cells. J. Power Sources, 1998, 75, 223-229.
[http://dx.doi.org/10.1016/S0378-7753(98)00115-3]
[18]
Xu, K.; Xu, J.; Deng, P.Z.; Zhou, Y.Z.; Zhou, G.Q.; Qiu, R.S.; Fang, Z.J. γ-LiAlO2 Single crystal: a novel substrate for gan epitaxy. J. Cryst. Growth, 1998, 193, 127-132.
[http://dx.doi.org/10.1016/S0022-0248(98)00469-2]
[19]
Rasneur, B. Tritium Breeding Material - γ-LiAlO2. Fusion Technol, 1985, 8, 1909-1914.
[http://dx.doi.org/10.13182/FST85-A40040]
[20]
Kawamura, Y.; Yamanishi, T. Tritium recovery from blanket sweep gas via ceramic proton conductor membrane. Fusion Eng. Des., 2011, 86, 2160-2163.
[http://dx.doi.org/10.1016/j.fusengdes.2010.12.003]
[21]
Liu, Y.Y.; Billone, M.C.; Fischer, A.K.; Tam, S.W.; Clemmer, R.G.; Hollenberg, G.W. Solid tritium breeder materials li2o and lialo2 - a data-base review. Fus. Sci. Technol., 1985, 8, 1970-1984.
[http://dx.doi.org/10.13182/FST85-A24573]
[22]
Jia, T.; Zeng, Z.; Paudel, H.P.; Senor, D.J.; Duan, Y. First principles study of the surface properties of γ-lialo2: stability and tritium adsorption. J. Nucl. Mater., 2019, 522, 1-10.
[http://dx.doi.org/10.1016/j.jnucmat.2019.05.007]
[23]
Paudel, H.P.; Lee, Y.L.; Senor, D.J.; Duan, Y. Tritium diffusion pathways in γ-lialo2 pellets used in tpbar: a first-principles density functional theory investigation. J. Phys. Chem. C, 2018, 122, 9755-9765.
[http://dx.doi.org/10.1021/acs.jpcc.8b01108]
[24]
Avalos-Rendón, T.; Casa-Madrid, J.; Pfeiffer, H. Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO2 and Li5AlO4): a new option for the CO2 absorption. J. Phys. Chem. A, 2009, 113(25), 6919-6923.
[http://dx.doi.org/10.1021/jp902501v]
[25]
Korake, P.V.; Gaikwad, A.G. Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures. Front. Chem. Sci. Eng., 2011, 5, 215-226.
[http://dx.doi.org/10.1007/s11705-010-1012-9]
[26]
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter, 1993, 47(1), 558-561.
[http://dx.doi.org/10.1103/PhysRevB.47.558]
[27]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter, 1996, 54(16), 11169-11186.
[http://dx.doi.org/10.1103/PhysRevB.54.11169]
[28]
Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6, 15-50.
[http://dx.doi.org/10.1016/0927-0256(96)00008-0]
[29]
Duan, Y.; Sorescu, D.C. density functional theory studies of the structural, electronic, and phonon properties of li2o and li2co3: application to co2 capture reaction. Phys. Rev. B, 2009, 79(1)014301
[http://dx.doi.org/10.1103/PhysRevB.79.014301]
[30]
Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B Condens. Matter, 1992, 45(23), 13244-13249.
[http://dx.doi.org/10.1103/PhysRevB.45.13244]
[31]
Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B, 1976, 13, 5188-5192.
[http://dx.doi.org/10.1103/PhysRevB.13.5188]
[32]
Bradley, C.J.; Cracknell, A.P. The Mathematical Theory of Symmetry in Solids; Clarendon press: Oxford, 1972.
[33]
Parlinski, K. Software Phonon 6.15. Available from:, http://www.computingformaterials.com/
[34]
Duan, Y. Electronic structural and electrochemical properties of lithium zirconates and their capabilities of co2 capture: a first-principles density-functional theory and phonon dynamics approach. J. Renew. Sustain. Energy, 2011, 3(1)013102
[http://dx.doi.org/10.1063/1.3529427]
[35]
Wiedemann, D.; Indris, S.; Meven, M.; Pedersen, B.; Boysen, H.; Uecker, R.; Heitjans, P.; Lerch, M. Single-crystal neutron diffraction on γ-lialo2: structure determination and estimation of lithium diffusion pathway. Z. Kristallogr. Cryst. Mater., 2016, 231, 189-193.
[http://dx.doi.org/10.1515/zkri-2015-1896]
[36]
Stewner, F.; Hoppe, R. Crystal Structure of α-Li5AlO4. Z. Anorg. Allg. Chem., 1971, 380, 241-243.
[http://dx.doi.org/10.1002/zaac.19713800303]
[37]
Digne, M.; Sautet, P.; Raybaud, P.; Euzen, P.; Toulhoat, H. Use of DFT to achieve a rational understanding of acid-basic properties of gamma-alumina surfaces. J. Catal., 2004, 226, 54-68.
[http://dx.doi.org/10.1016/j.jcat.2004.04.020]
[38]
Wu, S.Q.; Hou, Z.F.; Zhu, Z.Z. First-principles study on the structural, elastic, and electronic properties of γ-LiAlo2. Comput. Mater. Sci., 2009, 46, 221-224.
[http://dx.doi.org/10.1016/j.commatsci.2009.02.028]
[39]
Ma, S.G.; Shen, Y.H.; Gao, T.; Chen, P.H. First-principles calculation of the structural, electronic, dynamical and thermodynamic properties of γ-LiAlO2. Int. J. Hydrogen Energy, 2015, 40, 3762-3770.
[http://dx.doi.org/10.1016/j.ijhydene.2015.01.088]
[40]
Hu, X.D.; Tang, J.B.; Blasig, A.; Shen, Y.Q.; Radosz, M. CO2 Permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen. J. Membr. Sci., 2006, 281, 130-138.
[http://dx.doi.org/10.1016/j.memsci.2006.03.030]
[41]
Duan, Y.; Sorescu, D.C.; Jiang, W.L.; Senor, D.J. Theoretical investigation of the electronic structural, thermodynamic, and thermo-conductive properties of γ-LiAlO2 with 6Li isotope substitutions for tritium production. J. Nucl. Mater., 2019.
[42]
Duan, Y.; Sorescu, D.C. CO2 capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study. J. Chem. Phys., 2010, 133(7)074508
[http://dx.doi.org/10.1063/1.3473043]
[43]
Duan, Y.; Zhang, B.; Sorescu, D.C.; Johnson, J.K. CO2 capture properties of M-C-O-H (M=Li, Na, K) systems: A combined density functional theory and tattice phonon dynamics study. J. Solid State Chem., 2011, 184, 304-311.
[http://dx.doi.org/10.1016/j.jssc.2010.12.005]
[44]
Avalos-Rendon, T.; Lara, V.H.; Pfeiffer, H. CO2 chemisorption and cyclability analyses of lithium aluminate polymorphs (α- and β-Li5AlO4). Ind. Eng. Chem. Res., 2012, 51, 2622-2630.
[http://dx.doi.org/10.1021/ie201616h]
[45]
Avalos-Rendon, T.L.; Pfeiffer, H. High CO2 chemisorption in α-Li5AlO4 at low temperatures (30-80 °C): effect of the water vapor addition. Energy Fuels, 2012, 26, 3110-3114.
[http://dx.doi.org/10.1021/ef3004416]
[46]
HSC Chemistry software 6.1, Pori: Outotec Research Oy, 2006 Available from:, www.outotec.com/hsc

© 2024 Bentham Science Publishers | Privacy Policy