Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Heterogeneous System in Organic Synthesis: A Review

Author(s): Bishwajit Changmai, Gunindra Pathak, Jasha Momo H. Anal and Lalthazuala Rokhum*

Volume 17, Issue 6, 2020

Page: [740 - 753] Pages: 14

DOI: 10.2174/1570193X16666190830101802

Price: $65

Abstract

Due to its inherent advantages such as easy recovery and reuse of the catalysts/ reagents, and environmentally friendly nature, the heterogeneous system has gain popularity in the realm of organic synthesis. In recent years, several chemically or biologically potent molecules are achieved through heterogeneous synthesis strategies. By recalling some of the classical fundamentals of the heterogeneous system in important organic synthesis, this mini-review outlines the recent developments in the applications heterogeneous catalysts and reagents; particularly in the solid phase synthesis, esterification and transesterification reactions to produce biodiesel, and Henry reaction.

Keywords: Biodiesel, esterification, Henry reaction, organic transformation, transesterification, heterogeneous catalyst.

Graphical Abstract
[1]
(a) Julkapli, N.M.; Bagheri, S. Graphene supported heterogeneous catalysts: An overview. Int. J. Hydrogen Energy, 2015, 40, 948-979.
(b) Latham, A.H.; Williams, M.E.; Spectus, C.O.N. Controlling transport and chemical functionality of magnetic nanoparticles. acc. chem. res., 2008, 41(3), 411-420.
[PMID: 18251514]
(c) Shen, Z.L.; Cheong, H.L.; Lai, Y.C.; Loo, W.Y.; Loh, T.P. Application of recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective Diels-Alder reactions. Green Chem., 2012, 14, 2626-2630.
[2]
Wittmann, S.; Schätz, A.; Grass, R.N.; Stark, W.J.; Reiser, O. A recyclable nanoparticle-supported palladium catalyst for the hydroxycarbonylation of aryl halides in water. Angew. Chem. Int. Ed. Engl., 2010, 49(10), 1867-1870.
[PMID: 20175169]
[3]
Clark, J.H.; Macquarrie, D.J. Catalysis of liquid phase organic reactions using chemically modified mesoporous inorganic solids. Chem. Commun. (Camb.), 1998, 853-860.
[4]
Saluzzo, C.; Ter Halle, R.; Touchard, F.; Fache, F.; Schulz, E.; Lemaire, M. Recent progress in asymmetric heterogeneous catalysis: Use of polymer-supported catalysts. J. Organomet. Chem., 2000, 603, 30-39.
[5]
Pal, N.; Bhaumik, A. Mesoporous materials: Versatile supports in heterogeneous catalysis for liquid phase catalytic transformations. RSC Adv., 2015, 5, 24363-24391.
[6]
Ghorbani-Choghamarani, A.; Darvishnejad, Z.; Norouzi, M. Cu(II)-Schiff base complex‐functionalized magnetic Fe3O4 nanoparticles: A heterogeneous catalyst for various oxidation reactions. Appl. Organomet. Chem., 2014, 29, 170-175.
[7]
Mizuno, N.; Misono, M. Heterogeneous catalysis. Chem. Rev., 1998, 98(1), 199-218.
[PMID: 11851503]
[8]
(a) Vijayakumar, B.; Nagendrappa, G.; Jai Prakash, B.S. Acid activated Indian bentonite, an efficient catalyst for esterification of carboxylic acids. Catal. Lett., 2009, 128, 183-189.
(b) Otera, J. Transesterification. Chem. Rev., 1993, 93, 1449-1470.
[9]
Ishihara, K. Dehydrative condensation catalyses. Tetrahedron, 2009, 65, 1085-1109.
[10]
Joseph, T.; Sahoo, S.; Halligudi, S.B. Brönsted acidic ionic liquids: A green, efficient and reusable catalyst system and reaction medium for Fischer esterification. J. Mol. Catal. Chem., 2005, 234, 107-110.
