Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

The Evolution of Population Pharmacokinetic Model of Oral Phenytoin for Early Seizure Prophylaxis Post-Craniotomy

Author(s): Zhongdong Li, Chuan Wang, Shuangmin Ji, Hao Jin and Guiqin Song*

Volume 20, Issue 9, 2019

Page: [756 - 764] Pages: 9

DOI: 10.2174/1389200220666190913115837

Price: $65

Abstract

Background: This study aimed to re-establish a Population Pharmacokinetic (PPK) model of oral phenytoin to further optimize the individualized medication regimen based on our previous research.

Methods: Patients with intracranial malignant tumor requiring craniotomy were prospectively enrolled according to the inclusion criteria. Genotypes of CYP2C9*1 or *3 and CYP2C19*1, *2 or *3 were determined by real time PCR (TaqMan probe) method. Serum concentrations of phenytoin on the 4th and 7th day after oral administration were determined using fluorescence polarization immunoassay. The PPK parameters were estimated using Nonlinear Mixed Effects Models (NONMEM) and internal validation was performed using bootstraps. The predictive performance of the final model was evaluated by Normalized Predictive Distribution Errors (NPDEs) and diagnostic goodness- of-fit plots.

Results: A total of 390 serum samples were collected from 170 patients in PPK model building group. The population typical values for Vm, Km and the apparent volume of distribution (V) in the final model were 17.5 mg/h, 6.41 mg/L and 54.8 L, respectively. Internal validation by bootstraps showed that the final model was stable and reliable. NPDEs with a normal distribution and a scatterplot with symmetrical distribution showed that the final model had good predictive capability. Individualized dose regimens of additional 40 patients in the external validation group were designed by the present final PPK model. The percentages of patients with serum concentrations within the therapeutic range were 61.53% (24/39) on the 4th day and 94.87% (37/39) on the 7th day, which were higher than the 39.33% (59/150) and 52.10% (87/167) of above 170 patients (P < 0.0001).

Conclusion: The present PPK final model for oral phenytoin may be used to further optimize phenytoin individualized dose regimen to prevent early seizure in patients after brain injury if patient characteristics meet those of the population studied.

Keywords: Phenytoin, genotypes, NONMEM, traumatic brain injury, early post-traumatic seizure, population pharmacokinetics, cytochrome P450 2C.

Graphical Abstract
[1]
Lee, S.T.; Lui, T.N.; Chang, C.N.; Cheng, W.C.; Wang, D.J.; Heimburger, R.F.; Lin, C.G. Prophylactic anticonvulsants for prevention of immediate and early postcraniotomy seizures. Surg. Neurol., 1989, 31(5), 361-364.
[http://dx.doi.org/10.1016/0090-3019(89)90067-0] [PMID: 2711309]
[2]
Young, K.D.; Okada, P.J.; Sokolove, P.E.; Palchak, M.J.; Panacek, E.A.; Baren, J.M.; Huff, K.R.; McBride, D.Q.; Inkelis, S.H.; Lewis, R.J. A randomized, double-blinded, placebo-controlled trial of phenytoin for the prevention of early posttraumatic seizures in children with moderate to severe blunt head injury. Ann. Emerg. Med., 2004, 43(4), 435-446.
[PMID: 15039684]
[3]
Temkin, N.R.; Dikmen, S.S.; Wilensky, A.J.; Keihm, J.; Chabal, S.; Winn, H.R. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N. Engl. J. Med., 1990, 323(8), 497-502.
[http://dx.doi.org/10.1056/NEJM199008233230801] [PMID: 2115976]
[4]
Schierhout, G.; Roberts, I. Anti-epileptic drugs for preventing seizures following acute traumatic brain injury. Cochrane Database Syst. Rev., 2000, (2)CD000173
[PMID: 10796698]
[5]
Chang, B.S.; Lowenstein, D.H. Practice parameter: antiepileptic drug prophylaxis in severe traumatic brain injury: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 2003, 60(1), 10-16.
[http://dx.doi.org/10.1212/01.WNL.0000031432.05543.14] [PMID: 12525711]
[6]
DeDea, L. Phenytoin or levetiracetam for seizure prophylaxis in TBI. JAAPA, 2012, 25(12), 11.
[http://dx.doi.org/10.1097/01720610-201212000-00002] [PMID: 23599996]
[7]
Torbic, H.; Forni, A.A.; Anger, K.E.; Degrado, J.R.; Greenwood, B.C. Use of antiepileptics for seizure prophylaxis after traumatic brain injury. Am. J. Health Syst. Pharm., 2013, 70(9), 759-766.
[http://dx.doi.org/10.2146/ajhp120203] [PMID: 23592358]
[8]
de Oliveira, J.A.; Santana, I.A.; Caires, I.Q.; Caires-Lima, R.; Miranda, V.C.; Protásio, B.M.; Rocha, L.S.; Braga, H.F.; Mencarini, A.M.; Teixeira, M.J.; Castro, L.H.; Feher, O. Antiepileptic drug prophylaxis in primary brain tumor patients: is current practice in agreement to the consensus? J. Neurooncol., 2014, 120(2), 399-403.
[PMID: 25085213]
[9]
Lee, S.Y.; Lee, S.T.; Kim, J.W. Contributions of CYP2C9/CYP2C19 genotypes and drug interaction to the phenytoin treatment in the Korean epileptic patients in the clinical setting. J. Biochem. Mol. Biol., 2007, 40(3), 448-452.
[PMID: 17562299]
[10]
Yukawa, E.; Mamiya, K. Effect of CYP2C19 genetic polymorphism on pharmacokinetics of phenytoin and phenobarbital in Japanese epileptic patients using Non-linear Mixed Effects Model approach. J. Clin. Pharm. Ther., 2006, 31(3), 275-282.
[http://dx.doi.org/10.1111/j.1365-2710.2006.00712.x] [PMID: 16789993]
[11]
Ortega-Vázquez, A.; Dorado, P.; Fricke-Galindo, I.; Jung-Cook, H.; Monroy-Jaramillo, N.; Martínez-Juárez, I.E.; Familiar-López, I.; Peñas-Lledó, E. LLerena, A.; López-López, M. CYP2C9, CYP2C19, ABCB1 genetic polymorphisms and phenytoin plasma concentrations in Mexican-Mestizo patients with epilepsy. Pharmacogenomics J., 2016, 16(3), 286-292.
[http://dx.doi.org/10.1038/tpj.2015.45] [PMID: 26122019]
[12]
Caudle, K.E.; Rettie, A.E.; Whirl-Carrillo, M.; Smith, L.H.; Mintzer, S.; Lee, M.T.; Klein, T.E.; Callaghan, J.T. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing. Clin. Pharmacol. Ther., 2014, 96(5), 542-548. [J].
[http://dx.doi.org/[http://10.1038/clpt.2014.159]] [PMID: 25099164]
[13]
Yamamoto, Y.; Takahashi, Y.; Imai, K.; Miyakawa, K.; Ikeda, H.; Ueda, Y.; Yamaguchi, T.; Nasu, H.; Ohtani, H.; Shigematsu, H.; Kagawa, Y.; Inoue, Y. Individualized phenytoin therapy for Japanese pediatric patients with epilepsy based on CYP2C9 and CYP2C19 genotypes. Ther. Drug Monit., 2015, 37(2), 229-235.
[http://dx.doi.org/10.1097/FTD.0000000000000128] [PMID: 25162219]
[14]
van Schaik, R.H. CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist. Updat., 2008, 11(3), 77-98.
