Conformational Analysis and Molecular Properties of N-(Substituted Phenylcarbonylamino)- 4-(1-Hydroxymethylphenyl)-1,2,3,6-Tetrahydropyridines

Author(s): Cosmas O. Okoro, Tiffany L. Wilson, Kinfe K. Redda.

Journal Name: Current Medicinal Chemistry

Volume 10 , Issue 4 , 2003

Become EABM
Become Reviewer


The three-dimensional structures of active derivatives of N-(substitutedphenylcarbonylamino)-4-(1- hydroxymethylphenyl)-1,2,3,6-tetrahydropyri-dines, which have previously been shown to possess antiinflammatory activities, were built using BIOMEDCAche 5.0 software program. In addition, the three dimensional structures of some of the inactive ones were similarly generated. The conformational analysis, molecular and electronic structures were examined by molecular mechanics and quantum mechanics calculations. The primary objective was to clarify the effects of physicochemical properties of substituents on activity, since the exact role of the substitution pattern on the phenyl ring is uncertain. In addition, the experimental log P values did not appear to have any influence on the anti-inflammatory potencies of these compounds, since compounds having differing lipid solubilities are equiactive. We found that strongly electron-donating group, such as the para-substituted methoxy group, detracts from activity. The conformational analysis indicated that the 4-ethyl derivative had the lowest energy conformation. Except for compound 1, which showed the lowest surface volume, compounds 2-9 had nearly similar surface volumes.

Keywords: phenylcarbonylamino, tetrahydropyridine, conformational, physicochemical, anti-inflammatory, eduiactive, electron-donating, surface volume, log p, mechanics

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2003
Page: [313 - 320]
Pages: 8
DOI: 10.2174/0929867033368303
Price: $58

Article Metrics

PDF: 1