General Research Article

Biodegradable Polyester of Poly (Ethylene glycol)-sebacic Acid as a Backbone for β -Cyclodextrin-polyrotaxane: A Promising Gene Silencing Vector

Author(s): Sharwari Ghodke, Prajakta Mahajan, Kritika Gupta, Chilukuri Ver Avadhani, Prajakta Dandekar* and Ratnesh Jain*

Volume 19 , Issue 4 , 2019

Page: [274 - 287] Pages: 14

DOI: 10.2174/1566523219666190808094225

Price: $65


Background: Polyrotaxane, a macromolecular interlocked assembly, consisting of cyclodextrin has excellent inclusion capabilities and functionalization capacity, which makes it a versatile material as a vector for gene delivery applications.

Objective: A biodegradable linear aliphatic polyester axle composed of Polyethylene Glycol (PEG) and Sebacic Acid (SA) was used to fabricate the β-Cyclodextrin (β-CD) based polyrotaxane as a cationic polymeric vector and evaluated for its potential gene silencing efficiency.

Methods: The water-soluble aliphatic polyester was synthesized by the solvent esterification process and characterized using viscometry, GPC, FT-IR and 1H NMR spectroscopy. The synthesized polyester was further evaluated for its biodegradability and cellular cytotoxicity. Hence, this water-soluble polyester was used for the step-wise synthesis of polyrotaxane, via threading and blocking reactions. Threading of β-CD over PEG-SA polyester axle was conducted in water, followed by end-capping of polypseudorotaxane using 2,4,6-trinitrobenzenesulfonic acid to yield polyester-based polyrotaxane. For gene delivery application, cationic polyrotaxane (PRTx+) was synthesized and evaluated for its gene loading and gene silencing efficiency.

Results and Discussion: The resulting novel macromolecular assembly was found to be safe for use in biomedical applications. Further, characterization by GPC and 1H NMR techniques revealed successful formation of PE-β-CD-PRTx with a threading efficiency of 16%. Additionally, the cellular cytotoxicity assay indicated biosafety of the synthesized polyrotaxane, exploring its potential for gene delivery and other biomedical applications. Further, the biological profile of PRTx+: siRNA complexes was evaluated by measuring their zeta potential and gene silencing efficiency, which were found to be comparable to Lipofectamine 3000, the commercial transfecting agent.

Conclusion: The combinatory effect of various factors such as biodegradability, favourable complexation ability, near zero zeta potentials, good cytotoxicity properties of poly (ethylene glycol)-sebacic acid based β-Cyclodextrin-polyrotaxane makes it a promising gene delivery vector for therapeutic applications.

Keywords: Polyester, cyclodextrin, polyrotaxane, biodegradation, siRNA, GFP, gene silencing.

« Previous
Graphical Abstract
Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005; 4(7): 581-93.
[] [PMID: 16052241]
Lungwitz U, Breunig M, Blunk T, Göpferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 2005; 60(2): 247-66.
[] [PMID: 15939236]
Kodama Y, Nakamura T, Kurosaki T, et al. Biodegradable nanoparticles composed of dendrigraft poly-L-lysine for gene delivery. Eur J Pharm Biopharm 2014; 87(3): 472-9.
[] [PMID: 24813391]
Tang MX, Redemann CT, Szoka FC Jr. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 1996; 7(6): 703-14.
[] [PMID: 8950489]
Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc Natl Acad Sci USA 1995; 92(16): 7297-301.
[] [PMID: 7638184]
Gonzalez H, Hwang SJ, Davis ME. New class of polymers for the delivery of macromolecular therapeutics. Bioconjug Chem 1999; 10(6): 1068-74.
[] [PMID: 10563777]
Harada A. Preparation and structures of supramolecules between cyclodextrins and polymers. Coord Chem Rev 1996; 148: 115-33.
Harada A, Takashima Y, Yamaguchi H. Cyclodextrin-based supramolecular polymers. Chem Soc Rev 2009; 38(4): 875-82.
[] [PMID: 19421567]
Badwaik V, Mondjinou Y, Kulkarni A, Liu L, Demoret A, Thompson DH. Efficient pDNA delivery using cationic 2-Hydroxypropyl-β-Cyclodextrin Pluronic-Based polyrotaxanes. Macromol Biosci 2016; 16(1): 63-73.
[] [PMID: 26257319]
van de Manakker F, Vermonden T, van Nostrum CF, Hennink WE. Cyclodextrin-based polymeric materials: Synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 2009; 10(12): 3157-75.
[] [PMID: 19921854]
Loethen S, Kim JM, Thompson DH. Biomedical applications of cyclodextrin based polyrotaxanes. J Macromol Sci Part C Polym Rev 2007; 47(3): 383-418.
Gibson HW, Liu S, Gong C, Ji Q, Joseph E. Studies of the formation of poly (ester rotaxane) s from diacid chlorides, diols, and crown ethers and their properties. Macromolecules 1997; 30(13): 3711-27.
Koyama Y, Suzuki Y, Asakawa T, Kihara N, Nakazono K, Takata T. Polymer architectures assisted by dynamic covalent bonds: Synthesis and properties of boronate-functionalized polyrotaxane and graft polyrotaxane. Polym J 2012; 44: 30-7.
Lee M, Moore RB, Gibson HW. Supramolecular pseudorotaxane graft copolymer from a crown ether polyester and a complementary paraquat-terminated polystyrene guest. Macromolecules 2011; 44(15): 5987-93.
Araki J, Zhao C, Ito K. Efficient production of polyrotaxanes from α-cyclodextrin and poly (ethylene glycol). Macromolecules 2005; 38(17): 7524-7.
Kulkarni A, DeFrees K, Schuldt RA, et al. Multi-armed cationic cyclodextrin: Poly(ethylene glycol) polyrotaxanes as efficient gene silencing vectors. Integr Biol 2013; 5(1): 115-21.
[] [PMID: 23042106]
Mondjinou YA, Hyun S-H, Xiong M, Collins CJ, Thong PL, Thompson DH. Impact of Mixed β-Cyclodextrin ratios on pluronic rotaxanation efficiency and product solubility. ACS Appl Mater Interfaces 2015; 7(43): 23831-6.
[] [PMID: 26502827]
Iguchi H, Uchida S, Koyama Y, Takata T. Polyester-containing α-cyclodextrin-based polyrotaxane: Synthesis by living ring-opening polymerization, polypseudorotaxanation, and end capping using nitrile N-oxide. ACS Macro Lett 2013; 2(6): 527-30.
Wang P-J, Wang J, Ye L, Zhang A-Y, Feng Z-G. Synthesis and characterization of polyrotaxanes comprising α-cyclodextrins and poly (ε-caprolactone) end-capped with poly (N-isopropylacrylamide)s. Polymer 2012; 53(12): 2361-8.
Wang PJ, Ye L, Zhang AY, Feng ZG. Synthesis and characterization of polyrotaxanes comprising α‐cyclodextrins and poly (ε‐caprolactone) end‐capped with poly (butyl methacrylate) s. Polym Int 2014; 63(6): 1025-34.
Shin KM, Dong T, He Y, et al. Inclusion complex formation between α-cyclodextrin and biodegradable aliphatic polyesters. Macromol Biosci 2004; 4(12): 1075-83.
[] [PMID: 15586392]
Shin KM, Dong T, He Y, Inoue Y. Morphological change of poly (ε‐caprolactone) with a wide range of molecular weight via formation of inclusion complex with α‐cyclodextrin. J Polym Sci, B, Polym Phys 2005; 43(12): 1433-40.
Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci, B, Polym Phys 2011; 49(12): 832-64.
[] [PMID: 21769165]
Ji Y, Liu X, Huang M, et al. Development of self-assembled multi-arm polyrotaxanes nanocarriers for systemic plasmid delivery in vivo. Biomaterials 2019; 192: 416-28.
[] [PMID: 30500723]
Ahn B, Kim S, Kim Y, Yang J. Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1, 4‐butanediol. J Appl Polym Sci 2001; 82(11): 2808-26.
Brioude MdM. Guimarães DH, Fiúza RdP, Prado LASdA, Boaventura JS, José NM. Synthesis and characterization of aliphatic polyesters from glycerol, by-product of biodiesel production, and adipic acid. Mater Res 2007; 10(4): 335-9.
Nikolic MS, Djonlagic J. Synthesis and characterization of biodegradable poly (butylene succinate-co-butylene adipate) s. Polym Degrad Stabil 2001; 74(2): 263-70.
Tserki V, Matzinos P, Pavlidou E, Vachliotis D, Panayiotou C. Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly (butylene succinate-co-butylene adipate). Polym Degrad Stabil 2006; 91(2): 367-76.
Anastas PT, Zimmerman JB. Peer reviewed: Design through the 12 principles of green engineering. Environ Sci Technol 2003; 37(5): 94A-101A.
Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007; 32(8): 762-98.
Li JJ, Zhao F, Li J. Polyrotaxanes for applications in life science and biotechnology. Appl Microbiol Biotechnol 2011; 90(2): 427-43.
[] [PMID: 21360153]
Yamada Y, Nomura T, Harashima H, Yamashita A, Katoono R, Yui N. Intranuclear DNA release is a determinant of transfection activity for a non-viral vector: Biocleavable polyrotaxane as a supramolecularly dissociative condenser for efficient intranuclear DNA release. Biol Pharm Bull 2010; 33(7): 1218-22.
[] [PMID: 20606316]
Ooya T, Choi HS, Yamashita A, et al. Biocleavable polyrotaxane-plasmid DNA polyplex for enhanced gene delivery. J Am Chem Soc 2006; 128(12): 3852-3.
[] [PMID: 16551060]
Yamashita A, Kanda D, Katoono R, et al. Supramolecular control of polyplex dissociation and cell transfection: Efficacy of amino groups and threading cyclodextrins in biocleavable polyrotaxanes. J Control Release 2008; 131(2): 137-44.
[] [PMID: 18700157]
Kulkarni A, DeFrees K, Schuldt RA, et al. Cationic α-cyclodextrin: Poly(ethylene glycol) polyrotaxanes for siRNA delivery. Mol Pharm 2013; 10(4): 1299-305.
[] [PMID: 23398604]
Badwaik VD, Aicart E, Mondjinou YA, Johnson MA, Bowman VD, Thompson DH. Structure-property relationship for in vitro siRNA delivery performance of cationic 2-hydroxypropyl-β-cyclodextrin: PEG-PPG-PEG polyrotaxane vectors. Biomaterials 2016; 84: 86-98.
[] [PMID: 26826298]
Dandekar P, Jain R, Keil M, et al. Enhanced uptake and siRNA-mediated knockdown of a biologically relevant gene using cyclodextrin polyrotaxane. J Mater Chem B Mater Biol Med 2015; 3(13): 2590-8.
Sanadhya SG, Oswal S, Parmar KC. Synthesis and characterization of aliphatic-aromatic polyesters using interfacial polycondensation technique. J Chem Pharm Res 2014; 6: 705-14.
Collins CJ, McCauliff LA, Hyun S-H, et al. Synthesis, characterization, and evaluation of pluronic-based β-cyclodextrin polyrotaxanes for mobilization of accumulated cholesterol from Niemann-Pick type C fibroblasts. Biochemistry 2013; 52(19): 3242-53.
[] [PMID: 23560535]
Mann A, Richa R, Ganguli M. DNA condensation by poly-L-lysine at the single molecule level: Role of DNA concentration and polymer length. J Control Release 2008; 125(3): 252-62.
[] [PMID: 18068848]
Pawlak JA, Lemper AL, Pattison VA. Solution polycondensation method 1977. Available from:
Zhou X-M. Synthesis and characterization of polyester copolymers based on poly (butylene succinate) and poly (ethylene glycol). Mater Sci Eng C 2012; 32(8): 2459-63.
Zhao T, Beckham HW. Direct synthesis of cyclodextrin-rotaxanated poly (ethylene glycol) s and their self-diffusion behavior in dilute solution. Macromolecules 2003; 36(26): 9859-65.
Mayumi K, Ito K, Kato K. Polyrotaxane and slide-ring materials. Royal Society of Chemistry 2015.
Lyu S, Untereker D. Degradability of polymers for implantable biomedical devices. Int J Mol Sci 2009; 10(9): 4033-65.
[] [PMID: 19865531]
Kim J, Lee K-W, Hefferan TE, Currier BL, Yaszemski MJ, Lu L. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Biomacromolecules 2008; 9(1): 149-57.
[] [PMID: 18072747]
Liu G, Li Y, Yang L, et al. Cytotoxicity study of polyethylene glycol derivatives. RSC Advances 2017; 7(30): 18252-9.
Kunath K, von Harpe A, Fischer D, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: Comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release 2003; 89(1): 113-25.
[] [PMID: 12695067]
Okon EU, Hammed G, El Wafa PA, Abraham O, Case N, Henry E. In-vitro cytotoxicity of Polyethyleneimine on HeLa and vero cells. IJIAS 2014; 5(3): 192.
Yang C, Wang X, Li H, Tan E, Lim CT, Li J. Cationic polyrotaxanes as gene carriers: Physicochemical properties and real-time observation of DNA complexation, and gene transfection in cancer cells. J Phys Chem B 2009; 113(22): 7903-11.
[] [PMID: 19422177]
Yang C, Wang X, Li H, Goh SH, Li J. Synthesis and characterization of polyrotaxanes consisting of cationic α-cyclodextrins threaded on poly[(ethylene oxide)-ran-(propylene oxide)] as gene carriers. Biomacromolecules 2007; 8(11): 3365-74.
[] [PMID: 17929967]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy