Current Clinical Pharmacology

Arduino A. Mangoni
Flinders University and Flinders Medical Centre
Adelaide, SA


Clinical Pharmacogenomics of Thiopurine S-methyltransferase

Author(s): and Shufeng Zhou

Affiliation: Department of Pharmacy,Faculty of Science, National University of Singapore, Science Drive 4,Singapore 117543, Singapore


Thiopurine methyltransferase (TPMT) catalyzes the S-methylation of thiopurine drugs such as 6-mercaptopurine (6-MP), thioguanine and azathioprine (AZA). These drugs are used to treat conditions such as acutelymphoblastic leukemia, inflammatory bowel disease, rheumatoid arthritis, and organ transplant rejection. This reviewhighlights the polymorphisms of TPMT gene and their clinical impact on the use of thiopurine drugs. To date, there are 18known mutational TPMTalleles. The three main TPMT alleles, namely TPMT *2, *3A and *3C, account for 80 - 95% ofthe intermediate and low enzyme activity. The TPMT gene exhibits significant genetic polymorphisms among all ethnicgroups studied. Patientswho inherited very low levels of TPMT activity are at greatlyincreased risk for thiopurine-induced toxicity such as myelosuppression,when treated with standard doses of these drugs, while subjectswith very highactivity may be undertreated. Moreover, clinical drug interactions may occur due to TMPT induction or inhi bition.Identification of the TPMTmutant alleles allows physicians to tailor the dosage of the thiopurine drugs to the genotype ofthe patient or to use alternatives, improving therapeutic outcome

Keywords: Thiopurinemethyltransferase, Thiopurine, Single nucleotide polymorphism (SNP), Genetic polymorphism, toxicity

Order Reprints Order Eprints Rights & PermissionsPrintExport

Article Details

Page: [119 - 128]
Pages: 10
DOI: 10.2174/157488406784111627