Current Cancer Drug Targets

Ruiwen Zhang 
Texas Tech University Health Sciences Center
1300 Coulter Drive
Amarillo, TX 79106


The Stress Response: Implications for the Clinical Development of Hsp90 Inhibitors

Author(s): Luke Whitesell, Rochelle Bagatell and Ryan Falsey

Affiliation: Department of Pediatrics, Heme / Oncology Section, Room 5341, Arizona Health Sciences Center,1501 N. Campbell Ave, Tucson, AZ 85724, USA.

Keywords: Hsp90, multi-chaperone, pharmacodynamic, heat shock gene


In their role as molecular chaperones, heat shock proteins serve as central integrators of protein homeostasis within cells. As part of this function, they guide the folding, assembly, intracellular disposition and proteolytic turnover of many key regulators of cell growth, differentiation and survival. Not surprisingly then, heat shock proteins are over expressed in many types of cancer, and induction of the stress response may actually be required for cells to tolerate the genetic disarray characteristic of malignant transformation. Regulation of heat shock protein levels via the stress response is complex, but recent data indicate that the molecular chaperone Hsp90 plays a key role. Specifically, Hsp90 inhibitors alter the multi-chaperone complexes associated with Heat Shock Factor 1 (HSF1), the dominant transcription factor controlling induction of the stress response, and stimulate HSF1-activated heat shock gene expression. Induction of this heat shock response has now emerged as an important consideration in the further clinical development of Hsp90 inhibitors for several reasons. First, tumors in which the stress response is compromised appear particularly sensitive to Hsp90 inhibition. Second, induction of the stress response by Hsp90 inhibitors provides a sensitive pharmacodynamic endpoint with which to monitor drug action in individual patients. Third, Hsp90 inhibitors display important therapeutic interactions with both conventional DNA-targeted chemotherapeutics and newer molecularly targeted agents. These interactions are, at least in part, due to modulation of the stress response by these drugs. Lastly, stress response induction by Hsp90 inhibitors may have therapeutic benefits in non-neoplastic disorders such as heart disease, stroke and neurodegenerative diseases. These benefits are just beginning to be explored.

Order Reprints Order Eprints Rights & PermissionsPrintExport

Article Details

Page: [349 - 358]
Pages: 10
DOI: 10.2174/1568009033481787