A Review of Patented Works on the Mechanical Characterization of Materials at Micro- and Nano-Scale

Author(s): Marco Alfano, Leonardo Pagnotta, Maria F. Pantano.

Journal Name:Recent Patents on Nanotechnology

Volume 5 , Issue 1 , 2011

Abstract:

In recent years, the development of cost-effective processing techniques, novel design concepts and new materials paved the way to a widespread diffusion of micro- and nano-electro-mechanical systems (NEMS/MEMS). Obviously, the reliability as well as the performance of NEMS/MEMS depend on the corresponding materials properties, which in turn should be determined using ad-hoc small samples fabricated at the relevant size-scale. For this reason, in the last decade research efforts have been devoted to the development of experimental techniques suitable for the mechanical characterization of materials at micro- and nano-scale.

There are many contributions stemming from this research area, the purpose of the present work is to give an overview of the most recent patented works. The focus will be directed to selected patents on the mechanical characterization of both micro- and nanosamples, like nanotubes and nanowires. Special emphasis will be given to the methods suited for the determination of elastic properties, fracture resistance and residual stresses of materials.

Keywords: MEMS, NEMS, mechanical characterization, mechanical properties, microscale tests, nanoscale tests, single crys-tal silicon, polycrystalline silicon, silicides, metals and, alloys, aluminum, gold, copper, silver, nickel, polymers, polymide, nanostructured, carbon nanotubes, zinc oxide nanowires, Young modulus, Poisson ratio, yield strength, fracture strength, residual stresses, superplasticity, Compression Tests, Tension test, uniaxial tensile load, Bending Tests, Nanoindentation Tests, Fatigue Tests, Resonant Tests, atomic force microscopy (AFM), atomic force acoustic microscopy (AFAM), Tensile Tests

Rights & PermissionsPrintExport

Article Details

VOLUME: 5
ISSUE: 1
Year: 2011
Page: [37 - 45]
Pages: 9
DOI: 10.2174/187221011794474976