Current Drug Targets

Francis J. Castellino
Kleiderer-Pezold Professor of Biochemistry
Director, W.M. Keck Center for Transgene Research
Dean Emeritus, College of Science
230 Raclin-Carmichael Hall, University of Notre Dame
Notre Dame, IN 46556


Targeting Synthetic Lethality in DNA Damage Repair Pathways as an Anti-Cancer Strategy

Author(s): Benjamin J. Moeller, Wadih Arap and Renata Pasqualini

Affiliation: David H. Koch Center, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.

Keywords: Radiation, chemotherapy, DNA repair, double-strand break repair, non-homologous end joining, homologous recombination, Tumorigenesis, Homologous recobmination, Mutation, Tumor-specific phenotype, PARP inhibitor, BRCA-defective tumors, Translocation, Genetic mutation, Amplification, Oncogenic stress, Cytotoxic drugs, Radiomimetics, NHEJ, PARP proteins, PARP inhibitors, Biomarkers, Oncology


During the process of tumorigenesis, certain cancers are known to develop deficiencies in one or more major pathways of DNA damage repair, rendering them critically dependent on alternative repair processes for maintaining genomic integrity and viability. Targeting these alternative DNA repair mechanisms is a potentially highly-specific anticancer strategy, as their inhibition is theoretically toxic only to tumor cells and not to normal tissues. We will review here the rationale behind this strategy and provide examples of its application. We will also discuss several as yet unanswered questions surrounding this strategy, including whether human cancers frequently harbor synthetically lethal interactions in DNA repair and, if so, how patients might be identified who would benefit from targeting such interactions.

Order Reprints Order Eprints Rights & PermissionsPrintExport

Article Details

Page: [1336 - 1340]
Pages: 5
DOI: 10.2174/1389450111007011336