[11]
Yadav, G.D.; Mehta, P.H. Heterogeneous catalysis in esterification reactions: Preparation of phenethyl acetate and cyclohexyl acetate by using a variety of solid acidic catalysts. Ind. Eng. Chem. Res., 1994, 33, 2198-2208.
[12]
Yadav, G.D.; Mujeebur Rahuman, M.S.M. Cation-exchange resincatalysed acylations and esterifications in fine chemical and perfumery industries. Org. Process Res. Dev., 2002, 6, 706-713.
[13]
(a) Mello, V.M.; Pousa, G.P.A.G.; Pereira, M.S.C.; Dias, I.M.; Suarez, P.A.Z. Metal oxides as heterogeneous catalysts for esterification of fatty acids obtained from soybean oil. Fuel Process. Technol., 2011, 92, 53-57.
(b) Dijs, I.J.; Van Ochten, H.L.F.; Van Walree, C.A.; Geus, J.W.; Jenneskens, L.W. Alkyl sulphonic acid surface-functionalised silica as heterogeneous acid catalyst in the solvent-free liquid-phase addition of acetic acid to camphene. J. Mol. Catal. Chem., 2002, 188, 209-224.
(c) Sheldon, R.A.; Downing, R.S. Heterogeneous catalytic transformations for environmentally friendly production. Appl. Catal. A Gen., 1999, 189, 163-183.
[14]
Zhang, W.; Leng, Y.; Zhu, D.; Wu, Y.; Wang, J. Phosphotungstic acid salt of triphenyl (3-sulfopropyl) phosphonium: An efficient and reusable solid catalyst for esterification. Catal. Commun., 2009, 11, 151-154.
[15]
Chen, C.T.; Munot, Y.S. Direct atom-efficient esterification between carboxylic acids and alcohols catalyzed by amphoteric, water-tolerant TiO(acac)2. J. Org. Chem., 2005, 70(21), 8625-8627.
[PMID: 16209625]
[16]
Gruttadauria, M.; Giacalone, F.; Noto, R. Supported proline and proline-derivatives as recyclable organocatalysts. Chem. Soc. Rev., 2008, 37(8), 1666-1688.
[PMID: 18648689]
[17]
Gao, L.; Liu, T.; Tao, X.; Huang, Y. 2, 2, 6, 6-Tetramethylpiperidinium triflate (TMPT): A highly selective and self-separated catalyst for esterification. Tetrahedron Lett., 2016, 57, 4905-4909.
[18]
Yadav, G.D.; Thathaga, M. Esterification of maleic acid with ethanol over cation-exchange resin catalysts. React. Funct. Polym., 2002, 52, 99-110.
[19]
Riisager, A.; Eriksen, K.M.; Wasserscheid, P.; Fehrmann, R. Propene and 1-octene hydroformylation with Silica-supported, ionic Liquid-Phase (SILP) Rh-phosphine catalysts in continuous fixedbed mode. Catal. Lett., 2003, 90, 149-153.
[20]
Karimi, B.; Vafaeezadeh, M. SBA-15-functionalized sulfonic acid confined acidic ionic liquid: A powerful and water-tolerant catalyst for solvent-free esterifications. Chem. Commun. (Camb.), 2012, 48(27), 3327-3329.
[PMID: 22361844]
[21]
Lai, D.; Deng, L.; Guo, Q.X.; Fu, Y. Hydrolysis of biomass by magnetic solid acid. Energy Environ. Sci., 2011, 4, 3552-3557.
[22]
Fang, R.; Luque, R.; Li, Y. Selective aerobic oxidation of biomassderived HMF to 2, 5-diformylfuran using a MOF-derived magnetic hollow Fe-Co nanocatalyst. Green Chem., 2016, 18, 3152-3157.
[23]
Wang, S.; Zhang, Z.; Liu, B.; Li, J. Silica coated magnetic Fe3O4 nanoparticles supported phosphotungstic acid: A novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. Catal. Sci. Technol., 2013, 3, 2104-2112.
[24]
Wang, H.; Covarrubias, J.; Prock, H.; Wu, X.; Wang, D.; Bossmann, S.H. Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. J. Phys. Chem. C, 2015, 119, 26020-26028.
[25]
Tai, Z.; Isaacs, M.A.; Durndell, L.J.; Parlett, C.M.A.; Lee, A.F.; Wilson, K. Magnetically-separable Fe3O4@ SiO2@ SO4-ZrO2 coreshell nanoparticle catalysts for propanoic acid esterification. Mol. Catal., 2018, 449, 137-141.
[26]
Alavi, S.J.; Sadeghian, H.; Seyedi, S.M.; Eshghi, H.; Salimi, A. Magnetically recoverable AlFe/Te nanocomposite as a new catalyst for the facile esterification reaction under neat conditions. Appl. Organomet. Chem., 2018, 32, 1-8.
[27]
Takahashi, K.; Shibagaki, M.; Matsushita, H. The esterification of carboxylic acid with alcohol over hydrous zirconium oxide. Bull. Chem. Soc. Jpn., 1989, 62, 2353-2361.
[28]
Miao, J.; Wan, H.; Guan, G. The esterification of carboxylic acid with alcohol over hydrous zirconium oxide. Catal. Commun., 2011, 12, 353-356.
[29]
Dickerson, T.J.; Reed, N.N.; Janda, K.D. Soluble polymers as scaffolds for recoverable catalysts and reagents. Chem. Rev., 2002, 102(10), 3325-3344.
[PMID: 12371887]
[30]
Orlandi, S.; Mandoli, A.; Pini, D.; Salvadori, P. An insoluble polymer‐bound bis‐oxazoline Copper(II) complex: A highly efficient heterogeneous catalyst for the enantioselective Mukaiyama aldol reaction. Angew. Chem., 2001, 113, 2587-2589.
[31]
Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963, 85, 2149.
[32]
Fridkin, M.; Patchornik, A.; Katchalski, E. Major methods of peptide bond formation: The peptides analysis. J. Am. Chem. Soc., 1965, 88, 3164-3165.
[33]
Fyles, T.M.; Leznoff, C.C. The use of polymer supports in organic synthesis. V. The preparation of monoacetates of symmetrical diols. Can. J. Chem., 1976, 54, 935-942.
[34]
Gravert, D.J.; Janda, K.D. Organic synthesis on soluble polymer supports: Liquid-phase methodologies. Chem. Rev., 1997, 97(2), 489-510.
[PMID: 11848880]
[35]
Sherrington, D.C. Polymer supported reagents, catalysts, and sorbents: Evolution and exploitation-A personalized view. J. Polym. Sci., 2001, 39, 2364-2377.
[36]
Sherrington, D.C. Preparation, structure and morphology of polymer supports. Chem. Commun. (Camb.), 1998, 2275-2286.
[37]
Hodge, P. Synthesis of organic compounds using polymersupported reagents, catalysts, and/or scavengers in Benchtop flow systems. Ind. Eng. Chem. Res., 2005, 44, 8542-8553.
[38]
Amos, R.A.; Emblidge, R.W.; Havens, N. Esterification using a polymer-supported phosphine reagent. J. Org. Chem., 1983, 48, 3598-3600.
[39]
Caputo, R.; Corrado, E.; Ferreri, C.; Palumbo, G. Polymersupported phosphine-halogen complexes-2 A new facile way for esterification of carboxylic acids. Synth. Commun., 1986, 16, 1081-1087.
[40]
Fernhdez-Shchez, C.; Marinas, J.M. Polymer protected reagents, 1. Esterification with polymer bound AlPO4. Angew. Makromol. Chem., 1987, 149, 197-200.
[41]
Fréchet, J.M.J.; Meftahi, M.V. Poly (vinyl pyridine): Simple reactive polymers with multiple applications. Br. Polym. J., 1984, 16, 193-198.
[42]
Balakrishnan, T.; Rajendran, V. Polymer‐supported reagents. II. Kinetics of esterification of acrylic acid with n‐butanol using polymer supported titanium tetrachloride as catalyst. J. Polym. Sci., 1997, 35, 727-733.
[43]
Lei, M.; Ma, C.; Wang, Y,-G. Polymer‐supported 4‐aminoformoyldiphenylammonium triflate (PS‐AFDPAT): An efficient, recoverable and recyclable catalyst for esterification of carboxylic acids with equimolar amounts of alcohols. Chin. J. Chem., 2010, 19, 1309-1311.
[44]
Lizarzaburu, M.E.; Shuttleworth, S.J. Synthesis of aryl ethers from aminoalcohols using polymer-supported triphenylphosphine. Tetrahedron Lett., 2002, 43, 2157-2159.
[45]
Purohit, A.K.; Pardasani, D.; Tak, V.; Kumar, A.; Jain, R.; Dubey, D.K. Mild and efficient esterification of alkylphosphonic acids using polymer-bound triphenylphosphine. Tetrahedron Lett., 2012, 53, 3795-3797.
[46]
White, E.H.; Scherrer, H. The triazene method for the deamination of aliphatic amines. Tetrahedron Lett., 1961, 21, 758-762.
[47]
Sherrington, D.C. Preparation, structure and morphology of polymer supports; Chem Comm, 1998, pp. 2275-2286.
[48]
Erb, B.; Kucma, J.P.; Mourey, S.; Struber, F. Polymer-supported triazenes as smart reagents for the alkylation of carboxylic acids. Chemistry, 2003, 9(11), 2582-2588.
[PMID: 12794900]
[49]
Crosignani, S.; White, P.D.; Linclau, B. Polymer-supported Omethylisourea: A new reagent for the O-methylation of carboxylic acids. Org. Lett., 2002, 4(6), 1035-1037.
[PMID: 11893215]
[50]
Crosignani, S.; White, P.D.; Linclau, B. Polymer-supported Oalkylisoureas: Useful reagents for the O-alkylation of carboxylic acids. J. Org. Chem., 2004, 69(18), 5897-5905.
[PMID: 15373475]
[51]
Kawashima, A.; Matsubara, K.; Honda, K. Development of heterogeneous base catalysts for biodiesel production. Bioresour. Technol., 2008, 99(9), 3439-3443.
[PMID: 17884464]
[52]
Marchetti, J.M.; Errazu, A.F. Comparison of different heterogeneous catalysts and different alcohols for the esterification reaction of oleic acid. Fuel, 2008, 87, 3477-3480.
[53]
Leung, D.Y.C.; Wu, X.; Leung, M.K.H. A review on biodiesel production using catalyzed transesterification. Appl. Energy, 2010, 87, 1083-1095.
[54]
Math, M.C.; Kumar, S.P.; Chetty, S.V. Technologies for biodiesel production from used cooking oil-A review. Energy Sustain. Dev., 2010, 14, 339-345.
[55]
Cantrell, D.G.; Gillie, L.J.; Lee, A.F.; Wilson, K. Structurereactivity correlations in Mg-Al hydrotalcite catalysts for biodiesel synthesis. Appl. Catal. A Gen., 2005, 287, 183-190.
[56]
Semwal, S.; Arora, A.K.; Badoni, R.P.; Tuli, D.K. Biodiesel production using heterogeneous catalysts. Bioresour. Technol., 2011, 102(3), 2151-2161.
[PMID: 21106371]
[57]
Janaun, J.; Ellis, N. Perspectives on biodiesel as a sustainable fuel. Renew. Sustain. Energy Rev., 2010, 14, 1312-1320.
[58]
Zabeti, M.; Wan, D.W.M.A.; Aroua, M.K. Activity of solid catalysts for biodiesel production: A review. Fuel Process. Technol., 2009, 90, 770-777.
[59]
Zhu, H.; Wu, Z.; Chen, Y.; Zhang, P.; Duan, S.; Liu, X.; Mao, Z. Preparation of biodiesel catalyzed by solid super base of calcium oxide and its refining process. Chin. J. Catal., 2006, 27, 391-396.
[60]
Verziu, M.; Coman, S.M.; Richards, R.; Parvulescu, V.I. Transesterification of vegetable oils over CaO catalysts. Catal. Today, 2011, 167, 64-70.
[61]
Alonso, D.M.; Vila, F.; Mariscal, R.; Ojeda, M.; Granados, M.L.; Santamaría-González, J. Relevance of the physicochemical properties of CaO catalysts for the methanolysis of triglycerides to obtain biodiesel. Catal. Today, 2010, 158, 114-120.
[62]
Wang, L.; Yang, J. Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol. Fuel, 2007, 86, 328-333.
[63]
da Silva, R.B.; Lima Neto, A.F.; Soares Dos Santos, L.S.; de Oliveira Lima, J.R.; Chaves, M.H.; Dos Santos, J.R., Jr; de Lima, G.M.; de Moura, E.M.; de Moura, C.V. Catalysts of Cu(II) and Co(II) ions adsorbed in chitosan used in transesterification of soy bean and babassu oils - a new route for biodiesel syntheses. Bioresour. Technol., 2008, 99(15), 6793-6798.
[PMID: 18440802]
[64]
López, D.E.; Suwannakarn, K.; Bruce, D.A.; Goodwin, J.G. Esterification and transesterification on tungstated zirconia: Effect of calcination temperature. J. Catal., 2007, 247, 43-50.
[65]
Xie, W.; Peng, H.; Chen, L. Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. J. Mol. Catal. Chem., 2006, 246, 24-32.
[66]
Fraile, J.M.; García, N.; Mayoral, J.A.; Pires, E.; Roldán, L. The basicity of mixed oxides and the influence of alkaline metals: The case of transesterification reactions. Appl. Catal. A Gen., 2010, 387, 67-74.
[67]
Tantirungrotechai, J.; Chotmongkolsap, P.; Pohmakotr, M. Synthesis, characterization, and activity in transesterification of mesoporous Mg-Al mixed-metal oxides. Micropor. Mesopor. Mater., 2010, 128, 41-47.
[68]
Taufiq-Yap, Y.H.; Lee, H.V.; Hussein, M.Z.; Yunus, R. Calciumbased mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel. Biomass Bioenerg., 2011, 35, 827-834.
[69]
Teo, S.H.; Rashid, U.; Taufiq-Yap, Y.H. Biodiesel production from crude Jatropha curcas oil using calcium based mixed oxide catalysts. Fuel, 2014, 136, 244-252.
[70]
Taufiq-Yap, Y.H.; Teo, S.H.; Rashid, U.; Islam, A.; Hussien, M.Z.; Lee, K.T. Transesterification of Jatropha curcas crude oil to biodiesel on calcium lanthanum mixed oxide catalyst: Effect of stoichiometric composition. Energy Convers. Manage., 2014, 88, 1290-1296.
[71]
Zabeti, M.; Daud, W.M.A.W.; Aroua, M.K. Biodiesel production using alumina-supported calcium oxide: an optimization study. Fuel Process. Technol., 2010, 91, 243-248.
[72]
Xie, W.; Huang, X. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catal. Lett., 2006, 107, 53-59.
[73]
Sunita, G.; Devassy, B.M.; Vinu, A.; Sawant, D.P.; Balasubramanian, V.V.; Halligudi, S.B. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catal. Commun., 2008, 9, 696-702.
[74]
Venkata Mohan, S.; Nikhil, G.N.; Chiranjeevi, P.; Nagendranatha Reddy, C.; Rohit, M.V.; Kumar, A.N.; Sarkar, O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol., 2016, 215, 2-12.
