Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Intranasal Nanoparticulate Systems as Alternative Route of Drug Delivery

Author(s): Areen Alshweiat*, Rita Ambrus and IIdikó Csóka

Volume 26 , Issue 35 , 2019

Page: [6459 - 6492] Pages: 34

DOI: 10.2174/0929867326666190827151741

Price: $65

Abstract

There is always a need for alternative and efficient methods of drug delivery. The nasal cavity can be considered as a non-invasive and efficient route of administration. It has been used for local, systemic, brain targeting, and vaccination delivery. Although many intranasal products are currently available on the market, the majority is used for local delivery with fewer products available for the other targets. As nanotechnology utilization in drug delivery has rapidly spread out, the nasal delivery has become attractive as a promising approach. Nanoparticulate systems facilitate drug transportation across the mucosal barrier, protect the drug from nasal enzyme degradation, enhance the delivery of vaccines to the lymphoid tissue of the nasal cavity with an adjuvant activity, and offer a way for peptide delivery into the brain and the systemic circulation, in addition to their potential for brain tumor treatment. This review article aims at discussing the potential benefit of the intranasal nanoparticulate systems, including nanosuspensions, lipid and surfactant, and polymer-based nanoparticles as regards productive intranasal delivery. The aim of this review is to focus on the topicalities of nanotechnology applications for intranasal delivery of local, systemic, brain, and vaccination purposes during the last decade, referring to the factors affecting delivery, regulatory aspects, and patient expectations. This review further identifies the benefits of applying the Quality by Design approaches (QbD) in product development. According to the reported studies on nanotechnology-based intranasal delivery, potential attention has been focused on brain targeting and vaccine delivery with promising outcomes. Despite the significant research effort in this field, nanoparticle-based products for intranasal delivery are not available. Thus, further efforts are required to promote the introduction of intranasal nanoparticulate products that can meet the requirements of regulatory affairs with high patient acceptance.

Keywords: Intranasal, nanoparticulate system, drug delivery, quality by design, regulatory, patients’ expectations.

[1]
Kipp, J.E. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm., 2004, 284(1-2), 109-122.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.019] [PMID: 15454302]
[2]
Merisko-Liversidge, E.M.; Liversidge, G.G. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol. Pathol., 2008, 36(1), 43-48.
[http://dx.doi.org/10.1177/0192623307310946] [PMID: 18337220]
[3]
Prabhakar, U.; Maeda, H.; Jain, R.K.; Sevick-Muraca, E.M.; Zamboni, W.; Farokhzad, O.C.; Barry, S.T.; Gabizon, A.; Grodzinski, P.; Blakey, D.C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res., 2013, 73(8), 2412-2417.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4561] [PMID: 23423979]
[4]
Kadam, R.S.; Bourne, D.W.A.; Kompella, U.B. Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: contribution of reduced clearance. Drug Metab. Dispos., 2012, 40(7), 1380-1388.
[http://dx.doi.org/10.1124/dmd.112.044925] [PMID: 22498894]
[5]
Kawasaki, E.S.; Player, A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine, 2005, 1(2), 101-109.
[http://dx.doi.org/10.1016/j.nano.2005.03.002] [PMID: 17292064]
[6]
Li, B.; Li, Q.; Mo, J.; Dai, H. Drug-loaded polymeric nanoparticles for cancer stem cell targeting. Front. Pharmacol., 2017, 8, 51.
[http://dx.doi.org/10.3389/fphar.2017.00051] [PMID: 28261093]
[7]
Trivedi, R.; Kompella, U.B. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (Lond.), 2010, 5(3), 485-505.
[http://dx.doi.org/10.2217/nnm.10.10] [PMID: 20394539]
[8]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[9]
Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm., 2008, 69(1), 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2007.08.001] [PMID: 17826969]
[10]
Gaspar, R.S.; Florindo, H.F.; Silva, L.C.; Videira, M.A.; Corvo, M.L.; Martins, B.F.; Silva-Lima, B. Regulatory Aspects of Oncologicals: Nanosystems Main Challenges. In: Nano-Oncologicals New Targeting and Delivery Approaches; Alonso, M.; Garcia-Fuentes, M., Eds.; Springer: Cham. , 2014; pp. 425-452.
[http://dx.doi.org/10.1007/978-3-319-08084-0_15]
[11]
Cai, Z.; Wang, Y.; Zhu, L-J.; Liu, Z-Q. Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Curr. Drug Metab., 2010, 11(2), 197-207.
[http://dx.doi.org/10.2174/138920010791110836] [PMID: 20384585]
[12]
Doane, T.L.; Burda, C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev., 2012, 41(7), 2885-2911.
[http://dx.doi.org/10.1039/c2cs15260f] [PMID: 22286540]
[13]
Kocbek, P.; Baumgartner, S.; Kristl, J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int. J. Pharm., 2006, 312(1-2), 179-186.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.008] [PMID: 16469459]
[14]
Nanotechnology - FDA’s Approach to Regulation of Nanotechnology Products. Available from. www.fda.gov [Accessed: Jul 24,2017]
[15]
European Medicines Agency - Human regulatory - Human medicines: regulatory information. Available from: https://www.ema.europa.eu/en/human-medicines-regulatory-information [Accessed: Jul 24,2017]
[16]
Guidance for Industry Nasal Spray and Inhalation Solution, Suspension and Spray Drug Products - Chemistry; Manufacturing and Controls Documentation. 2002. pp. 301-827. Available at: https://www.fda.gov/media/70857/download [Accessed: July 24, 2017]
[17]
Guidance for Industry Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action. Local Action. 2003, 20857 (April), 37. Available at: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioavailability-and-bioequivalence-studies-nasal-aerosols-and-nasal-sprays-local-action [Accessed: July 24, 2017].
[18]
EMEA/CHMP, 2009, ICH Topic Q 8 (R2) Pharmaceutical Development, Step 5: Note for Guidance on Pharmaceutical Development. Available at: http://Www.Ema.Europa.Eu/Docs/En_GB/Document_library/Scientific_guideline/2010/01/W C500059258.Pdf [Accessed: Jul 24,2017].
[19]
EMA/CHMP, 2014, ICH Guideline Q9 on Quality Risk Management. Available from: http://Www.Ema.Europa.Eu/Docs/En_GB/Document_librar y/Scientific_guideline/2009/09/W C500002873.Pdf. [Accessed: Jul 24, 2017].
[20]
EMA/CHMP, 2014, ICH Guideline Q10 on Pharmaceutical Quality System. Available from: http://Www.Ema.Europa.Eu/Docs/En_GB/Document_librar y/Scientific_guideline/2009/09/W C500002871.Pdf [Accessed: Jul 24,2017].
[21]
Graff, C.L.; Pollack, G.M. Nasal drug administration: potential for targeted central nervous system delivery. J. Pharm. Sci., 2005, 94(6), 1187-1195.
[http://dx.doi.org/10.1002/jps.20318] [PMID: 15858850]
[22]
Kapoor, M.; Cloyd, J.C.; Siegel, R.A. A review of intranasal formulations for the treatment of seizure emergencies. J. Control. Release, 2016, 237, 147-159.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.001] [PMID: 27397490]
[23]
Arora, P.; Sharma, S.; Garg, S. Permeability issues in nasal drug delivery. Drug Discov. Today, 2002, 7(18), 967-975.
[http://dx.doi.org/10.1016/S1359-6446(02)02452-2] [PMID: 12546871]
[24]
Chapman, C.D.; Frey, W.H., II; Craft, S.; Danielyan, L.; Hallschmid, M.; Schiöth, H.B.; Benedict, C. Intranasal treatment of central nervous system dysfunction in humans. Pharm. Res., 2013, 30(10), 2475-2484.
[http://dx.doi.org/10.1007/s11095-012-0915-1] [PMID: 23135822]
[25]
Luskin, M.B.; Price, J.L. The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J. Comp. Neurol., 1983, 216(3), 264-291.
[http://dx.doi.org/10.1002/cne.902160305] [PMID: 6306065]
[26]
Illum, L. Nasal clearance in health and disease. J. Aerosol Med., 2006, 19(1), 92-99.
[http://dx.doi.org/10.1089/jam.2006.19.92] [PMID: 16551220]
[27]
Dahl, R.; Mygind, N. Anatomy, physiology and function of the nasal cavities in health and disease. Adv. Drug Deliv. Rev., 1998, 29(1-2), 3-12.
[http://dx.doi.org/10.1016/S0169-409X(97)00058-6] [PMID: 10837577]
[28]
Charlton, S.; Jones, N.S.; Davis, S.S.; Illum, L. Distribution and clearance of bioadhesive formulations from the olfactory region in man: effect of polymer type and nasal delivery device. Eur. J. Pharm. Sci., 2007, 30(3-4), 295-302.
[http://dx.doi.org/10.1016/j.ejps.2006.11.018] [PMID: 17223022]
[29]
Iwai, N.; Zhou, Z.; Roop, D.R.; Behringer, R.R. Horizontal basal cells are multipotent progenitors in normal and injured adult olfactory epithelium. Stem Cells, 2008, 26(5), 1298-1306.
[http://dx.doi.org/10.1634/stemcells.2007-0891] [PMID: 18308944]
[30]
Lochhead, J.J.; Thorne, R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev., 2012, 64(7), 614-628.
[http://dx.doi.org/10.1016/j.addr.2011.11.002] [PMID: 22119441]
[31]
Vidgren, M.T.; Kublik, H. Nasal delivery systems and their effect on deposition and absorption. Adv. Drug Deliv. Rev., 1998, 29(1-2), 157-177.
[http://dx.doi.org/10.1016/S0169-409X(97)00067-7] [PMID: 10837586]
[32]
Johnson, N.J.; Hanson, L.R.; Frey, W.H. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol. Pharm., 2010, 7(3), 884-893.
[http://dx.doi.org/10.1021/mp100029t] [PMID: 20420446]
[33]
Menzel, C.; Jelkmann, M.; Laffleur, F.; Bernkop-Schnürch, A. Nasal drug delivery: design of a novel mucoadhesive and in situ gelling polymer. Int. J. Pharm., 2017, 517(1-2), 196-202.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.055] [PMID: 27890621]
[34]
Kammona, O.; Kiparissides, C. Recent advances in nanocarrier-based mucosal delivery of biomolecules. J. Control. Release, 2012, 161(3), 781-794.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.040] [PMID: 22659331]
[35]
Badhan, R.K.S.; Kaur, M.; Lungare, S.; Obuobi, S. Improving brain drug targeting through exploitation of the nose-to-brain route: a physiological and pharmacokinetic perspective. Curr. Drug Deliv., 2014, 11(4), 458-471.
[http://dx.doi.org/10.2174/1567201811666140321113555] [PMID: 24655046]
[36]
Costantino, H.R.; Illum, L.; Brandt, G.; Johnson, P.H.; Quay, S.C. Intranasal delivery: physicochemical and therapeutic aspects. Int. J. Pharm., 2007, 337(1-2), 1-24.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.025] [PMID: 17475423]
[37]
Bitter, C.; Suter-Zimmermann, K.; Surber, C. Nasal drug delivery in humans. Curr. Probl. Dermatol., 2011, 40(c), 20-35.
[http://dx.doi.org/10.1159/000321044] [PMID: 21325837]
[38]
Grassin-Delyle, S.; Buenestado, A.; Naline, E.; Faisy, C.; Blouquit-Laye, S.; Couderc, L.J.; Le Guen, M.; Fischler, M.; Devillier, P. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol. Ther., 2012, 134(3), 366-379.
[http://dx.doi.org/10.1016/j.pharmthera.2012.03.003] [PMID: 22465159]
[39]
Singh; A, Singh; A, Madiv, N. Nasal cavity: a promising transmucosal platform for drug delivery and research approaches from nasal to brain targeting. J. Drug Deliv. Ther., 2012, 2(3), 22-33.
[http://dx.doi.org/10.22270/jddt.v2i3.163]
[40]
Gizurarson, S. The effect of cilia and the mucociliary clearance on successful drug delivery. Biol. Pharm. Bull., 2015, 38(4), 497-506.
[http://dx.doi.org/10.1248/bpb.b14-00398] [PMID: 25739664]
[41]
Dale, O.; Hjortkjaer, R.; Kharasch, E.D. Nasal administration of opioids for pain management in adults. Acta Anaesthesiol. Scand., 2002, 46(7), 759-770.
[http://dx.doi.org/10.1034/j.1399-6576.2002.460702.x] [PMID: 12139528]
[42]
Merkus, P.; Romeijn, S.G.; Verhoef, J.C.; Merkus, F.W.; Schouwenburg, P.F. Classification of cilio-inhibiting effects of nasal drugs. Laryngoscope, 2001, 111(4 Pt 1), 595-602.
[http://dx.doi.org/10.1097/00005537-200104000-00008] [PMID: 11359126]
[43]
Gizurarson, S. The relevance of nasal physiology to the design of drug absorption studies. Adv. Drug Deliv. Rev., 1993, 11(3), 329-347.
[http://dx.doi.org/10.1016/0169-409X(93)90015-V]
[44]
Homer, J.J.; Aggarwal, R.; Cordoza, A. Delivery of topical nasal drugs. Am. J. Drug Deliv., 2003, 1(2), 125-131.
[http://dx.doi.org/10.2165/00137696-200301020-00004]
[45]
Ståhl, E.; van Rompay, W.; Wang, E.C.; Thomson, D.M. Cost-effectiveness analysis of budesonide aqueous nasal spray and fluticasone propionate nasal spray in the treatment of perennial allergic rhinitis. Ann. Allergy Asthma Immunol., 2000, 84(4), 397-402.
[http://dx.doi.org/10.1016/S1081-1206(10)62271-5] [PMID: 10795647]
[46]
Li, B.V.; Jin, F.; Lee, S.L.; Bai, T.; Chowdhury, B.; Caramenico, H.T.; Conner, D.P. Bioequivalence for locally acting nasal spray and nasal aerosol products: standard development and generic approval. AAPS J., 2013, 15(3), 875-883.
[http://dx.doi.org/10.1208/s12248-013-9494-2] [PMID: 23686396]
[47]
Trangsrud, A.J.; Whitaker, A.L.; Small, R.E. Intranasal corticosteroids for allergic rhinitis. Pharmacotherapy, 2002, 22(11), 1458-1467.
[http://dx.doi.org/10.1592/phco.22.16.1458.33692] [PMID: 12432972]
[48]
Shah, S.R.; Nayak, A.; Ratner, P.; Roland, P.; Wall, G.M. Effects of olopatadine hydrochloride nasal spray 0. 6% in the treatment of seasonal allergic rhinitis : a phase III, controlled study in adolescents and adults. Clin. Ther., 2009, 31(1), 99-107.
[http://dx.doi.org/10.1016/j.clinthera.2009.01.016] [PMID: 19243710]
[49]
Türker, S.; Onur, E.; Ózer, Y. Nasal route and drug delivery systems. Pharm. World Sci., 2004, 26(3), 137-142.
[http://dx.doi.org/10.1023/B:PHAR.0000026823.82950.ff] [PMID: 15230360]
[50]
Vyas, T.K.; Shahiwala, A.; Marathe, S.; Misra, A. Intranasal drug delivery for brain targeting. Curr. Drug Deliv., 2005, 2(2), 165-175.
[http://dx.doi.org/10.2174/1567201053586047] [PMID: 16305417]
[51]
Meredith, E.; Salameh, T.S.; Banks, W.A. Intranasal delivery of proteins and peptides in the treatment of neurodegenerative diseases. AAPS J., 2015, 17(4), 780-787.
[http://dx.doi.org/10.1208/s12248-015-9719-7]
[52]
Jabbal-Gill, I. Nasal vaccine innovation. J. Drug Target., 2010, 18(10), 771-786.
[http://dx.doi.org/10.3109/1061186X.2010.523790] [PMID: 21047271]
[53]
Thwala, L.N.; Préat, V.; Csaba, N.S. Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. Expert Opin. Drug Deliv., 2017, 14(1), 23-36.
[http://dx.doi.org/10.1080/17425247.2016.1206074] [PMID: 27351299]
[54]
Gawel, M.; Aschoff, J.; May, A.; Charlesworth, B.R. Zolmitriptan 5 mg nasal spray: efficacy and onset of action in the acute treatment of migraine--results from phase 1 of the REALIZE Study. Headache, 2005, 45(1), 7-16.
[http://dx.doi.org/10.1111/j.1526-4610.2005.05004.x] [PMID: 15663607]
[55]
Dodick, D.; Brandes, J.; Elkind, A.; Mathew, N.; Rodichok, L. Speed of onset, efficacy and tolerability of zolmitriptan nasal spray in the acute treatment of migraine: a randomised, double-blind, placebo-controlled study. CNS Drugs, 2005, 19(2), 125-136.
[http://dx.doi.org/10.2165/00023210-200519020-00003] [PMID: 15697326]
[56]
Munjal, S.; Gautam, A.; Offman, E.; Brand-Schieber, E.; Allenby, K.; Fisher, D.M. A randomized trial comparing the pharmacokinetics, safety, and tolerability of DFN-02, an intranasal sumatriptan spray containing a permeation enhancer, with intranasal and subcutaneous sumatriptan in healthy adults. Headache, 2016, 56(9), 1455-1465.
[http://dx.doi.org/10.1111/head.12905] [PMID: 27613076]
[57]
Winner, P.; Rothner, A.D.; Wooten, J.D.; Webster, C.; Ames, M. Sumatriptan nasal spray in adolescent migraineurs: a randomized, double-blind, placebo-controlled, acute study. Headache, 2006, 46(2), 212-222.
[http://dx.doi.org/10.1111/j.1526-4610.2006.00339.x] [PMID: 16492230]
[58]
Abboud, T.K.; Zhu, J.; Longhitano, M.; Minehart, M.; Mantilla, M.; Chu, G.; Kimball, S.; Rodriguez, J.; Terrasi, J.; Gangolli, J. Efficacy and safety of butorphanol nasal spray for the relief of postepisiotomy pain. Curr. Ther. Res. Clin. Exp., 1994, 55(5), 500-509.
[http://dx.doi.org/10.1016/S0011-393X(05)80180-8]
[59]
Nave, R.; Schmitt, H.; Popper, L. Faster absorption and higher systemic bioavailability of intranasal fentanyl spray compared to oral transmucosal fentanyl citrate in healthy subjects. Drug Deliv., 2013, 20(5), 216-223.
[http://dx.doi.org/10.3109/10717544.2012.762435] [PMID: 23650968]
[60]
Nozaki, A.; Ando, T.; Akazawa, S.; Satoh, T.; Sagara, I.; Horie, I.; Imaizumi, M.; Usa, T.; Yanagisawa, R.T.; Kawakami, A. Quality of life in the patients with central diabetes insipidus assessed by nagasaki diabetes insipidus questionnaire. Endocrine, 2016, 51(1), 140-147.
[http://dx.doi.org/10.1007/s12020-015-0637-3] [PMID: 26024973]
[61]
El-Nemr, A.; Bhide, M.; Khalifa, Y.; Al-Mizyen, E.; Gillott, C.; Lower, A.M.; Al-Shawaf, T.; Grudzinskas, J.G. Clinical evaluation of three different gonadotrophin-releasing hormone analogues in an IVF programme: a prospective study. Eur. J. Obstet. Gynecol. Reprod. Biol., 2002, 103(2), 140-145.
[http://dx.doi.org/10.1016/S0301-2115(01)00297-4] [PMID: 12069736]
[62]
Kapoor, M.; Winter, T.; Lis, L.; Georg, G.I.; Siegel, R.A. Rapid delivery of diazepam from supersaturated solutions prepared using prodrug/enzyme mixtures: toward intranasal treatment of seizure emergencies. AAPS J., 2014, 16(3), 577-585.
[http://dx.doi.org/10.1208/s12248-014-9596-5] [PMID: 24700272]
[63]
Corrigan, M.; Wilson, S.S.; Hampton, J. Safety and efficacy of intranasally administered medications in the emergency department and prehospital settings. Am. J. Health Syst. Pharm., 2015, 72(18), 1544-1554.
[http://dx.doi.org/10.2146/ajhp140630] [PMID: 26346210]
[64]
Afridi, S.K.; Giffin, N.J.; Kaube, H.; Goadsby, P.J. A ran-domized controlled trial of intranasal ketamine in migraine with prolonged aura. Neurology, 2013, 80(7), 642-647.
[http://dx.doi.org/10.1212/WNL.0b013e3182824e66] [PMID: 23365053]
[65]
Graudins, A.; Meek, R.; Egerton-Warburton, D.; Oakley, E.; Seith, R. The PICHFORK (Pain in Children Fentanyl or Ketamine) trial: a randomized controlled trial comparing intranasal ketamine and fentanyl for the relief of moderate to severe pain in children with limb injuries. Ann. Emerg. Med., 2015, 65(3), 248-254.e1.
[http://dx.doi.org/10.1016/j.annemergmed.2014.09.024] [PMID: 25447557]
[66]
Pavis, H.; Wilcock, A.; Edgecombe, J.; Carr, D.; Manderson, C.; Church, A.; Fisher, A. Pilot study of nasal morphine-chitosan for the relief of breakthrough pain in patients with cancer. J. Pain Symptom Manage., 2002, 24(6), 598-602.
[http://dx.doi.org/10.1016/S0885-3924(02)00522-5] [PMID: 12551810]
[67]
Steenblik, J.; Goodman, M.; Davis, V.; Gee, C.; Hopkins, C.L.; Stephen, R.; Madsen, T. Intranasal sufentanil for the treatment of acute pain in a winter resort clinic. Am. J. Emerg. Med., 2012, 30(9), 1817-1821.
[http://dx.doi.org/10.1016/j.ajem.2012.02.019] [PMID: 22633713]
[68]
Pardridge, W.M. The blood-brain barrier: bottleneck in brain drug development. NeuroRx, 2005, 2(1), 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[69]
Howard, P.; Twycross, R.; Shuster, J.; Mihalyo, M.; Wilcock, A. Antidepressant drugs. J. Pain Symptom Manage., 2012, 44(5), 763-783.
[http://dx.doi.org/10.1016/j.jpainsymman.2012.09.001] [PMID: 23131704]
[70]
Antinori, A.; Cingolani, A.; Giancola, M.L.; Forbici, F.; De Luca, A.; Perno, C.F. Clinical implications of HIV-1 drug resistance in the neurological compartment. Scand. J. Infect. Dis. Suppl., 2003, 106, 41-44.
[http://dx.doi.org/10.1080/03008870310009650] [PMID: 15000582]
[71]
Zaman, M.; Chandrudu, S.; Toth, I. Strategies for intranasal delivery of vaccines. Drug Deliv. Transl. Res., 2013, 3(1), 100-109.
[http://dx.doi.org/10.1007/s13346-012-0085-z] [PMID: 23316448]
[72]
Fujimura, Y.; Takeda, M.; Ikai, H.; Haruma, K.; Akisada, T.; Harada, T.; Sakai, T.; Ohuchi, M. The role of M cells of human nasopharyngeal lymphoid tissue in influenza virus sampling. Virchows Arch., 2004, 444(1), 36-42.
[http://dx.doi.org/10.1007/s00428-003-0898-8] [PMID: 14551766]
[73]
Davis, S.S. Nasal vaccines. Adv. Drug Deliv. Rev., 2001, 51(1-3), 21-42.
[http://dx.doi.org/10.1016/S0169-409X(01)00162-4] [PMID: 11516777]
[74]
Lawson, L.B.; Norton, E.B.; Clements, J.D. Defending the mucosa: adjuvant and carrier formulations for mucosal immunity. Curr. Opin. Immunol., 2011, 23(3), 414-420.
[http://dx.doi.org/10.1016/j.coi.2011.03.009] [PMID: 21511452]
[75]
Sharma, S.; Mukkur, T.K.S.; Benson, H.A.E.; Chen, Y. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J. Pharm. Sci., 2009, 98(3), 812-843.
[http://dx.doi.org/10.1002/jps.21493] [PMID: 18661544]
[76]
Wang, J.; Liu, Y.; Jiao, F.; Lao, F.; Li, W.; Gu, Y.; Li, Y.; Ge, C.; Zhou, G.; Li, B.; Zhao, Y.; Chai, Z.; Chen, C. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO(2) nanoparticles. Toxicology, 2008, 254(1-2), 82-90.
[http://dx.doi.org/10.1016/j.tox.2008.09.014] [PMID: 18929619]
[77]
Ong, W-Y.; Shalini, S-M.; Costantino, L. Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders. Curr. Med. Chem., 2014, 21(37), 4247-4256.
[http://dx.doi.org/10.2174/0929867321666140716103130] [PMID: 25039773]
[78]
De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[79]
Chen, H.; Khemtong, C.; Yang, X.; Chang, X.; Gao, J. Nanonization strategies for poorly water-soluble drugs. Drug Discov. Today, 2011, 16(7-8), 354-360.
[http://dx.doi.org/10.1016/j.drudis.2010.02.009] [PMID: 20206289]
[80]
Milhem, O.M.; Myles, C.; McKeown, N.B.; Attwood, D.; D’Emanuele, A. Polyamidoamine starburst dendrimers as solubility enhancers. Int. J. Pharm., 2000, 197(1-2), 239-241.
[http://dx.doi.org/10.1016/S0378-5173(99)00463-9] [PMID: 10704811]
[81]
Devarakonda, B.; Hill, R.A.; de Villiers, M.M. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int. J. Pharm., 2004, 284(1-2), 133-140.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.006] [PMID: 15454304]
[82]
Pistolis, G.; Malliaris, A.; Tsiourvas, D.; Paleos, C.M. Poly (propyleneimine) dendrimers as pH-sensitive controlled-release systems. Chemistry, 1999, 5, 1440-1444.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19990503)5:5<1440:AID-CHEM1440>3.0.CO;2-M]
[83]
Shrestha, H.; Bala, R.; Arora, S. Lipid-based drug delivery systems. J. Pharm., 2014, 2014801820
[http://dx.doi.org/10.1155/2014/801820] [PMID: 26556202]
[84]
Cui, F.; Qian, F.; Yin, C. Preparation and characterization of mucoadhesive polymer-coated nanoparticles. Int. J. Pharm., 2006, 316(1-2), 154-161.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.031] [PMID: 16567070]
[85]
Issa, M.M.; Köping-Höggård, M.; Artursson, P. Chitosan and the mucosal delivery of biotechnology drugs. Drug Discov. Today. Technol., 2005, 2(1), 1-6.
[http://dx.doi.org/10.1016/j.ddtec.2005.05.008] [PMID: 24981748]
[86]
Pawar, D.; Goyal, A.K.; Mangal, S.; Mishra, N.; Vaidya, B.; Tiwari, S.; Jain, A.K.; Vyas, S.P. Evaluation of mucoadhesive PLGA microparticles for nasal immunization. AAPS J., 2010, 12(2), 130-137.
[http://dx.doi.org/10.1208/s12248-009-9169-1] [PMID: 20077052]
[87]
Gao, X.; Tao, W.; Lu, W.; Zhang, Q.; Zhang, Y.; Jiang, X.; Fu, S. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials, 2006, 27(18), 3482-3490.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.038] [PMID: 16510178]
[88]
Bernocchi, B.; Carpentier, R.; Lantier, I.; Ducournau, C.; Dimier-Poisson, I.; Betbeder, D. Mechanisms allowing protein delivery in nasal mucosa using NPL nanoparticles. J. Control. Release, 2016, 232, 42-50.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.014] [PMID: 27080572]
[89]
Kato, Y.; Hosokawa, T.; Hayakawa, E.; Ito, K. Influence of liposomes on tryptic digestion of insulin. Biol. Pharm. Bull., 1993, 16(5), 457-461.
[http://dx.doi.org/10.1248/bpb.16.457] [PMID: 8364491]
[90]
Shah, L.; Yadav, S.; Amiji, M. Nanotechnology for CNS delivery of bio-therapeutic agents. Drug Deliv. Transl. Res., 2013, 3(4), 336-351.
[http://dx.doi.org/10.1007/s13346-013-0133-3] [PMID: 23894728]
[91]
Chavanpatil, M.D.; Khdair, A.; Gerard, B.; Bachmeier, C.; Miller, D.W.; Shekhar, M.P.V.; Panyam, J. Surfactant-polymer nanoparticles overcome P-glycoprotein-mediated drug efflux. Mol. Pharm., 2007, 4(5), 730-738.
[http://dx.doi.org/10.1021/mp070024d] [PMID: 17705442]
[92]
Rahisuddin; Sharma, P. K.; Garg, G.; Salim, M. Review on nasal drug delivery system with recent advancemnt. Int. J. Pharm. Pharm. Sci., 2011, 3(Suppl. 2), 6-11.
[93]
Anantachaisilp, S.; Smith, S.M.; Treetong, A.; Pratontep, S.; Puttipipatkhachorn, S.; Ruktanonchai, U.R. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution. Nanotechnology, 2010, 21(12)125102
[http://dx.doi.org/10.1088/0957-4484/21/12/125102] [PMID: 20182010]
[94]
Shin, S.W.; Song, I.H.; Um, S.H. Role of physicochemical properties in nanoparticle toxicity. Nanomaterials (Basel), 2015, 5(3), 1351-1365.
[http://dx.doi.org/10.3390/nano5031351] [PMID: 28347068]
[95]
Lockman, P.R.; Koziara, J.M.; Mumper, R.J.; Allen, D.D. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J. Drug Target., 2004, 12(9-10), 635-641.
[http://dx.doi.org/10.1080/10611860400015936] [PMID: 15621689]
[96]
Alpar, H.O.; Somavarapu, S.; Atuah, K.N.; Bramwell, V.W. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv. Drug Deliv. Rev., 2005, 57(3), 411-430.
[http://dx.doi.org/10.1016/j.addr.2004.09.004] [PMID: 15560949]
[97]
Sonvico, F.; Clementino, A.; Buttini, F.; Colombo, G.; Pescina, S.; Stanisçuaski Guterres, S.; Raffin Pohlmann, A.; Nicoli, S. Surface-modified nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics, 2018, 10(1), 1-34.
[http://dx.doi.org/10.3390/pharmaceutics10010034] [PMID: 29543755]
[98]
Brooking, J.; Davis, S.S.; Illum, L. Transport of nanoparticles across the rat nasal mucosa. J. Drug Target., 2001, 9(4), 267-279.
[http://dx.doi.org/10.3109/10611860108997935] [PMID: 11697030]
[99]
Kawaguchi, H.; Koiwai, N.; Ohtsuka, Y.; Miyamoto, M.; Sasakawa, S. Phagocytosis of latex particles by leucocytes. I. Dependence of phagocytosis on the size and surface potential of particles. Biomaterials, 1986, 7(1), 61-66.
[http://dx.doi.org/10.1016/0142-9612(86)90091-8] [PMID: 3955160]
[100]
Gartziandia, O.; Egusquiaguirre, S.P.; Bianco, J.; Pedraz, J.L.; Igartua, M.; Hernandez, R.M.; Préat, V.; Beloqui, A. Nanoparticle transport across in vitro olfactory cell monolayers. Int. J. Pharm., 2016, 499(1-2), 81-89.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.046] [PMID: 26721725]
[101]
Mistry, A.; Stolnik, S.; Illum, L. Nose-to-brain delivery: investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium. Mol. Pharm., 2015, 12(8), 2755-2766.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00088] [PMID: 25997083]
[102]
Ahmad, E.; Feng, Y.; Qi, J.; Fan, W.; Ma, Y.; He, H.; Xia, F.; Dong, X.; Zhao, W.; Lu, Y.; Wu, W. Evidence of nose-to-brain delivery of nanoemulsions: cargoes but not vehicles. Nanoscale, 2017, 9(3), 1174-1183.
[http://dx.doi.org/10.1039/C6NR07581A] [PMID: 28009915]
[103]
Gratton, S.E.A.; Ropp, P.A.; Pohlhaus, P.D.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11613-11618.
[http://dx.doi.org/10.1073/pnas.0801763105] [PMID: 18697944]
[104]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[105]
Shi, W.; Wang, J.; Fan, X.; Gao, H. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: implications for uptake of nanoparticles in animal cells. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2008, 78(6 Pt 1)061914
[http://dx.doi.org/10.1103/PhysRevE.78.061914] [PMID: 19256875]
[106]
Qiu, Y.; Liu, Y.; Wang, L.; Xu, L.; Bai, R.; Ji, Y.; Wu, X.; Zhao, Y.; Li, Y.; Chen, C. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials, 2010, 31(30), 7606-7619.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.051] [PMID: 20656344]
[107]
Chithrani, B.D.; Chan, W.C.W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett., 2007, 7(6), 1542-1550.
[http://dx.doi.org/10.1021/nl070363y] [PMID: 17465586]
[108]
Oh, N.; Park, J.H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomedicine, 2014, 9(Suppl. 1), 51-63.
[PMID: 24872703]
[109]
Gan, Q.; Wang, T. Chitosan nanoparticle as protein delivery carrier-systematic examination of fabrication conditions for efficient loading and release. Colloids Surf. B Biointerfaces, 2007, 59(1), 24-34.
[http://dx.doi.org/10.1016/j.colsurfb.2007.04.009] [PMID: 17555948]
[110]
Lai, S.K.; Wang, Y.Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev., 2009, 61(2), 158-171.
[http://dx.doi.org/10.1016/j.addr.2008.11.002] [PMID: 19133304]
[111]
Liu, M.; Zhang, J.; Shan, W.; Huang, Y. Developments of mucus penetrating nanoparticles. Asian J. Pharm. Sci., 2014, 10(4), 275-282.
[http://dx.doi.org/10.1016/j.ajps.2014.12.007]
[112]
Vila, A.; Sánchez, A.; Evora, C.; Soriano, I.; Vila Jato, J.L.; Alonso, M.J. PEG-PLA nanoparticles as carriers for nasal vaccine delivery. J. Aerosol Med., 2004, 17(2), 174-185.
[http://dx.doi.org/10.1089/0894268041457183] [PMID: 15294069]
[113]
Narayan, R.; Singh, M.; Ranjan, O.; Nayak, Y.; Garg, S.; Shavi, G.V.; Nayak, U.Y. Development of risperidone liposomes for brain targeting through intranasal route. Life Sci., 2016, 163, 38-45.
[http://dx.doi.org/10.1016/j.lfs.2016.08.033] [PMID: 27593571]
[114]
Müller, R.H.; Gohla, S.; Keck, C.M. State of the art of nanocrystals-special features, production, nanotoxicology aspects and intracellular delivery. Eur. J. Pharm. Biopharm., 2011, 78(1), 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.007] [PMID: 21266197]
[115]
Kürti, L.; Gáspár, R.; Márki, Á.; Kápolna, E.; Bocsik, A.; Veszelka, S.; Bartos, C.; Ambrus, R.; Vastag, M.; Deli, M.A.; Szabó-Révész, P. In vitro and in vivo characterization of meloxicam nanoparticles designed for nasal administration. Eur. J. Pharm. Sci., 2013, 50(1), 86-92.
[http://dx.doi.org/10.1016/j.ejps.2013.03.012] [PMID: 23542493]
[116]
Hao, J.; Zhao, J.; Zhang, S.; Tong, T.; Zhuang, Q.; Jin, K.; Chen, W.; Tang, H. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surf. B Biointerfaces, 2016, 147, 376-386.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.011] [PMID: 27566226]
[117]
Saindane, N.S.; Pagar, K.P.; Vavia, P.R. Nanosuspension based in situ gelling nasal spray of carvedilol: development, in vitro and in vivo characterization. AAPS PharmSciTech, 2013, 14(1), 189-199.
[http://dx.doi.org/10.1208/s12249-012-9896-y] [PMID: 23255198]
[118]
Bartos, C.; Ambrus, R.; Sipos, P.; Budai-Szűcs, M.; Csányi, E.; Gáspár, R.; Márki, Á.; Seres, A.B.; Sztojkov-Ivanov, A.; Horváth, T.; Szabó-Révész, P. Study of sodium hyaluronate-based intranasal formulations containing micro- or nanosized meloxicam particles. Int. J. Pharm., 2015, 491(1-2), 198-207.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.046] [PMID: 26142244]
[119]
Anil, P.; Pravin, C.; Prashant, G.; Amol, P.; Prakash, B. Study the effect of surfactant concentration and ultrasonication time on aqueous solubility, particle size and in-vitro drug diffusion of ezogabine nanosuspension by 3 2 factorial designs. Br. Biomed. Bull., 2016, 4(1), 15-26.
[120]
Dilpreet, S. Lipid based drug delivery system: a review. Int. J. Life Sci. Rev., 2015, 1(5), 169-174.
[121]
Koroleva, M.Y.; Nagovitsina, T.Y.; Bidanov, D.A.; Gorbachevski, O.S.; Yurtov, E.V. Nano- and microcapsules as drug-delivery systems. Resour. Technol., 2016, 2(4), 233-239.
[122]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[123]
Lian, T.; Ho, R.J.Y. Trends and developments in liposome drug delivery systems. J. Pharm. Sci., 2001, 90(6), 667-680.
[http://dx.doi.org/10.1002/jps.1023] [PMID: 11357170]
[124]
Kimelberg, H.K.; Mayhew, E.G.; Gregoriadis, G. Properties and biological effects of liposomes and their uses in pharmacology and toxicology. Crit. Rev. Toxicol., 1978, 6(1), 25-79.
[http://dx.doi.org/10.3109/10408447809029333]
[125]
Law, S.L.; Shih, C.L. Characterization of calcitonin-containing liposome formulations for intranasal delivery. J. Microencapsul., 2001, 18(2), 211-221. [ST–Characterization of calcitonin–conta
[http://dx.doi.org/10.1080/02652040010000334] [PMID: 11253938]
[126]
Law, S.L.; Huang, K.J.; Chou, V.H.; Cherng, J.Y. Enhancement of nasal absorption of calcitonin loaded in liposomes. J. Liposome Res., 2001, 11(2-3), 165-174.
[http://dx.doi.org/10.1081/LPR-100108460] [PMID: 19530931]
[127]
Chen, M.; Li, X.R.; Zhou, Y.X.; Yang, K.W.; Chen, X.W.; Deng, Q.; Liu, Y.; Ren, L.J. Improved absorption of salmon calcitonin by ultraflexible liposomes through intranasal delivery. Peptides, 2009, 30(7), 1288-1295.
[http://dx.doi.org/10.1016/j.peptides.2009.03.018] [PMID: 19540427]
[128]
Maitani, Y.; Asano, S.; Takahashi, S.; Nakagaki, M.; Nagai, T. Permeability of insulin entrapped in liposome through the nasal mucosa of rabbits. Chem. Pharm. Bull. (Tokyo), 1992, 40(6), 1569-1572.
[http://dx.doi.org/10.1248/cpb.40.1569] [PMID: 1394679]
[129]
Muramatsu, K.; Maitani, Y.; Takayama, K.; Nagai, T. The relationship between the rigidity of the liposomal membrane and the absorption of insulin after nasal administration of liposomes modified with an enhancer containing insulin in rabbits. Drug Dev. Ind. Pharm., 1999, 25(10), 1099-1105.
[http://dx.doi.org/10.1081/DDC-100102275] [PMID: 10529890]
[130]
Jain, A.K.; Chalasani, K.B.; Khar, R.K.; Ahmed, F.J.; Diwan, P.V. Muco-adhesive multivesicular liposomes as an effective carrier for transmucosal insulin delivery. J. Drug Target., 2007, 15(6), 417-427.
[http://dx.doi.org/10.1080/10611860701453653] [PMID: 17613660]
[131]
Fortuna, A.; Alves, G.; Serralheiro, A.; Sousa, J.; Falcão, A. Intranasal delivery of systemic-acting drugs: small-molecules and biomacromolecules. Eur. J. Pharm. Biopharm., 2014, 88(1), 8-27.
[http://dx.doi.org/10.1016/j.ejpb.2014.03.004] [PMID: 24681294]
[132]
Migliore, M.M.; Vyas, T.K.; Campbell, R.B.; Amiji, M.M.; Waszczak, B.L. Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. J. Pharm. Sci., 2010, 99(4), 1745-1761.
[http://dx.doi.org/10.1002/jps.21939]
[133]
Patel, G.B.; Zhou, H.; Ponce, A.; Chen, W. Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines. Vaccine, 2007, 25(51), 8622-8636.
[http://dx.doi.org/10.1016/j.vaccine.2007.09.042] [PMID: 17959279]
[134]
de Haan, A. De; Geerligs, H. J.; Huchshorn, J. P.; Scharrenburg van, G.; Palache, A.; Wilsch, J. Mucosal immunoadjuvant activity of liposomes: induction of systemic igg and secretory IGA responses in mice by intranasal immunization with an influenza subunit vaccine and coadministered liposomes. Vaccine, 1995, 13(2), 155-162.
[http://dx.doi.org/10.1016/0264-410X(95)93129-W] [PMID: 7625109]
[135]
Wong, J.P.; Cherwonogrodzky, J.W.; Di Ninno, V.L.; Stadnyk, L.L.; Knodel, M.H. Liposome potentiation of humoral immune response to lipopolysaccharide and o-polysaccharide antigens of Brucella Abortus. Immunology, 1992, 77(1), 123-128.
[PMID: 1398758]
[136]
Wang, H.W.; Jiang, P.L.; Lin, S.F.; Lin, H.J.; Ou, K.L.; Deng, W.P.; Lee, L.W.; Huang, Y.Y.; Liang, P.H.; Liu, D.Z. Application of galactose-modified liposomes as a potent antigen presenting cell targeted carrier for intranasal immunization. Acta Biomater., 2013, 9(3), 5681-5688.
[http://dx.doi.org/10.1016/j.actbio.2012.11.007] [PMID: 23159567]
[137]
Khatri, K.; Goyal, A.K.; Gupta, P.N.; Mishra, N.; Mehta, A.; Vyas, S.P. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine, 2008, 26(18), 2225-2233.
[http://dx.doi.org/10.1016/j.vaccine.2008.02.058] [PMID: 18396362]
[138]
Lu, Y.; Kawakami, S.; Yamashita, F.; Hashida, M. Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials, 2007, 28(21), 3255-3262.
[http://dx.doi.org/10.1016/j.biomaterials.2007.03.028] [PMID: 17449093]
[139]
Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[140]
Chavan, S.S.; Ingle, S.G.; Vavia, P.R. Preparation and characterization of solid lipid nanoparticle-based nasal spray of budesonide. Drug Deliv. Transl. Res., 2013, 3(5), 402-408.
[http://dx.doi.org/10.1007/s13346-012-0105-z] [PMID: 25788348]
[141]
Singh, A.P.; Saraf, S.K.; Saraf, S.A. SLN approach for nose-to-brain delivery of alprazolam. Drug Deliv. Transl. Res., 2012, 2(6), 498-507.
[http://dx.doi.org/10.1007/s13346-012-0110-2] [PMID: 25787328]
[142]
Fatouh, A.M.; Elshafeey, A.H.; Abdelbary, A. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics. Drug Des. Devel. Ther., 2017, 11, 1815-1825.
[http://dx.doi.org/10.2147/DDDT.S102500] [PMID: 28684900]
[143]
Khan, A.; Imam, S.S.; Aqil, M.; Ahad, A.; Sultana, Y.; Ali, A.; Khan, K. Brain Targeting of Temozolomide via the Intranasal Route Using Lipid-Based Nanoparticles: Brain Pharmacokinetic and Scintigraphic Analyses. Mol. Pharm., 2016, 13(11), 3773-3782.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00586] [PMID: 27661966]
[144]
Hommoss, G.; Pyo, S.M.; Müller, R.H. Mucoadhesive tetrahydrocannabinol-loaded NLC - Formulation optimization and long-term physicochemical stability. Eur. J. Pharm. Biopharm., 2017, 117, 408-417.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.009] [PMID: 28433786]
[145]
Bagheri, A.; Chu, B.S.; Yaakob, H. Niosomal drug delivery systems: formulation, preparation and applications. World Appl. Sci. J., 2014, 32(8), 1671-1685.
[146]
Abdelkader, H.; Alani, A.W.G.; Alany, R.G. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv., 2013, 21(2), 87-100.
[http://dx.doi.org/10.3109/10717544.2013.838077] [PMID: 24156390]
[147]
Ravouru, N.; Kondreddy, P.; Korakanchi, D.; Haritha, M. Formulation and evaluation of niosomal nasal drug delivery system of folic acid for brain targeting. Curr. Drug Discov. Technol., 2013, 10(4), 270-282.
[http://dx.doi.org/10.2174/15701638113109990031] [PMID: 23863098]
[148]
Ammar, H.O.; Haider, M.; Ibrahim, M.; El Hoffy, N.M. In vitro and in vivo investigation for optimization of niosomal ability for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug Deliv., 2017, 24(1), 414-421.
[http://dx.doi.org/10.1080/10717544.2016.1259371] [PMID: 28165822]
[149]
Cortesi, R.; Ravani, L.; Rinaldi, F.; Marconi, P.; Drechsler, M.; Manservigi, M.; Argnani, R.; Menegatti, E.; Esposito, E.; Manservigi, R. Intranasal immunization in mice with non-ionic surfactants vesicles containing HSV immunogens: a preliminary study as possible vaccine against genital herpes. Int. J. Pharm., 2013, 440(2), 229-237.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.042] [PMID: 22743007]
[150]
Mason, T.G.; Wilking, J.N.; Meleson, K.; Chang, C.B.; Graves, S.M. Nanoemulsions: formation, structure, and physical properties. J. Phys. Condens. Matter, 2006, 18(41), R635-R666.
[http://dx.doi.org/10.1088/0953-8984/18/41/R01]
[151]
Jaiswal, M.; Kumar, A.; Sharma, S. Nanoemulsions loaded Carbopol® 934 based gel for intranasal delivery of neuroprotective Centella Asiatica Extract: in-vitro and ex-vivo permeation study. J. Pharm. Investig., 2016, 46(1), 79-89.
[http://dx.doi.org/10.1007/s40005-016-0228-1]
[152]
Comfort, C.; Garrastazu, G.; Pozzoli, M.; Sonvico, F. Opportunities and challenges for the nasal administration of nanoemulsions. Curr. Top. Med. Chem., 2015, 15(4), 356-368.
[http://dx.doi.org/10.2174/1568026615666150108144655] [PMID: 25579345]
[153]
Hosny, K.M.; Banjar, Z.M. The formulation of a nasal nanoemulsion zaleplon in situ gel for the treatment of insomnia. Expert Opin. Drug Deliv., 2013, 10(8), 1033-1041.
[http://dx.doi.org/10.1517/17425247.2013.812069] [PMID: 23795561]
[154]
Myc, A.; Kukowska-Latallo, J.F.; Bielinska, A.U.; Cao, P.; Myc, P.P.; Janczak, K.; Sturm, T.R.; Grabinski, M.S.; Landers, J.J.; Young, K.S.; Chang, J.; Hamouda, T.; Olszewski, M.A.; Baker, J.R., Jr Development of immune response that protects mice from viral pneumonitis after a single intranasal immunization with influenza A virus and nanoemulsion. Vaccine, 2003, 21(25-26), 3801-3814.
[http://dx.doi.org/10.1016/S0264-410X(03)00381-5]] [PMID: 12922114]
[155]
Lindell, D.M.; Morris, S.B.; White, M.P.; Kallal, L.E.; Lundy, P.K.; Hamouda, T.; Baker, J.R., Jr; Lukacs, N.W. A novel inactivated intranasal respiratory syncytial virus vaccine promotes viral clearance without Th2 associated vaccine-enhanced disease. PLoS One, 2011, 6(7)e21823
[http://dx.doi.org/10.1371/journal.pone.0021823] [PMID: 21789184]
[156]
Bielinska, A.U.; Janczak, K.W.; Landers, J.J.; Markovitz, D.M.; Montefiori, D.C.; Baker, J.R. Jr Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces Th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS Res. Hum. Retroviruses, 2008, 24(2), 271-281.
[http://dx.doi.org/10.1089/aid.2007.0148] [PMID: 18260780]
[157]
Hamouda, T.; Chepurnov, A.; Mank, N.; Knowlton, J.; Chepurnova, T.; Myc, A.; Sutcliffe, J.; Baker, J.R. Efficacy, immunogenicity and stability of a novel intranasal nanoemulsion-adjuvanted influenza vaccine in a murine model. Hum. Vaccin., 2010, 6(7), 585-594.
[http://dx.doi.org/10.4161/hv.6.7.11818] [PMID: 20421727]
[158]
Azeem, A.; Rizwan, M.; Ahmad, F.J.; Iqbal, Z.; Khar, R.K.; Aqil, M.; Talegaonkar, S. Nanoemulsion components screening and selection: a technical note. AAPS PharmSciTech, 2009, 10(1), 69-76.
[http://dx.doi.org/10.1208/s12249-008-9178-x] [PMID: 19148761]
[159]
Sun, H.; Wei, C.; Liu, B.; Jing, H.; Feng, Q.; Tong, Y.; Yang, Y.; Yang, L.; Zuo, Q.; Zhang, Y.; Zou, Q.; Zeng, H. Induction of systemic and mucosal immunity against methicillin-resistant Staphylococcus aureus infection by a novel nanoemulsion adjuvant vaccine. Int. J. Nanomedicine, 2015, 10, 7275-7290.
[http://dx.doi.org/10.2147/IJN.S91529] [PMID: 26664118]
[160]
Quintanar-Guerrero, D.; Allémann, E.; Fessi, H.; Doelker, E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm., 1998, 24(12), 1113-1128.
[http://dx.doi.org/10.3109/03639049809108571] [PMID: 9876569]
[161]
Prego, C.; Torres, D.; Alonso, M.J. Chitosan nanocapsules: a new carrier for nasal peptide delivery. J. Drug Deliv. Sci. Technol., 2006, 16(5), 331-337.
[http://dx.doi.org/10.1016/S1773-2247(06)50061-9]
[162]
Sallam, M.A.; Helal, H.M.; Mortada, S.M. Rationally designed nanocarriers for intranasaltherapy of allergic rhinitis: influence of carrier type on in vivo nasal deposition. Int. J. Nanomedicine, 2016, 11, 2345-2357.
[http://dx.doi.org/10.2147/IJN.S98547] [PMID: 27307734]
[163]
Clementino, A.; Batger, M.; Garrastazu, G.; Pozzoli, M.; Del Favero, E.; Rondelli, V.; Gutfilen, B.; Barboza, T.; Sukkar, M.B.; Souza, S.A.L.; Cantù, L.; Sonvico, F. The nasal delivery of nanoencapsulated statins- an approach for brain delivery. Int. J. Nanomedicine, 2016, 11, 6575-6590.
[http://dx.doi.org/10.2147/IJN.S119033] [PMID: 27994459]
[164]
Vicente, S.; Peleteiro, M.; Díaz-Freitas, B.; Sanchez, A.; González-Fernández, Á.; Alonso, M.J. Co-delivery of viral proteins and a TLR7 agonist from polysaccharide nanocapsules: a needle-free vaccination strategy. J. Control. Release, 2013, 172(3), 773-781.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.012] [PMID: 24076340]
[165]
Kumar, M.; Mirsa, A.; Mishra, A.K.; Mishra, P.; Pathak, K. Intranasal nanoemulsion based brain targeting delivery system of risperidone. Int. J. Pharm., 2008, 358(1-2), 285-291.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.029] [PMID: 18455333]
[166]
Kumar, M.; Misra, A.; Mishra, A.K.; Mishra, P.; Pathak, K. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting. J. Drug Target., 2008, 16(10), 806-814.
[http://dx.doi.org/10.1080/10611860802476504] [PMID: 18988064]
[167]
Colombo, M.; Figueiró, F.; de Fraga Dias, A.; Teixeira, H.F.; Battastini, A.M.O.; Koester, L.S. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. Int. J. Pharm., 2018, 543(1-2), 214-223.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.055] [PMID: 29605695]
[168]
Abdou, E.M.; Kandil, S.M.; Miniawy, H.M.F.E. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int. J. Pharm., 2017, 529(1-2), 667-677.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.030] [PMID: 28729175]
[169]
Nasr, M. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery. Drug Deliv., 2016, 23(4), 1444-1452.
[http://dx.doi.org/10.3109/10717544.2015.1092619] [PMID: 26401600]
[170]
Alsarra, I.A.; Hamed, A.Y.; Alanazi, F.K. Acyclovir liposomes for intranasal systemic delivery: development and pharmacokinetics evaluation. Drug Deliv., 2008, 15(5), 313-321.
[http://dx.doi.org/10.1080/10717540802035251] [PMID: 18763162]
[171]
Qiang, F.; Shin, H.J.; Lee, B.J.; Han, H.K. Enhanced systemic exposure of fexofenadine via the intranasal administration of chitosan-coated liposome. Int. J. Pharm., 2012, 430(1-2), 161-166.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.007] [PMID: 22525082]
[172]
Nageeb El-Helaly, S.; Abd Elbary, A.; Kassem, M.A.; El-Nabarawi, M.A. Electrosteric stealth rivastigmine loaded liposomes for brain targeting: preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies. Drug Deliv., 2017, 24(1), 692-700.
[http://dx.doi.org/10.1080/10717544.2017.1309476] [PMID: 28415883]
[173]
Al Asmari, A.K.; Ullah, Z.; Tariq, M.; Fatani, A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des. Devel. Ther., 2016, 10, 205-215.
[PMID: 26834457]
[174]
Chandra Bhatt, P.; Srivastava, P.; Pandey, P.; Khan, W.; Panda, B.P. Nose to brain delivery of astaxanthin-loaded solid lipid nanoparticles: fabrication, radio labeling, optimization and biological studies. RSC Advances, 2016, 6(12), 10001-10010.
[http://dx.doi.org/10.1039/C5RA19113K]
[175]
Li, J.C.; Zhang, W.J.; Zhu, J.X.; Zhu, N.; Zhang, H.M.; Wang, X.; Zhang, J.; Wang, Q.Q. Preparation and brain delivery of nasal solid lipid nanoparticles of quetiapine fumarate in situ gel in rat model of schizophrenia. Int. J. Clin. Exp. Med., 2015, 8(10), 17590-17600.
[PMID: 26770349]
[176]
Zheng, X.; Shao, X.; Zhang, C.; Tan, Y.; Liu, Q.; Wan, X.; Zhang, Q.; Xu, S.; Jiang, X. Intranasal h102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s Disease. Pharm. Res., 2015, 32(12), 3837-3849.
[http://dx.doi.org/10.1007/s11095-015-1744-9] [PMID: 26113236]
[177]
Li, W.; Zhou, Y.; Zhao, N.; Hao, B.; Wang, X.; Kong, P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ. Toxicol. Pharmacol., 2012, 34(2), 272-279.
[http://dx.doi.org/10.1016/j.etap.2012.04.012] [PMID: 22613079]
[178]
Bender, T.S.; Migliore, M.M.; Campbell, R.B.; John Gatley, S.; Waszczak, B.L. Intranasal administration of glial-derived neurotrophic factor (GDNF) rapidly and significantly increases whole-brain GDNF level in rats. Neuroscience, 2015, 303, 569-576.
[http://dx.doi.org/10.1016/j.neuroscience.2015.07.016] [PMID: 26166725]
[179]
Migliore, M.M.; Ortiz, R.; Dye, S.; Campbell, R.B.; Amiji, M.M.; Waszczak, B.L. Neurotrophic and neuroprotective efficacy of intranasal GDNF in a rat model of Parkinson’s disease. Neuroscience, 2014, 274, 11-23.
[http://dx.doi.org/10.1016/j.neuroscience.2014.05.019] [PMID: 24845869]
[180]
Yasir, M.; Sara, U.V.S.; Som, I. Haloperidol loaded solid lipid nanoparticles for nose to brain delivery: stability and in vivo studies. J. Nanomed. Nanotechnol, 2015. S7, 006.
[http://dx.doi.org/10.4172/2157-7439.S7-006]
[181]
Tiwari, S.; Goyal, A.K.; Mishra, N.; Vaidya, B.; Mehta, A.; Dube, D.; Vyas, S.P. Liposome in situ gelling system: novel carrier based vaccine adjuvant for intranasal delivery of recombinant protein vaccine. Procedia Vaccinol., 2009, 1(1), 148-163.
[http://dx.doi.org/10.1016/j.provac.2009.07.027]
[182]
Ghaffar, K.A.; Marasini, N.; Giddam, A.K.; Batzloff, M.R.; Good, M.F.; Skwarczynski, M.; Toth, I. Liposome-based intranasal delivery of lipopeptide vaccine candidates against group A streptococcus. Acta Biomater., 2016, 41, 161-168.
[http://dx.doi.org/10.1016/j.actbio.2016.04.012] [PMID: 27063491]
[183]
Tada, R.; Hidaka, A.; Iwase, N.; Takahashi, S.; Yamakita, Y.; Iwata, T.; Muto, S.; Sato, E.; Takayama, N.; Honjo, E.; Kiyono, H.; Kunisawa, J.; Aramaki, Y. Intranasal Immunization with DOTAP cationic liposomes combined with DC-cholesterol induces potent antigen-specific mucosal and systemic immune responses in mice. PLoS One, 2015, 10(10)e0139785
[http://dx.doi.org/10.1371/journal.pone.0139785] [PMID: 26440657]
[184]
Rosada, R.S.; de la Torre, L.G.; Frantz, F.G.; Trombone, A.P.; Zárate-Bladés, C.R.; Fonseca, D.M.; Souza, P.R.; Brandão, I.T.; Masson, A.P.; Soares, É.G.; Ramos, S.G.; Faccioli, L.H.; Silva, C.L.; Santana, M.H.; Coelho-Castelo, A.A. Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes. BMC Immunol., 2008, 9(1), 38.
[http://dx.doi.org/10.1186/1471-2172-9-38] [PMID: 18647414]
[185]
Chen, K.H.; Di Sabatino, M.; Albertini, B.; Passerini, N.; Kett, V.L. The effect of polymer coatings on physicochemical properties of spray-dried liposomes for nasal delivery of BSA. Eur. J. Pharm. Sci., 2013, 50(3-4), 312-322.
[http://dx.doi.org/10.1016/j.ejps.2013.07.006] [PMID: 23876823]
[186]
Kumar, M.; Kakkar, V.; Mishra, A.K.; Chuttani, K.; Kaur, I.P. Intranasal delivery of streptomycin sulfate (STRS) loaded solid lipid nanoparticles to brain and blood. Int. J. Pharm., 2014, 461(1-2), 223-233.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.038] [PMID: 24286922]
[187]
Singh, A.; Ubrane, R.; Prasad, P.; Ramteke, S. Preparation and characterization of rizatriptan benzoate loaded solid lipid nanoparticles for brain targeting. Mater. Today Proc., 2015, 2(9), 4521-4543.
[http://dx.doi.org/10.1016/j.matpr.2015.10.067]
[188]
Shah, B.; Khunt, D.; Bhatt, H.; Misra, M.; Padh, H. Intranasal delivery of venlafaxine loaded nanostructured lipid carrier: risk assessment and qbd based optimization*. J. Drug Deliv. Sci. Technol., 2016, 33, 37-50.
[http://dx.doi.org/10.1016/j.jddst.2016.03.008]
[189]
Singh, S.K.; Dadhania, P.; Vuddanda, P.R.; Jain, A.; Velaga, S.; Singh, S. intranasal delivery of asenapine loaded nanostructured lipid carriers: formulation, characterization, pharmacokinetic and behavioural Assessment. RSC Advances, 2016, 6(3), 2032-2045.
[http://dx.doi.org/10.1039/C5RA19793G]
[190]
Fonseca, F.N.; Betti, A.H.; Carvalho, F.C.; Gremião, M.P.D.; Dimer, F.A.; Guterres, S.S.; Tebaldi, M.L.; Rates, S.M.K.; Pohlmann, A.R. Mucoadhesive amphiphilic methacrylic copolymer-functionalized poly(ε-caprolactone) nanocapsules for nose-to-brain delivery of olanzapine. J. Biomed. Nanotechnol., 2015, 11(8), 1472-1481.
[http://dx.doi.org/10.1166/jbn.2015.2078] [PMID: 26295147]
[191]
Vyshnavi, V.; Indira, S.; Prathima, S. Formulation and evaluation of nasal niosomal in situ gels of loratadine. Int. J. Pharm. Sci. Drug Res., 2015, 7(1), 13-21.
[192]
Priprem, A.; Johns, J.R.; Limsitthichaikoon, S.; Limphirat, W.; Mahakunakorn, P.; Johns, N.P. Intranasal melatonin nanoniosomes: pharmacokinetic, pharmacodynamics and toxicity studies. Ther. Deliv., 2017, 8(6), 373-390.
[http://dx.doi.org/10.4155/tde-2017-0005]
[193]
Boche, M.; Pokharkar, V. Quetiapine nanoemulsion for intranasal drug delivery: evaluation of brain-targeting efficiency. AAPS PharmSciTech, 2017, 18(3), 686-696.
[http://dx.doi.org/10.1208/s12249-016-0552-9] [PMID: 27207184]
[194]
Lalani, J.; Baradia, D.; Lalani, R.; Misra, A. Brain targeted intranasal delivery of tramadol: comparative study of microemulsion and nanoemulsion. Pharm. Dev. Technol., 2015, 20(8), 992-1001.
[http://dx.doi.org/10.3109/10837450.2014.959177] [PMID: 25228122]
[195]
Ahmad, N.; Ahmad, R.; Naqvi, A.A.; Alam, M.A.; Ashafaq, M.; Abdur Rub, R.; Ahmad, F.J. Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 717-729.
[http://dx.doi.org/10.1080/21691401.2017.1337024] [PMID: 28604104]
[196]
Ahmad, N.; Ahmad, R.; Alam, M.A.; Samim, M.; Iqbal, Z.; Ahmad, F.J. Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. Int. J. Biol. Macromol., 2016, 88, 320-332.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.019] [PMID: 26976069]
[197]
Mahajan, H.S.; Mahajan, M.S.; Nerkar, P.P.; Agrawal, A. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv., 2014, 21(2), 148-154.
[http://dx.doi.org/10.3109/10717544.2013.838014] [PMID: 24128122]
[198]
Mishra, D.K.; Kumar, A.; Raj, R.; Chaturvedi, A. Campula MCM based nanoemulsion for intranasal delivery of an antidepressant. Bull. Pharm. Res., 2013, 3(1), 34-39.
[199]
Yadav, S.; Gandham, S.K.; Panicucci, R.; Amiji, M.M. Intranasal brain delivery of cationic nanoemulsion-encapsulated tnfα siRNA in prevention of experimental neuroinflammation. nanomedicine nanotechnology. Biol. Med. (Aligarh), 2016, 12(4), 987-1002.
[http://dx.doi.org/10.1016/j.nano.2015.12.374] [PMID: 26767514]
[200]
Makidon, P.E.; Knowlton, J.; Groom, J.V., II; Blanco, L.P. LiPuma, J.J.; Bielinska, A.U.; Baker, J.R., Jr Induction of immune response to the 17 kDa OMPA Burkholderia cenocepacia polypeptide and protection against pulmonary infection in mice after nasal vaccination with an OMP nanoemulsion-based vaccine. Med. Microbiol. Immunol. (Berl.), 2010, 199(2), 81-92.
[http://dx.doi.org/10.1007/s00430-009-0137-2] [PMID: 19967396]
[201]
Sravanthi, V.; Pallavi, M.C.P.; Bonam, S.R.; Sathyabama, S.; Sampath Kumar, H.M. Oleic acid nanoemulsion for nasal vaccination: impact on adjuvanticity based immune response. J. Drug Deliv. Sci. Technol., 2015, 28, 56-63.
[http://dx.doi.org/10.1016/j.jddst.2015.05.007]
[202]
Das, S.C.; Hatta, M.; Wilker, P.R.; Myc, A.; Hamouda, T.; Neumann, G.; Baker, J.R., Jr; Kawaoka, Y. Nanoemulsion W805EC improves immune responses upon intranasal delivery of an inactivated pandemic H1N1 influenza vaccine. Vaccine, 2012, 30(48), 6871-6877.
[http://dx.doi.org/10.1016/j.vaccine.2012.09.007] [PMID: 22989689]
[203]
Makidon, P.E.; Bielinska, A.U.; Nigavekar, S.S.; Janczak, K.W.; Knowlton, J.; Scott, A.J.; Mank, N.; Cao, Z.; Rathinavelu, S.; Beer, M.R.; Wilkinson, J.E.; Blanco, L.P.; Landers, J.J.; Baker, J.R., Jr Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoS One, 2008, 3(8)e2954
[http://dx.doi.org/10.1371/journal.pone.0002954] [PMID: 18698426]
[204]
Ali, J.; Ali, M.; Baboota, S.; Sahani, J.K.; Ramassamy, C.; Dao, L. Bhavna. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr. Pharm. Des., 2010, 16(14), 1644-1653.
[http://dx.doi.org/10.2174/138161210791164108] [PMID: 20210751]
[205]
Soppimath, K. Aminabhavi; Rudzinski WE, T.; Kulkarni AR. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70(1-2), 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[206]
Pangestuti, R.; Kim, S-K. Neuroprotective properties of chitosan and its derivatives. Mar. Drugs, 2010, 8(7), 2117-2128.
[http://dx.doi.org/10.3390/md8072117] [PMID: 20714426]
[207]
Sharma, S.; Lohan, S.; Murthy, R.S.R. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev. Ind. Pharm., 2014, 40(7), 869-878.
[http://dx.doi.org/10.3109/03639045.2013.789051] [PMID: 23600649]
[208]
Amidi, M.; Romeijn, S.G.; Borchard, G.; Junginger, H.E.; Hennink, W.E.; Jiskoot, W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J. Control. Release, 2006, 111(1-2), 107-116.
[http://dx.doi.org/10.1016/j.jconrel.2005.11.014] [PMID: 16380189]
[209]
Imbimbo, B.P. Why did tarenflurbil fail in Alzheimer’s disease? J. Alzheimers Dis., 2009, 17(4), 757-760.
[http://dx.doi.org/10.3233/JAD-2009-1092] [PMID: 19542625]
[210]
Muntimadugu, E.; Dhommati, R.; Jain, A.; Challa, V.G.S.; Shaheen, M.; Khan, W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: a potential brain targeting strategy for Alzheimer’s disease. Eur. J. Pharm. Sci., 2016, 92, 224-234.
[http://dx.doi.org/10.1016/j.ejps.2016.05.012] [PMID: 27185298]
[211]
Phua, K.K.L.; Staats, H.F.; Leong, K.W.; Nair, S.K. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci. Rep., 2014, 4, 5128.
[http://dx.doi.org/10.1038/srep05128] [PMID: 24894817]
[212]
Matsuo, K.; Koizumi, H.; Akashi, M.; Nakagawa, S.; Fujita, T.; Yamamoto, A.; Okada, N. Intranasal immunization with poly(γ-glutamic acid) nanoparticles entrapping antigenic proteins can induce potent tumor immunity. J. Control. Release, 2011, 152(2), 310-316.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.009] [PMID: 21402114]
[213]
Van Woensel, M.; Wauthoz, N.; Rosière, R.; Mathieu, V.; Kiss, R.; Lefranc, F.; Steelant, B.; Dilissen, E.; Van Gool, S.W.; Mathivet, T.; Gerhardt, H.; Amighi, K.; De Vleeschouwer, S. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J. Control. Release, 2016, 227, 71-81.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.032] [PMID: 26902800]
[214]
Ma, M.; Cheng, Y.; Xu, Z.; Xu, P.; Qu, H.; Fang, Y.; Xu, T.; Wen, L. Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur. J. Med. Chem., 2007, 42(1), 93-98.
[http://dx.doi.org/10.1016/j.ejmech.2006.07.015] [PMID: 17095123]
[215]
Lancelot, A.; Clavería-gimeno, R.; Velázquez-campoy, A.; Abian, O.; Serrano, J.L.; Sierra, T. Nanostructures based on ammonium-terminated amphiphilic janus dendrimers as camptothecin carriers with antiviral activity. Eur. Polym. J., 2017, 90(March), 136-149.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.03.012]
[216]
Gillies, E.R.; Fréchet, J.M.J. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today, 2005, 10(1), 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3] [PMID: 15676297]
[217]
Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev., 2005, 57(15), 2106-2129.
[http://dx.doi.org/10.1016/j.addr.2005.09.018] [PMID: 16305813]
[218]
Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[219]
Kim, I-D.; Shin, J-H.; Kim, S-W.; Choi, S.; Ahn, J.; Han, P-L.; Park, J-S.; Lee, J-K. Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the postischemic brain. Mol. Ther., 2012, 20(4), 829-839.
[http://dx.doi.org/10.1038/mt.2011.291] [PMID: 22252450]
[220]
Katare, Y.K.; Daya, R.P.; Sookram Gray, C.; Luckham, R.E.; Bhandari, J.; Chauhan, A.S.; Mishra, R.K. Brain targeting of a water insoluble antipsychotic drug haloperidol via the intranasal route using PAMAM dendrimer. Mol. Pharm., 2015, 12(9), 3380-3388.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00402] [PMID: 26226403]
[221]
Dong, Z.; Katsumi, H.; Sakane, T.; Yamamoto, A. Effects of polyamidoamine (PAMAM) dendrimers on the nasal absorption of poorly absorbable drugs in rats. Int. J. Pharm., 2010, 393(1-2), 244-252.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.021] [PMID: 20417700]
[222]
Duncan, R.; Izzo, L. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev., 2005, 57(15), 2215-2237.
[http://dx.doi.org/10.1016/j.addr.2005.09.019] [PMID: 16297497]
[223]
Chauhan, A.S.; Jain, N.K.; Diwan, P.V. Pre-clinical and behavioural toxicity profile of PAMAM dendrimers in mice. Proc. R Soc. A, 2009, 466.
[http://dx.doi.org/10.1098/rspa.2009.0448]
[224]
Win-Shwe, T-T.; Sone, H.; Kurokawa, Y.; Zeng, Y.; Zeng, Q.; Nitta, H.; Hirano, S. Effects of PAMAM dendrimers in the mouse brain after a single intranasal instillation. Toxicol. Lett., 2014, 228(3), 207-215.
[http://dx.doi.org/10.1016/j.toxlet.2014.04.020] [PMID: 24813635]
[225]
Baltzley, S.; Mohammad, A.; Malkawi, A.H.; Al-Ghananeem, A.M. Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles. AAPS PharmSciTech, 2014, 15(6), 1598-1602.
[http://dx.doi.org/10.1208/s12249-014-0189-5] [PMID: 25142821]
[226]
Bhavna, M.S.; Ali, M.; Ali, R.; Bhatnagar, A.; Baboota, S.; Ali, J. Donepezil nanosuspension intended for nose to brain targeting: in vitro and in vivo safety evaluation. Int. J. Biol. Macromol., 2014, 67, 418-425.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.03.022] [PMID: 24705169]
[227]
Maurya, P.; Mittal, A.; Sharma, K.; Alam, S. Fabrication of acetazolamide loaded nasal nanosuspension: an in vitro and ex vivo characterization. Analele Univ. “Dunărea Jos” Galaţi., 2013, 17(1), 93-105.
[228]
Seju, U.; Kumar, A.; Sawant, K.K. Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomater., 2011, 7(12), 4169-4176.
[http://dx.doi.org/10.1016/j.actbio.2011.07.025] [PMID: 21839863]
[229]
Sharma, D.; Maheshwari, D.; Philip, G.; Rana, R.; Bhatia, S.; Singh, M.; Gabrani, R.; Sharma, S.K.; Ali, J.; Sharma, R.K. Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using box-behnken design: in vitro and in vivo evaluation. BioMed Res. Int., 2014, 2014156010
[http://dx.doi.org/10.1155/2014/156010] [PMID: 25126544]
[230]
Bi, C.; Wang, A.; Chu, Y.; Liu, S.; Mu, H.; Liu, W.; Wu, Z.; Sun, K.; Li, Y. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int. J. Nanomedicine, 2016, 11, 6547-6559.
[http://dx.doi.org/10.2147/IJN.S120939] [PMID: 27994458]
[231]
Cheng, Q.; Feng, J.; Chen, J.; Zhu, X.; Li, F. Brain transport of neurotoxin-I with PLA nanoparticles through intranasal administration in rats: a microdialysis study. Biopharm. Drug Dispos., 2008, 29(8), 431-439.
[http://dx.doi.org/10.1002/bdd.621] [PMID: 18837064]
[232]
Al-Ghananeem, A.M.; Saeed, H.; Florence, R.; Yokel, R.A.; Malkawi, A.H. Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by AIDS viruses. J. Drug Target., 2010, 18(5), 381-388.
[http://dx.doi.org/10.3109/10611860903483396] [PMID: 20001275]
[233]
Alex, A.T.; Joseph, A.; Shavi, G.; Rao, J.V.; Udupa, N. Development and Evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv., 2014, 23(7), 1-10.
[http://dx.doi.org/10.3109/10717544.2014.948643] [PMID: 25544603]
[234]
Elnaggar, Y.S.R.; Etman, S.M.; Abdelmonsif, D.A.; Abdallah, O.Y. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J. Pharm. Sci., 2015, 104(10), 3544-3556.
[http://dx.doi.org/10.1002/jps.24557]
[235]
Zhang, C.; Chen, J.; Feng, C.; Shao, X.; Liu, Q.; Zhang, Q.; Pang, Z.; Jiang, X. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int. J. Pharm., 2014, 461(1-2), 192-202.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.049] [PMID: 24300213]
[236]
Mittal, D.; Md, S.; Hasan, Q.; Fazil, M.; Ali, A.; Baboota, S.; Ali, J. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route. Drug Deliv., 2016, 23(1), 130-139.
[http://dx.doi.org/10.3109/10717544.2014.907372] [PMID: 24786489]
[237]
EMA, 2014. Human Regulatory, Quality By Design, Guidance Documents. http:// Available at:www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000162.jsp&mid=WC0b01ac058076ed73 [Accessed: Jul 24, 2017].
[238]
FDA Guidance for Industry: Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products. Available at: http://www.gmp-compliance.org/guidemgr/files/4234FNL.PDF [Accessed: Jul 24, 2017].
[239]
FDA. Guidance for Industry Metered Dose Inhaler (MDI) and Dry Powder Inhaler (DPI) Drug Products. 1998, No. October, 1-65. Available at: https://elsmar.com/elsmarqualityforum/attachments/mdi-dpis-fda-guideline-pdf.14553/ [Accessed: Jul 24, 2017].
[240]
Sangshetti, J.N.; Deshpande, M.; Zaheer, Z.; Shinde, D.B.; Arote, R. Quality by design approach: regulatory need. Arab. J. Chem., 2014, 10(Suppl. 2), S3412-S3425.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.025]
[241]
Pallagi, E.; Ambrus, R.; Szabó-Révész, P.; Csóka, I. Adaptation of the quality by design concept in early pharmaceutical development of an intranasal nanosized formulation. Int. J. Pharm., 2015, 491(1-2), 384-392.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.018] [PMID: 26134895]
[242]
Shah, B.; Khunt, D.; Bhatt, H.; Misra, M.; Padh, H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: effect on formulation and characterization parameters. Eur. J. Pharm. Sci., 2015, 78, 54-66.
[http://dx.doi.org/10.1016/j.ejps.2015.07.002] [PMID: 26143262]
[243]
Chudiwal, S.S.; Dehghan, M.H.G. Quality by Design (QbD) Approach for design and development of drug-device combination products: a case study on flunisolide nasal spray. Pharm. Dev. Technol., 2016, 23(10), 1-10.
[http://dx.doi.org/10.1080/10837450.2016.1236130] [PMID: 27616074]
[244]
Sinsuebpol, C.; Chatchawalsaisin, J.; Kulvanich, P. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery. Drug Des. Devel. Ther., 2013, 7, 861-873.
[PMID: 24039397]
[245]
Djupesland, P.G. Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review. Drug Deliv. Transl. Res., 2013, 3(1), 42-62.
[http://dx.doi.org/10.1007/s13346-012-0108-9] [PMID: 23316447]
[246]
Trows, S.; Wuchner, K.; Spycher, R.; Steckel, H. Analytical challenges and regulatory requirements for nasal drug products in Europe and the U.S. Pharmaceutics, 2014, 6(2), 195-219.
[247]
Yanez, A.; Dimitroff, A.; Bremner, P.; Rhee, C-S.; Luscombe, G.; Prillaman, B.A.; Johnson, N. A patient preference study that evaluated fluticasone furoate and mometasone furoate nasal sprays for allergic rhinitis. Allergy Rhinol. (Providence), 2016, 7(4), 183-192.
[http://dx.doi.org/10.2500/ar.2016.7.0185] [PMID: 28683244]
[248]
Hellings, P.W.; Dobbels, F.; Denhaerynck, K.; Piessens, M.; Ceuppens, J.L.; De Geest, S. Explorative study on patient’s perceived knowledge level, expectations, preferences and fear of side effects for treatment for allergic rhinitis. Clin. Transl. Allergy, 2012, 2(1), 9.
[http://dx.doi.org/10.1186/2045-7022-2-9] [PMID: 22643067]
[249]
Chao, J.; Nau, D.P.; Aikens, J.E. Patient-reported perceptions of side effects of antihyperglycemic medication and adherence to medication regimens in persons with diabetes mellitus. Clin. Ther., 2007, 29(1), 177-180.
[http://dx.doi.org/10.1016/j.clinthera.2007.01.014] [PMID: 17379058]
[250]
Fromer, L.M.; Ortiz, G.R.; Dowdee, A.M. Assessment of patient attitudes about mometasone furoate nasal spray: the ease-of-use patient survey. World Allergy Organ. J., 2008, 1(9), 156-159.
[http://dx.doi.org/10.1097/WOX.0b013e3181865f99] [PMID: 23282579]
[251]
U.S. Food and Drug Administration. Guidance for Industry. Integration of Dose-Counting Mechanisms into MDI Drug Products. 2003. March. Available at: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/integration-dose-counting-mechanisms-mdi-drug-products [Accessed: Jul 24, 2017]
[252]
European medicines agency. Outcome Report on Pilot to Involve Patients in Benefit / Risk Discussions at CHMP Meetings. 2017, 44 (March). Available at: https://www.ema.europa.eu/en/documents/report/outcome-report-pilot-involve-patients-benefit/risk-discussions-chmp-meetings_en.pdf [Accessed: Jul 24, 2017]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy