Structural Failure Analysis and Prediction Methods for Aerospace Vehicles and Structures

Indexed in: Scopus, EBSCO.

This book deals with structural failure (induced by mechanical, aerodynamic, acoustic and aero-thermal, loads, etc.) of modern aerospace vehicles, in particular high-speed aircraft, solid propellant ...
[view complete introduction]

US $
30

*(Excluding Mailing and Handling)



Application of Refined Plate Theory to Fracture and Fatigue

Pp. 96-132 (37)

A. Kotousov and J. Codrington

Abstract

The work presented here is a compendium of theoretical results obtained by the authors between 2005 and 2009. Among these results are comprehensive analysis of the three-dimensional elastic stress and displacement fields near a tip of a through-the-thickness crack, generalization of the classical strip-yield model for plates having a finite thickness, and development of an analytical approach for calculating the plasticityinduced crack closure and crack growth rates at constant and variable amplitude loading. As an application of the developed approach, new predictive models of various non-linear fatigue crack growth phenomena in plates of finite thickness were developed. These include computational models of crack growth under small-scale yielding conditions and constant amplitude loading, growth of a fatigue crack emanating from a sharp notch, and crack growth retardation phenomenon following an overload cycle. All theoretical predictions were extensively compared with previous numerical and experimental studies demonstrating a great potential of the refined plate theory in the analysis of fracture and fatigue problems.

Affiliation:

School of Mechanical Engineering, the University of Adelaide, Australia