Preparation and Characterization of Thiacalix[4]arene Coated Water-Soluble CdSe/ZnS Quantum Dots as a Fluorescent Probe for Cu2+ Ions

Author(s): Takashi Jin, Fumihiko Fujii, Eiji Yamada, Yoshinobu Nodasaka, Masataka Kinjo.

Journal Name: Combinatorial Chemistry & High Throughput Screening

Volume 10 , Issue 6 , 2007

Become EABM
Become Reviewer

Abstract:

Highly fluorescent water-soluble CdSe/ZnS (core/shell) quantum dots (QDs) as a fluorescent Cu2+ ion probe were synthesized using thiacalix[4]arene carboxylic acid (TCC) as a surface coating agent. Hydrophobic trioctylphosphine oxide (TOPO) capped CdSe/ZnS QDs were overcoated with TCC in tetrahydrofuran at room temperature, and deprotonation of the carboxyl groups of TCC resulted in the formation of water-soluble QDs. The surface structure of the QDs was characterized by using transmission electron microscopy (TEM) and fluorescence correlation spectroscopy (FCS). TEM images showed that TCC-coated QDs were monodispersed with the particle size (core-shell moiety) of approximately 5 nm. Hydrodynamic diameter of the TCC-coated QDs was determined to be 8.9 nm by FCS, showing that the thickness of the surface organic layer of the QDs was approximately 2 nm. These results indicate that the surface layer of TCC-coated QDs forms a bilayer structure consisting of TOPO and TCC molecules. TCC-coated CdSe/ZnS QDs were highly fluorescent (quantum yield, 0.21) compared to the QDs surface-modified with mercaptoacetic acid and mercaptoundecanoic acid. Fluorescence of the TCC-coated QDs was effectively quenched by Cu2+ ions even in the presence of other transition metal ions such as Cd2+, Zn2+, Co2+, Fe2+, and Fe3+ ions in the same solution. The Stern-Volmer plot for the fluorescence quenching by Cu2+ ions showed a linear relationship up to 30 μM of Cu2+ ions. The ion selectivity of TCC-coated QDs was determined by measurements of fluorescence responses towards biologically important transition metal ions (50 μM) including Fe2+, Fe3+, Co2+ > Zn2+, Cd2+. The fluorescence of TCC-coated QDs was almost insensitive to other biologically important ions such as Na+, K+, Mg2+, and Ca2+, suggesting that TCC-coated QDs can be used as a fluorescent Cu2+ ion probe for biological samples. A possible quenching mechanism by Cu2+ ions was also discussed on the basis of a Langmuir- type adsorption isotherm.

Keywords: Fluorescence, Cu2+ ion probe, quantum dot, semiconductor, surface-modification, thiacalixarene

Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 10
ISSUE: 6
Year: 2007
Page: [473 - 479]
Pages: 7
DOI: 10.2174/138620707781996466
Price: $58

Article Metrics

PDF: 1