PET Imaging of Multidrug Resistance in Tumors Using 18F-Fluoropaclitaxel

Author(s): Karen A. Kurdziel, Dale O. Kiesewetter.

Journal Name: Current Topics in Medicinal Chemistry

Volume 10 , Issue 17 , 2010

Become EABM
Become Reviewer

Abstract:

The failure of solid tumors to respond to chemotherapy is a complicated and clinically frustrating issue. The ability to predict which tumors will respond to treatment could reduce the human and monetary costs of cancer therapy by allowing pro-active selection of a chemotherapeutic to which the tumor does not express resistance. PET/CT imaging with a radiolabeled form of paclitaxel, F-18 fluoropaclitaxel (FPAC), may be able to predict the uptake of paclitaxel in solid tumors, and as a substrate of P-glycoprotein, it may also predict which tumors exhibit multidrug resistance (MDR), a phenotype in which tumors fail to respond to a wide variety of chemically unrelated chemotherapeutic agents. This article reviews the synthetic, preclinical and early human data obtained during the development phase of this promising new radiopharmaceutical.

Keywords: Drug development, Molecular Imaging, F-18 fluoropaclitaxel, Multidrug resistance, Paclitaxel, PET, Pgp, PET Imaging, 18F-Fluoropaclitaxel, P-glycoprotein, Tumor cells, chemotherapeutic agent, ABC (ATP Binding Cassette), Pgp expression, Cytochrome p450, Taxus brevifolia, Taxus baccata, Docetaxel, b-tubulin, Phenylisoserine moiety, [99mTc] sestamibi, [99mTc] tetrofosmin, tariquidar, XR9576, microPET, Pgp inhibitor, [18F]FPAC DMSO, Human breast tumor cell line, Standardized uptake value, MCF tumors, MIRDOSE, MDR modulator, Pgp modulation

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 17
Year: 2010
Page: [1792 - 1798]
Pages: 7
DOI: 10.2174/156802610792928077
Price: $65

Article Metrics

PDF: 2