[http://dx.doi.org/10.1016/j.drup.2008.03.002] [PMID: 18486526]
[15]
Sharma, S.; Tabassum, F.; Dwivedi, P.; Agarwal, R.; Kushwaha, S.; Bala, K.; Grover, S.; Baghel, R.; Kukreti, R.; Tripathi, C.B. Critical appraisal of serum phenytoin variation with patient characteristics in a North Indian population. Neurol. India, 2015, 63(2), 202-208.
[http://dx.doi.org/10.4103/0028-3886.156281] [PMID: 25947984]
[16]
Frame, B.; Beal, S.L. Non-steady state population kinetics of intravenous phenytoin. Ther. Drug Monit., 1998, 20(4), 408-416.
[http://dx.doi.org/10.1097/00007691-199808000-00010] [PMID: 9712466]
[17]
Hung, C.C.; Lin, C.J.; Chen, C.C.; Chang, C.J.; Liou, H.H. Dosage recommendation of phenytoin for patients with epilepsy with different CYP2C9/CYP2C19 polymorphisms. Ther. Drug Monit., 2004, 26(5), 534-540.
[PMID: 15385837]
[18]
Li, Z.D.; Liu, M.; Li, L.; Wan, J.H.; Lei, Z.; Huang, Y.A. Population pharmacokinetics of phenytoin based on NONMEM in patients with intracranial tumor during the first week of post-craniotomy. Curr. Drug Metab., 2016, 17(7), 721-728.
[http://dx.doi.org/10.2174/1389200217666160513132716] [PMID: 27174459]
[19]
Tanaka, J.; Kasai, H.; Shimizu, K.; Shimasaki, S.; Kumagai, Y. Population pharmacokinetics of phenytoin after intravenous administration of fosphenytoin sodium in pediatric patients, adult patients, and healthy volunteers. Eur. J. Clin. Pharmacol., 2013, 69(3), 489-497.
[PMID: 22918614]
[20]
Taguchi, M.; Hongou, K.; Yagi, S.; Miyawaki, T.; Takizawa, M.; Aiba, T.; Hashimoto, Y. Evaluation of phenytoin dosage regimens based on genotyping of CYP2C subfamily in routinely treated Japanese patients. Drug Metab. Pharmacokinet., 2005, 20(2), 107-112.
[http://dx.doi.org/10.2133/dmpk.20.107] [PMID: 15855721]
[21]
Ebrahimi, E.S.M.Z.S.E.M.S.P.; Salehifar, E.; Zohrabi, M.; Eshghi, S.; Saeedi, M.; Ebrahimi, P. Different pharmacokinetic parameters of phenytoin in Iranian Outpatients: Need to optimize the current dosage administration. Iran. J. Pharm. Res., 2009, 8(1), 37-45.
[22]
Odani, A.; Hashimoto, Y.; Takayanagi, K.; Otsuki, Y.; Koue, T.; Takano, M.; Yasuhara, M. Hattori. H.; Furusho, K.; Inui, K. Population pharmaco- kinetics of phenytoin in Japanese patients with epilepsy: analysis with a dose-dependent clearance model. Biol. Pharm. Bull., 1996, 19(3), 444-448.
[PMID: 8924916]
[23]
Deleu, D.; Aarons, L.; Ahmed, I.A. Estimation of population pharmacokinetic parameters of free-phenytoin in adult epileptic patients. Arch. Med. Res., 2005, 36(1), 49-53.
[PMID: 15777995]
[24]
Kodama, H.; Kodama, Y.; Shinozawa, S.; Kanemaru, R.; Todaka, K.; Mitsuyama, Y. Effect of temperature on binding characteristics of phenytoin to serum proteins in monotherapy adult patients with epilepsy. Am. J. Ther., 2000, 7(1), 11-15.
[PMID: 11319568]
[25]
Empey, P.E.; Velez de Mendizabal, N.; Bell, M.J.; Bies, R.R.; Anderson, K.B.; Kochanek, P.M.; Adelson, P.D.; Poloyac, S.M. Pediatric TBI Consortium: Hypothermia Investigators. Therapeutic hypothermia decreases phenytoin elimination in children with traumatic brain injury. Crit. Care Med., 2013, 41(10), 2379-2387.
[PMID: 23896831]
[26]
Agbeko, R.S.; Forsyth, R. High level alert! Modeling temperature and phenytoin: appropriate risk management or virtual reality? Crit. Care Med., 2013, 41(10), 2454-2455.
[PMID: 24060782]
[27]
Lee, S.J. Clinical Application of CYP2C19 Pharmacogenetics Toward More Personalized Medicine. Front. Genet., 2013, 3, 318.
[http://dx.doi.org/10.3389/fgene.2012.00318] [PMID: 23378847]
[28]
Chen, L.; Qin, S.; Xie, J.; Tang, J.; Yang, L.; Shen, W.; Zhao, X.; Du, J.; He, G.; Feng, G.; He, L.; Xing, Q. Genetic polymorphism analysis of CYP2C19 in Chinese Han populations from different geographic areas of mainland China. Pharmacogenomics, 2008, 9(6), 691-702.
[http://dx.doi.org/10.2217/14622416.9.6.691] [PMID: 18518848]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy