Current Computer-Aided Drug Design

Subhash C. Basak
Departments of Chemistry, Biochemistry & Molecular Biology University of Minnesota Duluth
Duluth, MN 55811
USA

Back

Current Drug Design of Anti-HIV Agents Through the Inhibition of C-C Chemokine Receptor Type 5

Author(s): Alejandro Speck-Planche, Maria Natalia Dias Soeiro Cordeiro.

Abstract:

Human immunodeficiency virus (HIV) is the responsible causal agent of acquired immunodeficiency syndrome (AIDS), a condition in humans in which the immune system begins to fail, allowing the entry of opportunistic infections. HIV infection in humans is considered pandemic by the World Health Organization (WHO). HIV needs to use a protein as a co-receptor to enter its target cells. Several chemokine receptors can in principle act as viral co-receptors, but the chemokine (C-C motif) receptor 5 (CCR5) is likely the most physiologically important co-receptor during natural infection. For this reason the development of new CCR5 inhibitors like anti-HIV agents, constitutes a challenge for the scientific community. The present review will focus on the current state of the design of novel anti-HIV drugs, and how the existing computer aided-drug design methodologies, have been effective in the search of new anti-HIV agents. In addition, a QSAR model based on substructural descirptors is presented as a rapid, rational and promising alternative for the discovery of anti-HIV agents through the inhibition of the CCR5.

Keywords: CCR5 inhibitors, QSAR, 3D-QSAR, anti-HIV, linear discriminant analysis, fragments, X-ray crystallography, NMR spectroscopy, molecular descriptors, drug design

Order Reprints Order Eprints Rights & PermissionsPrintExport

Article Details

VOLUME: 7
ISSUE: 4
Year: 2011
Page: [238 - 248]
Pages: 11
DOI: 10.2174/157340911798260287
Price: $58