Login

Journal Image
Current Alzheimer Research
ISSN (Print): 1567-2050
ISSN (Online): 1875-5828
VOLUME: 7
ISSUE: 8
DOI: 10.2174/156720510793611592      Price:  $58









Tau in Alzheimer Disease and Related Tauopathies

img
Author(s): K. Iqbal, F. Liu, C.-X. Gong and I. Grundke-Iqbal
Pages 656-664 (9)
Abstract:
Tau is the major microtubule associated protein (MAP) of a mature neuron. The other two neuronal MAPs are MAP1 and MAP2. An established function of MAPs is their interaction with tubulin and promotion of its assembly into microtubules and stabilization of the microtubule network. The microtubule assembly promoting activity of tau, a phosphoprotein, is regulated by its degree of phosphorylation. Normal adult human brain tau contains 2 – 3 moles phosphate/ mole of tau protein. Hyperphosphorylation of tau depresses this biological activity of tau. In Alzheimer disease (AD) brain tau is ∼three to four-fold more hyperphosphorylated than the normal adult brain tau and in this hyperphosphorylated state it is polymerized into paired helical filaments ([PHF) admixed with straight filaments (SF) forming neurofibrillary tangles. Tau is transiently hyperphosphorylated during development and during anesthesia and hypothermia but not to the same state as in AD brain. The abnormally hyperphosphorylated tau in AD brain is distinguished from transiently hyperphosphorylated tau by its ability (1) to sequester normal tau, MAP1 and MAP2 and disrupt microtubules, and (2) to self-assemble into PHF/SF. The cytosolic abnormally hyperphosphorylated tau, because of oligomerization, unlike normal tau, is sedimentable and on self-assembly into PHF/SF, loses its ability to sequester normal MAPs. Some of the tau in AD brain is truncated which also promotes its self-assembly. Tau mutations found in frontotemporal dementia apparently promote its abnormal hyperphosphorylation. Thus, the AD abnormally hyperphosphorylated tau (1) is distinguishable from both normal and transiently hyperphosphorylated taus, and (2) is inhibitory when in a cytosolic/oligomeric state but not when it is self-assembled into PHF/SF. Inhibition of abnormal hyperphosphorylation of tau offers a promising therapeutic target for AD and related tauopathies.
Keywords:
Microtubule associated proteins, hyperphosphorylation of tau, microtubule assembly, neurofibrillary tangles, paired helical filaments, tau truncation, Alzheimer disease, paired helical filaments (PHF), straight filaments, tubulin, etiopathogenesis, neurodegeneration, tauopathies, chromosome, Parkinsonism, phosphocellulose chromatography, Neurotoxic State, tau, tautransgenic drosophila, methylthioninium chloride, anesthesia, hypothermia, hibernation, Down syndrome, polyglutamate, somatodendritic, ubiquitin-proteasome pathway, ubiquitination, proteasomes, lactacystin, oligodendrocytes, heatshock cognate, lithium, intronic mutations
Affiliation:
Department of Neurochemistry; New York State Institute for Basic Research in Developmental Disabilities; 1050 Forest Hill Road, Staten Island, New York 10314-6399; USA.