The Intranasal Administration of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP): A New Rodent Model to Test Palliative and Neuroprotective Agents for Parkinsons disease

Author(s): Rui D. S. Prediger , Aderbal S. Aguiar , Eduardo L. G. Moreira , Filipe C. Matheus , Adalberto A. Castro , Roger Walz , Andreza F. De Bem , Alexandra Latini , Carla I. Tasca , Marcelo Farina , Rita Raisman-Vozari .

Journal Name: Current Pharmaceutical Design

Volume 17 , Issue 5 , 2011

Abstract:

Parkinsons disease (PD) is the second most common neurodegenerative disorder affecting approximately 1% of the population older than 60 years. Classically, PD is considered to be a motor system disease and its diagnosis is based on the presence of a set of cardinal motor signs that are consequence of a pronounced death of dopaminergic neurons in the substantia nigra pars compacta (SNc). Nowadays there is considerable evidence showing that non-dopaminergic degeneration also occurs in other brain areas which seems to be responsible for the deficits in olfactory, emotional and memory functions that precede the classical motor symptoms in PD. Dopaminereplacement therapy has dominated the treatment of PD and although the currently approved antiparkinsonian agents offer effective relief of the motor deficits, they have not been found to alleviate the non-motor features as well as the underlying dopaminergic neuron degeneration and thus drug efficacy is gradually lost. Another major limitation of chronic dopaminergic therapy is the numerous adverse effects such as dyskinesias, psychosis and behavioral disturbance. The development of new therapies in PD depends on the existence of representative animal models to facilitate the evaluation of new pharmacological agents before they are applied in clinical trials. We have recently proposed a new experimental model of PD consisting of a single intranasal (i.n.) administration of the proneurotoxin 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP, 1 mg/nostril) in rodents. Our findings demonstrated that rats and mice treated intranasally with MPTP suffer impairments in olfactory, cognitive, emotional and motor functions conceivably analogous to those observed during different stages of PD. Such infusion causes time-dependent loss of tyrosine hydroxylase in the olfactory bulb and SNc, resulting in significant dopamine depletion in different brain areas. We have also identified some pathogenic mechanisms possibly involved in the neurodegeneration induced by i.n. administration of MPTP including mitochondrial dysfunction, oxidative stress, activation of apoptotic cell death mechanisms and glutamatergic excitotoxicity. Therefore, the present review attempts to provide a comprehensive picture of the i.n. MPTP model and to highlight recent findings from our group showing its potential as a valuable rodent model for testing novel drugs that may provide alternative or adjunctive treatment for both motor and non-motor symptoms relief with a reduced side-effect profile as well as the discovery of compounds to modify the course of PD.

Keywords: Parkinson's disease, intranasal MPTP, motor symptoms, non-motor symptoms, behavior, pathogenic mechanisms, animal model, antiparkinsonian drugs screening

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 5
Year: 2011
Page: [489 - 507]
Pages: 19
DOI: 10.2174/138161211795164095
Price: $58

Article Metrics

PDF: 60