β-Barrel Membrane Bacterial Proteins: Structure, Function, Assembly and Interaction with Lipids

Author(s): Stefania Galdiero, Massimiliano Galdiero, Carlo Pedone.

Journal Name: Current Protein & Peptide Science

Volume 8 , Issue 1 , 2007

Submit Manuscript
Submit Proposal

Abstract:

Membrane proteins, although constituting about one-third of all proteins encoded by the genomes of living organisms, are still strongly underrepresented in the database of 3D protein structures, which reflects the big challenge presented by this class of proteins. Structural biologists, by employing electron and x-ray approaches, are continuously revealing new and fundamental insights into the structure, function, assembly and interaction with lipids of membrane proteins. To date, two structural motifs, α-helices and β-sheets, have been found in membrane proteins and interestingly these two structural motives correlate with the location: while α-helical bundles are most often found in the receptors and ion channels of plasma and endoplasmic reticulum membranes, β-barrels are restricted to the outer membrane of Gramnegative bacteria and in the mitochondrial membrane, and represent the structural motif used by several microbial toxins to form cytotoxic transmembrane channels. The β-barrel, while being a rigid and stable motif is a versatile scaffold, having a wide variation in the size of the barrel, in the mechanism to open or close the gate and to impose selectivity on substrates. Even if the number of x-ray structures of integral membrane proteins has greatly increased in recent years, only a few of them provide information at a molecular level on how proteins interact with lipids that surround them in the membrane. The detailed mechanism of protein lipid interactions is of fundamental importance for understanding membrane protein folding, membrane adsorption, insertion and function in lipid bilayers. Both specific and unspecific interactions with lipids may participate in protein folding and assembly.

Keywords: Structure, β-barrel, membrane protein, lipid

Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 8
ISSUE: 1
Year: 2007
Page: [63 - 82]
Pages: 20
DOI: 10.2174/138920307779941541

Article Metrics

PDF: 48