[PMID: 27068056]
[75]
Sheldon, R.A. Green chemistry, catalysis and valorization of waste biomass. J. Mol. Catal. Chem., 2016, 422, 3-12.
[76]
Gallezot, P. Conversion of biomass to selected chemical products. Chem. Soc. Rev., 2012, 41(4), 1538-1558.
[PMID: 21909591]
[77]
Sanjay, B. Heterogeneous catalyst derived from natural resources for biodiesel production: a review. Res. J. Chem. Sci., 2013, 3, 95-101.
[78]
Abdullah, S.H.Y.S.; Hanapi, N.H.M.; Azid, A.; Umar, R.; Juahir, H.; Khatoon, H.; Endut, A. A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renew. Sustain. Energy Rev., 2017, 70, 1040-1051.
[79]
Arumugam, A.; Sankaranarayanan, P. Biodiesel production and parameter optimization: An approach to utilize residual ash from sugarcane leaf, a novel heterogeneous catalyst, from Calophyllum inophyllum oil. Renew. Energy, 2020, 153, 1272-1282.
[80]
Rajkumari, K.; Rokhum, L. A sustainable protocol for production of biodiesel by transesterification of soybean oil using banana trunk ash as a heterogeneous catalyst; Biomass Conv. Bioref, 2020.
[http://dx.doi.org/10.1007/s13399-020-00647-8]
[81]
Sarma, A.K.; Kumar, P.; Aslam, M.; Chouhan, A.P.S. Preparation and characterization of Musa balbisiana colla underground stem nano-material for biodiesel production under elevated conditions. Catal. Lett., 2014, 144, 1344-1353.
[82]
Gohain, M.; Devi, A.; Deka, D. Musa balbisiana Colla peel as highly effective renewable heterogeneous base catalyst for biodiesel production. Ind. Crops Prod., 2017, 109, 8-18.
[83]
Sharma, M.; Khan, A.A.; Puri, S.K.; Tuli, D.K. Wood ash as a potential heterogeneous catalyst for biodiesel synthesis. Biomass Bioenergy, 2012, 41, 94-106.
[84]
Chen, G.Y.; Shan, R.; Shi, J.F.; Yan, B.B. Transesterification of palm oil to biodiesel using rice husk ash-based catalysts. Fuel Process. Technol., 2015, 133, 8-13.
[85]
Vadery, V.; Narayanan, B.N.; Ramakrishnan, R.M.; Cherikkallinmel, S.K.; Sugunan, S.; Narayanan, D.P.; Sasidharan, S. Room temperature production of Jatropha biodiesel over coconut husk ash. Energy, 2014, 70, 588-594.
[86]
Hu, S.; Wang, Y.; Han, H. Utilization of waste freshwater mussel shell as an economic catalyst for biodiesel production. Biomass Bioenergy, 2011, 35, 3627-3635.
[87]
Laca, A.; Laca, A.; Díaz, M. Eggshell waste as catalyst: A review. J. Environ. Manage., 2017, 197, 351-359.
[PMID: 28407598]
[88]
Boey, P.L.; Maniam, G.P.; Hamid, S.A. Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresour. Technol., 2009, 100(24), 6362-6368.
[PMID: 19666218]
[89]
Birla, A.; Singh, B.; Upadhyay, S.N.; Sharma, Y.C. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresour. Technol., 2012, 106, 95-100.
[PMID: 22206916]
[90]
Xie, J.; Zheng, X.; Dong, A.; Xiao, Z.; Zhang, J. Biont shell catalyst for biodiesel production. Green Chem., 2009, 11, 355-364.
[91]
Ofori-Boateng, C.; Lee, K.T. The potential of using cocoa pod husks as green solid base catalysts for the transesterification of soybean oil into biodiesel: Effects of biodiesel on engine performance. Chem. Eng. J., 2013, 220, 395-401.
[92]
Oliveira, D.A.; Benelli, P.; Amante, E.R. A literature review on adding value to solid residues: Egg shells. J. Clean. Prod., 2013, 46, 42-47.
[93]
Boey, P.L.; Maniam, G.P.; Hamid, S.A.; Ali, D.M.H. Utilization of waste cockle shell (Anadara granosa) in biodiesel production from palm olein: Optimization using response surface methodology. Fue., 2011, 90, 2353-2358.
[94]
Suryaputra, W.; Winata, I.; Indraswati, N.; Ismadji, S. Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renew. Energy, 2013, 50, 795-799.
[95]
Boro, J.; Thakur, A.J.; Deka, D. Solid oxide derived from waste shells of Turbonilla striatula as a renewable catalyst for biodiesel production. Fuel Process. Technol., 2011, 92, 2061-2067.
[96]
Laskar, I.B.; Rajkumari, K.; Gupta, R.; Chatterjee, S.; Paul, B.; Rokhum, L. Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Adv., 2018, 8, 20131-20142.
[97]
Laskar, I.B.; Rajkumari, K.; Gupta, R.; Rokhum, L. Acidfunctionalized mesoporous polymer-catalyzed acetalization of glycerol to solketal, a potential fuel additive under solvent-free conditions. Energy Fuels, 2018, 32, 12567-12576.
[98]
Sirisomboonchai, S.; Abuduwayiti, M.; Guan, G.; Samart, C.; Abliz, S.; Hao, X.; Kusakabe, K.; Abudula, A. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Convers. Manage., 2015, 95, 242-247.
[99]
Wei, Z.; Xu, C.; Li, B. Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresour. Technol., 2009, 100(11), 2883-2885.
[PMID: 19201602]
[100]
Sivakumar, P.; Sivakumar, P.; Anbarasu, K.; Mathiarasi, R.; Renganathan, S. An eco-friendly catalyst derived from waste shell of scylla tranquebarica for biodiesel production. Int. J. Green Energy, 2014, 11, 886-897.
[http://dx.doi.org/10.1080/15435075.2013.829774]]
[101]
Roschat, W.; Siritanon, T.; Kaewpuang, T.; Yoosuk, B.; Promarak, V. Economical and green biodiesel production process using river snail shells-derived heterogeneous catalyst and co-solvent method. Bioresour. Technol., 2016, 209, 343-350.
[PMID: 26995112]
[102]
Chakraborty, R.; Bepari, S.; Banerjee, A. Application of calcined waste fish (Labeo rohita) scale as low-cost heterogeneous catalyst for biodiesel synthesis. Bioresour. Technol., 2011, 102(3), 3610-3618.
[PMID: 21094040]
[103]
Jairam, S.; Kolar, P.; Sharma-Shivappa, R.; Osborne, J.A.; Davis, J.P. KI-impregnated oyster shell as a solid catalyst for soybean oil transesterification. Bioresour. Technol., 2012, 104, 329-335.
[PMID: 22078145]
[104]
Luque, R.; Pineda, A.; Colmenares, J.C.; Campelo, J.M.; Romero, A.A.; Serrano-Riz, J.C.; Cabeza, L.F.; Cot-Gores, J. Carbonaceous residues from biomass gasification as catalysts for biodiesel production. J. Nat. Gas Chem., 2012, 21, 246-250.
[105]
Changmai, B.; Putla, S.; Rokhum, L. Biodiesel production using a renewable mesoporous solid catalyst. Ind. Crops Prod., 2020, 145, article id: 111911.
[http://dx.doi.org/10.1016/j.indcrop.2019.111911]
[106]
Deka, D.C.; Basumatary, S. High quality biodiesel from yellow oleander (Thevetia peruviana) seed oil. Biomass Bioenerg., 2011, 35, 1797-1803.
[107]
Chouhan, A.P.S.; Sarma, A.K. Biodiesel production from Jatropha curcas L. oil using Lemna perpusilla Torrey ash as heterogeneous catalyst. Biomass Bioenerg., 2013, 55, 386-389.
[108]
Pathak, G.; Das, D.; Rajkumari, K.; Rokhum, L. Exploiting waste: Towards a sustainable production of biodiesel using Musa acuminata peel ash as a heterogeneous catalyst. Green Chem., 2018, 20, 2365-2373.
[109]
Luzzio, F.A. The Henry reaction: Recent examples. Tetrahedron, 2001, 57, 915-945.
[110]
Rosini, G.; Ballini, R. Functionalized nitroalkanes as useful reagents for alkyl anion synthons. Synthesis, 1988, 11, 833-847.
[111]
Choudary, B.M.; Ranganath, K.V.S.; Pal, U.; Kantam, M.L.; Sreedhar, B. Nanocrystalline MgO for asymmetric Henry and Michael reactions. J. Am. Chem. Soc., 2005, 127(38), 13167-13171.
[PMID: 16173743]
[112]
Ni, B.; He, J. Highly asymmetric Henry reaction catalyzed by chiral copper (II) complexes. Tetrahedron Lett., 2013, 54, 462-465.
[113]
Ballini, R.; Bosica, G.; Forconi, P. Nitroaldol (Henry) reaction catalyzed by amberlyst A-21 as a far superior heterogeneous catalyst. Tetrahedron, 1996, 52, 1677-1684.
[114]
Ballini, R.; Bosica, G.; Livi, D.; Palmieri, A.; Maggi, R.; Sartori, G. Use of heterogeneous catalyst KG-60-NEt2 in Michael and Henry reactions involving nitroalkanes. Tetrahedron Lett., 2003, 44, 2271-2273.
[115]
Das, D.; Pathak, G.; Rokhum, L. Polymer supported DMAP: an easily recyclable organocatalyst for highly atom-economical Henry reaction under solvent-free conditions. RSC Adv., 2016, 6, 104154-104163.
[116]
Karmakar, A.; Hazra, S.; Guedes Da Silva, M.F.C.; Paul, A.; Pombeiro, A.J.L. Nanoporous lanthanide metal-organic frameworks as efficient heterogeneous catalysts for the Henry reaction. CrystEngComm, 2016, 18, 1337-1349.
[117]
Shibasaki, M.; Yoshikawa, N. Lanthanide complexes in multifunctional asymmetric catalysis. Chem. Rev., 2002, 102(6), 2187-2210.
[PMID: 12059266]
[118]
Lee, J.M.; Kim, J.; Shin, Y.; Yeom, C.E.; Lee, J.E.; Hyeon, T.; Moon Kim, B. Heterogeneous asymmetric Henry reaction using a chiral bis(oxazoline)-copper complex immobilized on magnetically separable mesocellular mesoporous silica support. Tetrahedron Asymmetry, 2010, 21, 285-291.
[119]
Rajkumari, K.; Das, D.; Pathak, G.; Rokhum, L. Waste-to-useful: A biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction. New J. Chem., 2019, 43, 2134-2140.
[120]
Pathak, G.; Rajkumari, R.; Rokhum, L. Wealth from waste: M. acuminata peel waste-derived magnetic nanoparticles as a solid catalyst for the Henry reaction. Nanoscale Adv., 2019, 1, 1013-1020.
[121]
Rokhum, L.; Bez, G. Ethyl acrylate conjugated polystyryldiphenylphosphine-An extremely efficient catalyst for Henry reaction under solvent-free conditions (SolFC). Can. J. Chem., 2013, 91(4), 300-306.
[122]
Rokhum, L.; Pathak, G. Synthesis, characterization and catalytic activity of magnetic KI@Fe3O4 nanoparticles for Henry reaction under solvent free conditions Cat. Lett., 2019, 149(10), 2887-98.
[123]
Maggi, R.; Lanari, D.; Oro, C.; Sartori, G.; Vaccaro, L. Heterogeneous bisoxazoline/copper complex: A green catalyst for the enantioselective reaction of nitromethane with substituted benzaldehydes. Eur. J. Org. Chem., 2011, 28, 5551-5554.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy