Current Protein & Peptide Science

Ben M. Dunn  
Department of Biochemistry and Molecular Biology University of Florida
College of Medicine, P.O. Box 100245, Gainesville
Florida, FL 32610-0245


Engineering the Protein Folding Landscape in Gram-Negative Bacteria

Author(s): Thomas J. Mansell, Adam C. Fisher, Matthew P. DeLisa.


Gram-negative bacteria, especially Escherichia coli, are often the preferred hosts for recombinant protein production because of their fast doubling times, ability to grow to high cell density, propensity for high recombinant protein titers and straightforward protein purification techniques. The utility of simple bacteria in such studies continues to improve as a result of an ever-increasing body of knowledge regarding their native protein biogenesis machinery. From translation on the ribosome to interaction with cytosolic accessory factors to transport across the inner membrane into the periplasmic space, cellular proteins interact with many different types of cellular machinery and each interaction can have a profound effect on the protein folding process. This review addresses key aspects of cellular protein folding, solubility and expression in E. coli with particular focus on the elegant biological machinery that orchestrates the transition from nascent polypeptide to folded, functional protein. Specifically highlighted are a variety of different techniques to intentionally alter the folding environment of the cell as a means to understand and engineer intracellular protein folding and stability.

Keywords: Protein engineering, chaperone engineering, protein folding, disulfide bonds, recombinant protein expression

Order Reprints Order Eprints Rights & PermissionsPrintExport

Article Details

Year: 2008
Page: [138 - 149]
Pages: 12
DOI: 10.2174/138920308783955243
Price: $58