Welcome SUNMEDIA CO. LTD.
Journal Image
Current Pharmaceutical Design
ISSN (Print): 1381-6128
ISSN (Online): 1873-4286
VOLUME: 13
ISSUE: 23
DOI: 10.2174/138161207781368693      Price:  $58









Molecular Pharmacology of the Glycine Receptor Chloride Channel

img
Author(s): Timothy I. Webb and Joseph W. Lynch
Pages 2350-2367 (18)
Abstract:
The glycine receptor (GlyR) Cl- channel belongs to the cysteine-loop family of ligand-gated ion channel receptors. It is best known for mediating inhibitory neurotransmission in motor and sensory reflex circuits of the spinal cord, although glycinergic synapses are also present in the brain stem, cerebellum and retina. Extrasynaptic GlyRs are widely distributed throughout the central nervous system and they are also found in sperm and macrophages. A total of 5 GlyR subunits (α1-4 and β) have been identified. Embryonic receptors comprise α2 homomers whereas adult receptors comprise predominantly α1β heteromers in a 2:3 stoichiometry. Notably, the α3 subunit is present in synaptic GlyRs that mediate inhibitory neurotransmission onto spinal nociceptive neurons. These receptors are specifically inhibited by inflammatory mediators, implying a role for α3-containing GlyRs in inflammatory pain sensitisation. Because molecules that increase GlyR current may have clinical potential as muscle relaxant and peripheral analgesic drugs, this review focuses on the molecular pharmacology of GlyR potentiating substances. Of all GlyR potentiating substances identified to date, we conclude that 5HT3R antagonists such as tropisetron offer the most promise as therapeutic lead compounds. However, one problem is that that virtually all known GlyR potentiating compounds, including tropisetron analogues, lack specificity for the GlyR. Another is that almost nothing is known about the pharmacological properties of α3-containing GlyRs, which is the subtype of choice for targeting by novel antinociceptive agents. These issues need to be addressed before GlyR-specific therapeutics can be developed.
Keywords:
Inhibitory neurotransmission, inflammatory pain, startle disease, hyperekplexia, glycinergic, cysteine-loop receptor family, therapeutic target
Affiliation:
School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.