Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Fluoroquinolone-3-carboxamide Amino Acid Conjugates: Synthesis, Antibacterial Properties And Molecular Modeling Studies

Author(s): Riham M. Bokhtia, Siva S. Panda*, Adel S. Girgis, Hitesh H. Honkanadavar, Tarek S. Ibrahim, Riham F. George, Mona T. Kashef, Walid Fayad, Rajeev Sakhuja, Eatedal H. Abdel-Aal and Amany M. M. Al-Mahmoudy

Volume 17, Issue 1, 2021

Published on: 04 September, 2019

Page: [71 - 84] Pages: 14

DOI: 10.2174/1573406415666190904143852

Price: $65

Abstract

Background: Bacterial infections are considered as one of the major global health threats, so it is very essential to design and develop new antibacterial agents to overcome the drawbacks of existing antibacterial agents.

Methods: The aim of this work is to synthesize a series of new fluoroquinolone-3-carboxamide amino acid conjugates by molecular hybridization. We utilized benzotriazole chemistry to synthesize the desired hybrid conjugates.

Results: All the conjugates were synthesized in good yields, characterized, evaluated for their antibacterial activity. The compounds were screened for their antibacterial activity using methods adapted from the Clinical and Laboratory Standards Institute. Synthesized conjugates were tested for activity against medically relevant pathogens; Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27856) Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 19433).

Conclusion: The observed antibacterial experimental data indicates the selectivity of our synthesized conjugates against E.Coli. The protecting group on amino acids decreases the antibacterial activity. The synthesized conjugates are non-toxic to the normal cell lines. The experimental data were supported by computational studies.

Keywords: Antibacterial agents, antimicrobial, fluoroquinolone, amino acid, conjugates, molecular modeling.

Graphical Abstract
[1]
Goldmann, D.A.; Huskins, W.C. Control of nosocomial antimicrobial-resistant bacteria: a strategic priority for hospitals worldwide. Clin. Infect. Dis., 1997, 24(Suppl. 1), S139-S145.
[http://dx.doi.org/10.1093/clinids/24.Supplement_1.S139] [PMID: 8994794]
[2]
Clark, A.M. Natural products as a resource for new drugs. Pharm. Res., 1996, 13(8), 1133-1144.
[http://dx.doi.org/10.1023/A:1016091631721] [PMID: 8865302]
[3]
Piddock, L.J. Mechanisms of fluoroquinolone resistance: an update 1994-1998. Drugs, 1999, 58(Suppl. 2), 11-18.
[http://dx.doi.org/10.2165/00003495-199958002-00003] [PMID: 10553699]
[4]
Abraham, D.J. Quinolone. Burger’s Medicinal Chemistry Drug Discovery; John Wiley and Sons: Hoboken, New Jersey, 2003, pp. 582-587.
[http://dx.doi.org/10.1002/0471266949]
[5]
Guneysel, O.; Onur, O.; Erdede, M.; Denizbasi, A. Trimethoprim/sulfamethoxazole resistance in urinary tract infections. J. Emerg. Med., 2009, 36(4), 338-341.
[http://dx.doi.org/10.1016/j.jemermed.2007.08.068] [PMID: 18325714]
[6]
Blondeau, J.M. Expanded activity and utility of the new fluoroquinolones: a review. Clin. Ther., 1999, 21(1), 3-40.
[http://dx.doi.org/10.1016/S0149-2918(00)88266-1] [PMID: 10090423]
[7]
Balkhy, H.H.; Memish, Z.A.; Shibl, A.; Elbashier, A.; Osoba, A. In vitro activity of quinolones against S. pneumoniae, H. influenzae and M. catarrhalis in Saudi Arabia. East. Mediterr. Health J., 2005, 11(1-2), 36-44.
[PMID: 16532669]
[8]
Drlica, K.; Zhao, X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev., 1997, 61(3), 377-392.
[PMID: 9293187]
[9]
Aldred, K.J.; Schwanz, H.A.; Li, G.; McPherson, S.A.; Turnbough, C.L., Jr; Kerns, R.J.; Osheroff, N. Overcoming target-mediated quinolone resistance in topoisomerase IV by introducing metal-ion-independent drug-enzyme interactions. ACS Chem. Biol., 2013, 8(12), 2660-2668.
[http://dx.doi.org/10.1021/cb400592n] [PMID: 24047414]
[10]
Clement, J.J.; Burres, N.; Jarvis, K.; Chu, D.T.; Swiniarski, J.; Alder, J. Biological characterization of a novel antitumor quinolone. Cancer Res., 1995, 55(4), 830-835.
[PMID: 7850797]
[11]
Sissi, C.; Palumbo, M. The quinolone family: from antibacterial to anticancer agents. Curr. Med. Chem. Anticancer Agents, 2003, 3(6), 439-450.
[http://dx.doi.org/10.2174/1568011033482279] [PMID: 14529452]
[12]
Elsea, S.H.; Osheroff, N.; Nitiss, J.L. Cytotoxicity of quinolones toward eukaryotic cells. Identification of topoisomerase II as the primary cellular target for the quinolone CP-115,953 in yeast. J. Biol. Chem., 1992, 267(19), 13150-13153.
[PMID: 1320012]
[13]
Elsea, S.H.; McGuirk, P.R.; Gootz, T.D.; Moynihan, M.; Osheroff, N. Drug features that contribute to the activity of quinolones against mammalian topoisomerase II and cultured cells: correlation between enhancement of enzyme-mediated DNA cleavage in vitro and cytotoxic potential. Antimicrob. Agents Chemother., 1993, 37(10), 2179-2186.
[http://dx.doi.org/10.1128/AAC.37.10.2179] [PMID: 8257142]
[14]
Burden, D.A.; Osheroff, N. Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochim. Biophys. Acta, 1998, 1400(1-3), 139-154.
[http://dx.doi.org/10.1016/S0167-4781(98)00132-8] [PMID: 9748545]
[15]
Hoste, K.; De Winne, K.; Schacht, E. Polymeric prodrugs. Int. J. Pharm., 2004, 277(1-2), 119-131.
[http://dx.doi.org/10.1016/j.ijpharm.2003.07.016] [PMID: 15158975]
[16]
Simplício, A.L.; Clancy, J.M.; Gilmer, J.F. Prodrugs for amines. Molecules, 2008, 13(3), 519-547.
[http://dx.doi.org/10.3390/molecules13030519] [PMID: 18463563]
[17]
Panda, S.S.; Bajaj, K.; Meyers, M.J.; Sverdrup, F.M.; Katritzky, A.R. Quinine bis-conjugates with quinolone antibiotics and peptides: synthesis and antimalarial bioassay. Org. Biomol. Chem., 2012, 10(45), 8985-8993.
[http://dx.doi.org/10.1039/c2ob26439k] [PMID: 23070233]
[18]
Panda, S.S.; Ibrahim, M.A.; Küçükbay, H.; Meyers, M.J.; Sverdrup, F.M.; El-Feky, S.A.; Katritzky, A.R. Synthesis and antimalarial bioassay of quinine - peptide conjugates. Chem. Biol. Drug Des., 2013, 82(4), 361-366.
[http://dx.doi.org/10.1111/cbdd.12134] [PMID: 23497252]
[19]
Panda, S.S.; Jain, S.C. New trifluoromethyl quinolone derivatives: synthesis and investigation of antimicrobial properties. Bioorg. Med. Chem. Lett., 2013, 23(11), 3225-3229.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.120] [PMID: 23611733]
[20]
Sultana, N.; Arayne, M.S.; Rizvi, S.B.S.; Haroon, U. Synthesis, characterization and biological evaluations of ciprofloxacin carboxamide analogues. Bull. Korean Chem. Soc., 2011, 32, 483-488.
[http://dx.doi.org/10.5012/bkcs.2011.32.2.483]
[21]
Fedorowicz, J.; Sączewski, J. Modifications of quinolones and fluoroquinolones: hybrid compounds and dual-action molecules. Monatsh. Chem., 2018, 149(7), 1199-1245.
[http://dx.doi.org/10.1007/s00706-018-2215-x] [PMID: 29983452]
[22]
Faidallah, H.M.; Girgis, A.S.; Tiwari, A.D.; Honkanadavar, H.H.; Thomas, S.J.; Samir, A.; Kalmouch, A.; Alamry, K.A.; Khan, K.A.; Ibrahim, T.S.; Al-Mahmoudy, A.M.M.; Asiri, A.M.; Panda, S.S. Synthesis, antibacterial properties and 2D-QSAR studies of quinolone-triazole conjugates. Eur. J. Med. Chem., 2018, 143, 1524-1534.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.042] [PMID: 29126731]
[23]
Faidallah, H.M.; Panda, S.S.; Serrano, J.C.; Girgis, A.S.; Khan, K.A.; Alamry, K.A.; Therathanakorn, T.; Meyers, M.J.; Sverdrup, F.M.; Eickhoff, C.S.; Getchell, S.G.; Katritzky, A.R. Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates. Bioorg. Med. Chem., 2016, 24(16), 3527-3539.
[http://dx.doi.org/10.1016/j.bmc.2016.05.060] [PMID: 27298002]
[24]
Panda, S.S.; Liaqat, S.; Girgis, A.S.; Samir, A.; Hall, C.D.; Katritzky, A.R. Novel antibacterial active quinolone-fluoroquinolone conjugates and 2D-QSAR studies. Bioorg. Med. Chem. Lett., 2015, 25(18), 3816-3821.
[http://dx.doi.org/10.1016/j.bmcl.2015.07.077] [PMID: 26253630]
[25]
Ibrahim, M.A.; Panda, S.S.; Birs, A.S.; Serrano, J.C.; Gonzalez, C.F.; Alamry, K.A.; Katritzky, A.R. Synthesis and antibacterial evaluation of amino acid-antibiotic conjugates. Bioorg. Med. Chem. Lett., 2014, 24(7), 1856-1861.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.065] [PMID: 24641976]
[26]
Panda, S.S.; El-Nachef, C.; Bajaj, K.; Al-Youbi, A.O.; Oliferenko, A.; Katritzky, A.R. Study of chemical ligation via 17-, 18- and 19-membered cyclic transition states. Chem. Biol. Drug Des., 2012, 80(6), 821-827.
[http://dx.doi.org/10.1111/cbdd.12053] [PMID: 22974460]
[27]
Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Ninth Edition. CLSI Document M07-A9.Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, USA; . 2012.
[28]
Panda, S.S.; Detistov, O.S.; Girgis, A.S.; Mohapatra, P.P.; Samir, A.; Katritzky, A.R. Synthesis and molecular modeling of antimicrobial active fluoroquinolone-pyrazine conjugates with amino acid linkers. Bioorg. Med. Chem. Lett., 2016, 26(9), 2198-2205.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.062] [PMID: 27025339]
[29]
Ismail, N.S.M.; George, R.F.; Serya, R.A.T.; Baselious, F.N.; El-Manawaty, M.; Shalaby, E.M.; Girgis, A.S. Rational design, synthesis and 2D-QSAR studies of anti-proliferative tropane-based compounds. RSC Adv, 2016, 6, 101911-101923.
[http://dx.doi.org/10.1039/C6RA21486J]
[30]
Srour, A.M.; Panda, S.S.; Salman, A.M.M.; El-Manawaty, M.A.; George, R.F.; Shalaby, E.M.; Fitch, A.N.; Fawzy, N.G.; Girgis, A.S. Synthesis & molecular modeling studies of bronchodilatory active indole-pyridine conjugates. Future Med. Chem., 2018, 10(15), 1787-1804.
[http://dx.doi.org/10.4155/fmc-2018-0039] [PMID: 30019925]
[31]
Katritzky, A.R.; Petrukhin, R.; Petrukhina, I.; Lomaka, A.; Tatham, D.B.; Karelson, M. CODESSA-Pro software manual, 2005, 64-75.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy