History of Phytotherapy in Moscow and Contemporary Uses of Phytotherapy in Treating Psoriasis

Elena Vladimirovna Korsun¹*, Vladimir Fedorovich Korsun¹ and M.A. Malyshko²

¹Institute of Phytotherapy, People’s Friendship University, Moscow, Russian Federation; ²Phytotherapy, Institute of Belorussian Medicine, RUDN, Minsk, Belarus

Abstract: This article, by foremost Russian specialists of phytotherapy, surveys traditional medicine and phytotherapy in Moscow from its medieval origins down to the present time. It confirms the scientific foundation and contemporary relevance of phytotherapy by focusing on the treatment of Psoriasis and complications of this disease with cocktails of botanicals that can be prepared at home as well as the application of commercial products made from botanicals. The botanicals sometimes are used alone or in conjunction with other therapies. Clinical studies and case studies cited confirm the effectiveness of phytotherapy for the treatment of Psoriasis. Bibliography provided in the text details research on the effectiveness of phytotherapy for treating other diseases and medical problems.

Keywords: Medicinal botanicals, Moscow, monasteries, Russian government, botanists, Russian pharmaceutical industry, Psoriasis.

1. INTRODUCTION

Before the 15th century, the territory that became known as Russia was a federation of principalities and city-states. Pharmaceutical gardens were established in monasteries, as part of their agricultural activity, from the 11th through the 13th centuries. The establishment of monastery gardens in Russia was influenced by Western European experiences, since the monks had access to manuscripts in the Latin or Greek languages. The pharmaceutical gardens were scientific centers for their day in which herbs were studied for their medicinal properties along with the health-giving possibilities of various vegetables. In their research, the monks were sensitive to the excellent gifts of nature and their gardens were examples of rationalism and harmony. They were truly heavenly spaces. Gradually, secular rulers established pharmaceutical gardens. The parks that developed during the epoch of the Enlightenment followed the examples of the monastic gardens. Although, the medieval monastery gardens were the oldest examples of medicinal healing by application of botanicals, in the 16th and 17th centuries separate pharmaceutical gardens appeared in Russia. They were called *ogorod*. They incorporated the findings of their predecessor monastery gardens with regard to the medicinal plants [1]. Cultivating and gathering medicinal botanicals would continue in Russia to the present.

1.1. Botanical Gardens in Moscow

During the 15th and 16th centuries, the princes of Moscow consolidated Russian principalities and
city-states. Moscow became the national capital. The Muscovite princes adopted the title Tsar. In 1629, during the reign of the first Romanov, Tsar Michael, a pharmaceutical ogorod was established on the banks of the river Neglinka in Moscow for the express purpose of supplying the tsar’s pharmacy with medicinal botanicals (Fig. 1). Medicinal preparations also were produced from the plants in the tsar’s pharmaceutical garden [2].

1.2. Botanical Garden established by Peter the Great in Moscow, 1706

In 1706, Emperor Peter the First (Peter the Great) issued an imperial decree establishing the first state Pharmaceutical Garden in Russia in the district of the dried up marsh beyond the Sukharevskii Tower. This garden was to be a Scientific-Educational institution for the Moscow Medical School. Also, it was tasked with supplying medicines for treasury or state pharmacies. Further, from 1706 it served as the pharmaceutical garden for the Moscow General Hospital. Peter the Great—who counted dentistry and medicine amongst his wide interests--personally planted and grew some trees in this garden. One was the “Weeping Willow” (Iva belaia). It is considered the oldest tree in the central part of Moscow. Peter also planted the Larix gmelini (in Russian--listvennitsa posazhennaia). In 1805 the garden was transferred to Moscow University (founded in 1755) and was named the Botanical Garden. A branch of this garden is in the Vorob’evye Hills [3] (Fig. 2).
1.3. Growth of Botanical Gardens in Russia

Gradually, the number of pharmaceutical gardens increased—as did the preparations prepared from the medicinal botanicals grown in the gardens. Special apparatus and equipment were used to produce the medicines. A special place in the gardens was devoted to this production and also for drying the botanicals that needed to be preserved in that state. Additionally, medicinal botanicals continued to be grown in various official gardens around the empire. Small amounts of medicinal botanicals also were grown in private gardens. Indeed, the true purpose of gardens was to improve health as well as to delight the senses of sight, smell and hearing. Therefore, along with flowers, fruit and berry trees and bushes, plants for perfume and essential oils, and medicinal plants were cultivated [4].

1.4. Staffs in Early Botanical Gardens

Additionally, on the staffs of pharmaceutical gardens were not only gardeners but many other specialists, occupied with producing medicines from the raw botanical materials. Distillation was one of the main methods of producing medicines. Thus “distillators”—individuals occupied with distillation—comprised an important part of the staff. Indeed, a special decree was issued to the pharmaceutical gardens regarding the “staff involved with water and liquids and those cooking up the syrups, plasters and salves and other medicines, which are stored.” Those in charge of distilling were threatened with punishment if the medicines prepared by them “were harmful or caused anyone’s death.” Also, amongst the personnel of the pharmaceutical garden were herbalists whose job it was to collect and dry the raw medicinal botanicals. The position of herbalist was considered very important and demanded great responsibility. Herbalists were given access to this position only after swearing an oath that they would do no harm and would take the utmost care in fulfilling their duties. The herbalists worked under the direction of pharmacists [5].

1.5. Exogenous Plants in Botanical Gardens

The assortment of medicinal botanicals grown in the pharmaceutical gardens included plants not native to the given locality. Thus, tobacco, lettuce, marjoram, poppies, mint, anise, hyssop, Portulaca oleracea L, thyme, peonies, ruta, parsley, chicory, salvia, Anethum, basil, “bozhe derevo”—literally god-tree—Artemesia abrotanum, rosemary and many other plants were grown in Russian pharmaceutical gardens from which various medicinal substances were prepared. Plant materials for the pharmaceutical gardens arrived from various sources, most often from abroad. They were brought by merchants or physicians who traveled to foreign countries.

In the 18th century, a network of new pharmaceutical gardens was organized. Following the establishment of the pharmaceutical garden in Moscow in 1706, gardens were established in 1709 in the city of Lubniakh and in the village of Terna in Poltava province in Ukraine. In 1713 a pharmaceutical garden was established in the new Russian capital of St. Petersburg, which was then still under construction. In 1720, a pharmaceutical garden was planted in the city of Astrakhan near the mouth of the Volga River and in 1763 a pharmaceutical garden was established in the city of Tobol’sk in Siberia [6].

2. GROWTH OF PHARMACIES IN MOSCOW AND THE FERREIN PHARMACY

Private pharmacies appeared in Moscow after the decree of Peter the Great that was issued on 22 November 1701 regarding the struggle with “dangerous medicines.” The first charter for the establishment of a private pharmacy was received by Johann Gottfried Gregorius, who was personally acquainted with Tsar Peter. The second charter for opening a private pharmacy at the beginning of Miasnitskaia Street was given to Daniel Gurchin. After Gurchin, this pharmacy became the property of T. Meyer. During the course of the century it was transferred from hand to hand. The owners were “Moscow Germans”

In the first half of the 19th century the pharmacy was acquired by Karl Ivanovich Ferrein. His contract stated that “The Pharmacy Property, rented
by the city, located in the first quarter of the city near the Old Nikolskii gates at the building of Kaliazin's courtyard, was sold by Titular Councilor Andrei Bogdanovich Landgraf to Pharmacist Karl Ferrein 23 March 1832.” In March of 1862 Karl Ivanovich, by that time already an Honored Citizen of Moscow, transferred his pharmacy to the other side of Nikol'skaya Street, to a building acquired from the merchant K. K. Shil'bakh. This was the beginning of the most famous pharmacy in Moscow.

In 1873 the son of Karl Ivanovich, Vladimir Karlovich Ferrein received a loan from the Moscow Credit Society, based on taxes of the property and personal home of the Ferrein family, to lease and reconstruct part of the neighboring building, which contained a workshop administration. Gradually all the leased premises were combined to serve patrons. A warehouse and special laboratories were established in the enlarged pharmacy. The laboratories were histological-bacteriological, chemical analytical, and chemical. In these facilities research was carried on, discoveries were made, there was analysis of the soil, food products, water, and products from the Russian chemical industry. Practical work in various pharmaceutical disciplines was carried on in the laboratories and new pharmacists were trained there. At the end of the 19th century, the pharmacy outgrew its old premises. Therefore the building again was remodelled during the period 1894 to 1899 and it acquired the form familiar to Muscovites with four statues on the façade, depicting the goddess Hygeia drinking from a cup with a snake. According to one set of information the building was the work of the famous architect A. R. Erikhson but according to other data the architect was I. I. Shaposhnikov.

The Ferrein pharmacy was the largest in Europe—indeed according to some accounts it was the largest in the world at that time. On the exterior it included both Rococo and Gothic elements—and a large clock for the convenience of the citizenry. The interior was grandiose—with marble floors, art-nouveau railings on the stairs, and statues gracing the ceiling coves of the main room where prescriptions were dispensed. But most importantly, the pharmacy served all the citizens of Moscow—from the wealthiest and most famous to the most humble using the highest scientific standards.

The nucleus of the Ferrein joint stock company was a pharmaceutical factory, one of approximately 100 in the Russian Empire. Moscow was the hub of the Russian pharmaceutical industry, which supplied about half the factory-produced pharmaceuticals used in Russia in the 19th, early 20th centuries. Although approximately 300 chemical factories operated in the Russian Empire by 1913, the majority of pharmaceuticals were derived from botanicals. The “magic bullets” produced by German and Swiss firms from the 1890s like aspirin, heroin, Salvarsan, were protected by patents and Russia was rich in medicinal botanicals. In the early 20th century, for example, the United States, whose pharmaceutical industry was on a par with that in Russia, imported more botanicals from Russia than Russia imported from the United States. Indeed, Santonin, a febrifuge against round worms, made from Artemesia cina and produced in Tashkent, Central Asia, was vital to the American hog industry. The Ukrainian provinces of the Empire were a major source of botanicals but Vladimir Karlovich Ferrein also grew plants used in his factory at his dacha plantation just outside Moscow. He was not able to grow Hydrastis canadensis which was imported from the United States.

A photo of Ferrein’s dacha plantation taken by Editor M.S. Conroy appears in Fig (5). Pharmaceutical Historian V.M. Salo and his son stand in front. Other photos in Figures 3, 4 and 5 on the following pages are from Opyt istoricheskago ocherka voznikneniiia i razvitiia vsego aptekarskago dela v Rossii, a v chastnosti Staroi Nikol'skoi apteki, prinadlezhachei nyne Tovarishchestvu “V.K. Ferrein” (An Historical Outline of the Origins and Development of the Entire Pharmaceutical Business in Russia and, in particular, the Staraya Nikol’skaya Pharmacy, Now Belonging to the Closed Joint-Stock Company, “V.K. Ferrein”) Moscow, 1911.

2This term was created in the second quarter of the 19th century during the reign of Tsar Nicholas I [Editor’s note].

Editor’s Note: Mary Schaeffer Conroy has written about the Ferrein pharmacy in her monograph dealing with pharmacy, pharmacists and the pharmaceutical industry in late Imperial, early Soviet Russia. The Ferrein factory was one of 32 Moscow in the early 20th century. This factory and some 70 some other factories in Russia produced high-quality medicines, soaps, and disinfectants. Of medicinal botanicals, Russia imported quinine for malaria, a major communicable disease and cocaine. Iodine and opiates were imported because their active ingredients did not satisfy the Russian Pharmacopoeia.

3Editor’s Note: Mary Schaeffer Conroy has written about the Ferrein pharmacy in her monograph dealing with pharmacy, pharmacists and the pharmaceutical industry in late Imperial, early Soviet Russia. The Ferrein factory was one of 32 Moscow in the early 20th century. This factory and some 70 some other factories in Russia produced high-quality medicines, soaps, and disinfectants. Of medicinal botanicals, Russia imported quinine for malaria, a major communicable disease and cocaine. Iodine and opiates were imported because their active ingredients did not satisfy the Russian Pharmacopoeia. [9]
3. INVESTIGATION OF MEDICINAL BOTANICALS BY RUSSIAN SCIENTISTS

The Russian Academy of Sciences, established in 1724, began the study of medicinal botanicals from different regions in Russia. Russia had expanded to the Pacific by the middle of the 17th century so the plants included those from Siberia. Indeed, the venue for one of the foremost medicinal botanicals, rhubarb, on which the Russian government had a monopoly off and on in the 17th and 18th centuries, was located in eastern Siberia, near the Chinese border—Russia having established diplomatic relations with China in the second half of the 17th century. The exact provenance of the
rhubarb, used as a cathartic and considered superior to other types of rhubarb—was kept secret. The Russian government essayed the rhubarb. Only the best quality was exported⁴.

The polymath Mikhail Vasilevich Lomonosov–active in the founding of the University of Moscow in 1755 and a chemist, astronomer, linguist, and artist-- was a pioneer in the study of Cumin. During the 18th century and the early 19th century a number of Russian expeditions⁵ explored the fauna, ethnic groups, and flora of Siberia, the Kamchatka Peninsula, the Ural Mountains and Northern Russia Some of the scientists involved were I.I. Lepekhin, S.P. Krasheninnikov⁶, and T. E. Lovits. The scientists mapped eastern Siberia and reported on their findings. Relevant to phytotherapy, medicinal botanicals were collected and identified.

A large warehouse of botanicals was organized by the professors at Moscow State University, I.A. Dvigubskii, V.A. Tikhomirov, and D.M. Shcherbachev. It is interesting to note that Russian scientists supported more rational therapies for diseases of the heart, liver, kidneys, and skin in comparison with many French and British physicians⁷. Russian dermatologist A.G. Polotebnov wrote that “the sick, like stones, ought to be covered with moss.” His priority was to find curative substances in green molds for treating sores and ulcers [10].

Russian medical practice has been expanded by works detailing the curative and useful properties of medicinal and aromatic plants, the experience of cultivating fruit trees, and the benefits of creators of parks. The work of A.V. Bolotov in this genre is very important [11]. Works on landscape therapy (Ivanov, T.N. Putinsev, L.F.) and florathrapy (V. Tsivinskaia). Notable Russian physicians M. Ia. Mudrov, G.A. Zakharin, F.I. Inoyemtsev, S.P. Botkin⁸, and Dr. Da have made significant contributions regarding the use and curative powers of plants in clinical medical practice.

⁴Clifford M. Feust, Rhubarb the Wondrous Drug, Princeton University Press, 1992, pp. 46-78 [Editor’s note].
⁵Some of the expeditions were connected with the Russian-American Company. This joint-stock company had been incorporated to expedite the Russian fur trade, particularly the fur of ermine and seals. Hunting of these animals led Russians to the Aleutian Islands and then to the islands around Alaska in the last decades of the 18th century. James Gibson, Feeding the Russian Fur Trade: Provisionment of the Okhotsk Seaboard and the Kamchatka Peninsula, 1639-1856. University of Wisconsin Press, 1969 [Editor’s Note].
⁶An English translation of the very interesting report of Sergei Krasheninnikov, Explorations of Kamchatka: Report to the Russian Imperial Government of His Expedition of 1735 was published the Oregon Historical Society in 1972 [Editor’s Note].
⁷The French physician Gilibert, however, eschewed the dubious medical thinking of the 18th century, as noted in the footnote to the article on Phytotherapy in Belarus' contained in this special edition [Editor’s Note].
⁸Dr. Botkin was an important physician in the second half of 19th century Russia and also served as personal physician and surgeon to tsars Alexander II and Alexander III [Editor’s Note].
During the Great Fatherland War—that portion of World War II fought on Russian soil—medicinal plants such as the fruits of alder (Aldus, birch family—Betulaceae) and kornevitsa lapchatki priamosstoiachei (Potentilla, fam. Rosaceae) with glycosides tormentillin, flavonoids, and ether oils saved a significant number of the military from intestinal diseases. The benefit of the fruits of roses and decoctions of conifers (Pinofita) was documented in the monumental work of 26 volumes, *Opyt Sovetskoi meditsiny v gody Vekikoi Otechestvennoi Voiny* (Soviet Medical Experience during the Great Fatherland War), edited by E. Smirnov that was published in the first half of the 1950s.

VILAR (The All-Russian Institute of Medicinal and Aromatic Botanicals) is the institution in Russia occupied with issues about the classification and production of medicines from medicinal botanicals. This main scientific institution is partially responsible for production of phyto-preparations. The scientists there have created preparations not inferior to foreign ones in their effectiveness, such as Tanatskhol, Estifan, Abergin, Allaginin, Tselanid, Ammifurin, Silimar, and others. Some of these do not have analogues in the world, such as Allizarin, Sangviririn, Khelepin D, Dikvertin, Giporamin, Annarin, Angionorm, Bellatsekhol and others. For some years VILAR has worked to create phyto-models of treatment for sanatoria and rest homes that use plants as well as other curative substances. Indeed, twenty years ago some specialists at VILAR developed a special course in medicinal and etheromatic plants—TSKhA—on the use of medicinal botanicals in sanatoria.

On this base, in 1991 professor S. Ia. Sokolovskii organized an Institute of Phytotherapy which taught phytotherapy and Russian herbalism. At present, Assistant Professor Dr. Elena Korsun is the Director of courses on phytotherapy, taught by the Department of Phytotherapy of the Institute of Eastern Medicine in the Russian University of People’s Friendship. Courses on Phytotherapy in the Russian Medical Academy of Post-Diploma Education are directed by Assistant Professor Iu. M. Korshikova. Professor S.N. Turichev is the Director of courses on phytotherapy in the First Moscow State Medical University named for I.M. Sechenov. Scientific-practical regional phyotherapy societies have been organized under the auspices of the Phytotherapy Institute. The Institute publishes a quarterly journal entitled *Practical Phytotherapy* and regularly organizes local and international congresses, conferences, seminars, and symposia on phyotherapy and phytopharmacology. Publications of the Institute are regulated by MZ Russian Federation No. 2000/63.

4. CONTEMPORARY STATE OF PHYTOTHERAPY IN MOSCOW [13]

Moscow is the chief administrative center for the science of phytotherapy and phytopharmacology in Russia. VILAR, the All-Russian Institute of Medicinal and Aromatic Botanicals, has operated in Moscow for 85 years. Introduction of a definite system of phytotherapy and herbal treatment led to the creation of the Institute of Phytotherapy, the Institute of Eastern Medicine, the organization of regional phyotherapy societies, the creation of post-graduate education in Moscow and Irkutsk, the establishment of courses on phyotherapy in Ufa, Riazan, Kursk, Yaroslavl’, and Makhachkala—in Dagestan, north Caucasus, the publication of journals about phytotherapy and phytopharmacology:

Today there is more practical phyotherapy, increased use of medicinal botanicals, increased activity in the All-Russian Institute of Medicinal and Aromatic Botanicals, and the establishment of many institutions occupied with developing new products made from raw medicinal botanicals in Moscow, Ulan-Uda, St. Petersburg, Yaroslavl’, Riazan, Piatagorsk, Perm, and other cities.

Doctors, wishing to receive a state license for phytotherapy practice have been able to take up to 216 hours of courses from the Institute of Phytotherapy.

More than 30 firms are currently occupied with working up and producing phyto-products such as Trinita, Fitosila, Krasnogorsk-leskredstva (Krasnogorsk medicinal substances), Saluta-M, IVA, Farm VILAR, Farmcenter VILAR, Moskovskia farmatsevticheskaia fabrika, Aimiss, Beresovsi mir, Tranelan, Trinvud, Optisal, Evalar, Bio-progress, Inat-farma, Vitaon, Fitoprodukt, AS-KOM, Fitomir and others.

Moscow has recently been the site of four International Congresses on Phytotherapy and
herbalism and two conferences on the actual theme of the Use of Phytotherapy in oncology. During the past nineteen years, the Russian University of Friendship of Peoples in Moscow has prepared faculty in the fields of phytotherapy and herbalism with certification to work in 103 countries of the world. Students from 37 countries of Europe, America, and China take long-distance courses from the Institute.

In Moscow alone seventeen volumes of clinical phytotherapy and herbalism have been published detailing forty-five years of practical work in the wide application of native botanicals and botanical substances in all medical fields. The Institute of Phytotherapy’s scientific work has generated 26 patents.

The Institute of Phytotherapy cooperates with colleagues in experimental biology at the Russian Academy of Sciences and with the National Institute of Epidemiology and Microbiology of the Republic of Belarus, the Institute of Influenza of the Academy of Sciences, VILAR (The All-Russian Institute of Medicinal and Aromatic Botanicals), and other institutions.

The Institute of Phytotherapy cooperates to introduce the system of phyto health to youth and adults in 12 regions of the Russian Federation and in centers of social defense of the population and industrial enterprises of Saratov, Orenburg and Tula. In Russia there has been—and continues to be—great attraction to treatment in sanatoria and spas with complex use of botanicals such as phytobaths, phyto-massage, phyto-saunas, phyto-laser therapy, and so on. This has led to the participation of the Institute in the sanatoria “Porech’e,” “Ak-sakovskie zori,” and “Pushkino.” As a result, the use of botanicals has risen in sanatoria 23.3 percent.

Dr. Vladimir F. Korsun, of the Institute of Phytotherapy is the expert on Traditional Medicine in the Committee of the State Duma of the Russian Federation for the Protection of the Health of Citizens. Dr. Elena Korsun was elected member of the Constitutional Council for Traditional Medicine in the Ministry of Health of the Russian Federation [13].

5. SELECTED BOOKS PUBLISHED BY THE INSTITUTE OF PHYTOTHERAPY

Some of the publications of the Institute include the following: E.V. Korsun and V.F. Korsun, *Isto-

The works cited above include case studies of patients suffering from cancers, gastroenterological problems, liver and blood diseases that have been helped by phytotherapy. The texts provide recipes of botanicals. The work on oncology uses medicinal botanicals as a supplement to chemotherapy and radiation. A practical publication is *Fitoterapiia semeinogo vracha* (Phytotherapy for the family physician), 2015.

Most importantly, the texts explain why phytotherapy has been effective. Space does not permit us to summarize the contents of all these volumes. However, below, we summarize examples from the English text cited above, *Virology and Pathology of Psoriasis*, that explain the scientific and medical ingredients of certain botanicals and phytotherapy products and offer case studies indicating how cocktails of botanicals and botanically based products have countered the painful and debilitating effects of psoriasis and, particularly, complications from this disease.

6. RELEVANCE OF PHYTOTHERAPY TODAY: METHODS OF PSORIASIS TREATMENT USING BOTANICALS, DOMESTICALLY PREPARED, AND COMMERCIAL PRODUCTS MADE FROM BOTANICALS; THE REASONS FOR THE EFFECTIVENESS OF PHYTOTHERAPY IN TREATING PSORIASIS

In *Virology and Phytotherapy of Psoriasis* Dr. Vladimír Korsun and Dr. Elena Korsun, *et al.*, ex-
plain that phytotherapy treatment is effective because plants contain lectins, complex proteins. These have “metal-containing glycosides and ions of calcium, manganese, zinc, magnesium and other metals. The importance of these proteins is in their interaction with cellular receptors in the flow of intermolecular and cellular reaction. Lectins affect different aspects of cellular metabolism by influencing transport function of cell membranes and enzymes. Like insulin, lectins decrease adenyl cyclase activity in lipocytes. Having a hormone-like effect, they play a role of informative molecules that transmit a signal inside the cell and stipulate a wide range of metabolism changes in it. The most important quality of lectins is their ability to stimulate tissue immunity rates, increasing phagocytal activity of leucocytes. They selectively affect T- and B-lymphocytes, metabolic changes in them during their stimulation with lectins appear immediately, but a certain effect is registered after 24 hours. Further reactions include intensification of protein synthesis, DNA, RNA and lymphocyte division. Lectins recognize sugar structure and have antitumor, antiviral and immune modeling effect. Plant lectins in mistletoe, shelf fungi, and French willow are particularly important. These plant lectins can permanently block RNA and “induce (increase) apoptosis by programing cellular death in cells of tumors, leucosis cells and formed blood elements” [14].

Virology and Phytotherapy of Psoriasis provides a number of botanical tinctures for common cases of psoriasis that can be brewed at home. They contain salvia, common elder and pansy, marigold and chamomile flowers. The following treatment combines an herbal cocktail with supplementary commercial medical treatments [15].

6.1. Psoriasis Treatment with Antiviral Preparations

This treatment was given to 62 patients. Firstly, patients were prescribed an “herbal cocktail” consisting of Bush basil, 15.0 grams; Cranberry leaves, 10.0 grams, Birch buds, 10.0 grams; sweet flag root, 10.0 grams; Juniper berries, 15.0 grams; Salvia, 20.0 grams; Horsetail, 10.0 grams. Ingredients were mixed into a tincture of 5.0-200 ml dissolved in 1/3 glass of water, taken 3 times a day before meals.

Additionally, patients were given injections of deoxyribonuclease dissolved in 0.5% of Novocain solution of 50 grams, injected intramuscularly for 7 days, followed by injections of 1% solution of emetine hydrochloride for 5 days; eleuterococcus extract-- 40 drops morning and afternoon; and pine and valerian baths every 3 days. Externally patients applied salicylic acid—2-5 g., vitamin A oil, 5 ml; rhodiola extract, 20 ml; and 5% naphthalan ointment up to 100 grams.

Of the 62 patients studied, 9 recovered, 3 showed significant improvement, 50 showed improvement, and only 1 patient showed no effect. The authors, Drs. Korsun et al. concluded that the treatment was 98.4 percent effective.

6.2. Commercial Herbal Preparations

One herbal preparation used in Russia is “PhytoGor.” This product contains 7 plants with lectin—salvia, giant hyssop, nepeta, cornsilk, marigold, St. John’s wort, and heather. In 2013, preclinical research by the Influenza Institute of the Russian Academy of Medical Sciences in Moscow showed antiviral effects of this preparation against influenza, herpes, encephalomyelitis and psoriasis. “The Institute of Phytotherapy studied 76 cases of patients with common psoriasis with average age of 34-45 years” They were prescribed “PhytoGor” and also “Vistant” and pine, sea salt or valerian baths plus “Behitol” ointment. Seventy-three patients showed visible improvement [16].

6.3. Psoriatic Arthritis, Polyarthritis

“Psoriatic arthritis (psoriatic arthropatia) is a chronic inflammatory disease of joints which is usually associated with psoriasis. It refers to the group of seronegative spondylarthritis” and is a frequent complication of psoriasis. The disease causes disability of patients, usually elderly, and thus has serious social implications in and of itself and particularly as populations age in many countries”.

“Commonly used treatment of psoriatic polyarthritis is pathogenic and symptomatic. Treatment includes antibiotics, glucocorticoids, retinoids, non-steroid antitumor preparations, and vitamins but clinical improvement lasts only 3-7 months. Moreover, hospitalization is required and patients do not fully recover joint mobility” [17].
6.4. A Phytotherapy Treatment for Polyarthritis

Phytotherapy treatment consisted of Cranberry leaves, 20.0 grams; Marigold flowers, 10.0 grams; Juniper berries of 10.0 grams; Common elder flowers, 15.0 grams; Horsetail, 20.0 grams; Birch leaves, 15.0 grams; and nettle leaves. These herbs were to be brewed at a temperature of 60-60 degrees centigrade for 15-20 minutes. Two grams of the preparation were to be used in 200 ml of water. This was to be followed by a balsamic liquid containing St. John’s wort oil, plantain extract, fir oil, and marigold tincture to be applied to the lumbar region for 20 minutes. A case study of a 59-year-old patient who had suffered from polyarthritis and psoriatic erythrosis for 8 years and was unable to walk was treated for 8 days. Previous treatment had helped but the patient then suffered remission. Treatment in the phyto-center every day for 8 days resulted in a decrease in pain and joint size and ability to walk. His recovery was still in effect after 7 months [18].

CONCLUSION

Phytotherapy has a long history in Russia, and in Moscow, in particular. As we have documented in Section 6 of this article, Phytotherapy also is relevant today. Phytotherapy is treatment with medicinal botanicals or parts of them, which are applied in fresh or dried form, and include juices, syrups, or extractions from the plants that are prepared according to technology that guarantees retention of the greatest part of biologically active ingredients. Although part of traditional medicine, clinical trials confirm that phytotherapy has scientific components. It is the foundation for treatment with medicinal botanicals and galenical preparations made from them. Phytotherapy, thus presents itself as a sector of therapy in general and specifically part of pharmacotherapy. Phytotherapy is based on three sources: traditional popular medicine, experimental pharmacology and toxicology of medicinal plants, and clinical pharmacology. The texts published by the Institute of Phytotherapy in Moscow, with specific examples from the text, Virology and Pathology of Psoriasis, explain the mechanisms and the effectiveness of Phytotherapy in treating Psoriasis at the present time.

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] German FL. Vrachebyi byt dopetrovskoi Rusi (The medical life of pre-Petrine Russia). Kharkov 1891; 112.

