Current Alzheimer Research

Debomoy K. Lahiri  
Department of Psychiatry, Indiana University School of Medicine
Neuroscience Research Center
Indianapolis, IN 46202


Oxidative Stress: The Old Enemy in Alzheimers Disease Pathophysiology

Author(s): Paula I. Moreira, Kazuhiro Honda, Quan Liu, Maria S. Santos, Catarina R. Oliveira, Gjumrakch Aliev, Akihiko Nunomura, Xiongwei Zhu, Mark A. Smith, George Perry.


The complex nature and genesis of oxidative damage in Alzheimer disease can be partly answered by mitochondrial and redox-active metal abnormalities. By releasing high levels of hydrogen peroxide, dysfunctional mitochondria propagate a series of interactions between redox-active metals and oxidative response elements. In the initial phase of disease development, amyloid-β deposition and hyperphosphorylated t may function as compensatory responses and downstream adaptations to ensure that neuronal cells do not succumb to oxidative injuries. However, during the progression of the disease, the antioxidant activity of both agents evolves into pro-oxidant activity representing a typical gain-offunction transformation, which can result from an increase in reactive species and a decrease in clearance mechanisms.

Keywords: alzheimer disease, amyloid-b, metal, mitochondria, oxidative stress

Order Reprints Order Eprints Rights & PermissionsPrintExport

Article Details

Year: 2005
Page: [403 - 408]
Pages: 6
DOI: 10.2174/156720505774330537
Price: $58