Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

Molecular Landscape of Lung Epithelium Contributes to High Severity and Comorbidities for COVID-19 and Lung Cancer

Author(s): Nilesh Kumar Sharma*, Sachin C Sarode, Gargi S Sarode and Shankargouda Patil

Volume 18, Issue 1, 2022

Published on: 05 July, 2021

Page: [2 - 6] Pages: 5

DOI: 10.2174/1573394717666210705115359

Price: $65

Abstract

The heterogeneous and complex nature of cancer is extensively revealed at molecular, genetic, and tissue microenvironment levels. Currently, co-occurrence of coronavirus disease 2019 (COVID-19) to lung cancer patients and severity of infections by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been understood at preclinical and clinical levels. However, molecular and cellular insights are not discussed in those papers that support the increased COVID-19 severity and comorbidities in several cancer types, including lung cancer patients. Therefore, this perspective highlights the basis of high severity and comorbidities among lung cancer patients infected by COVID-19 with an emphasis on translational aspects.

Keywords: Neoplasia, lung epithelial tissue, cellular signaling, COVID-19, lung, cancer, SARS-Cov-2.

Graphical Abstract
[1]
Ilikci Sagkan R, Akin-Bali DF. Structural variations and expression profiles of the SARS-CoV-2 host invasion genes in lung cancer. J Med Virol 2020; 92(11): 2637-47.
[http://dx.doi.org/10.1002/jmv.26107] [PMID: 32492203]
[2]
de Candia P, Prattichizzo F, Garavelli S, Matarese G. T cells: Warriors of SARS-CoV-2 infection. Trends Immunol 2021; 42(1): 18-30.
[http://dx.doi.org/10.1016/j.it.2020.11.002] [PMID: 33277181]
[3]
Fauci AS, Lane HC, Redfield RR. Covid-19 - Navigating the uncharted. N Engl J Med 2020; 382(13): 1268-9.
[http://dx.doi.org/10.1056/NEJMe2002387] [PMID: 32109011]
[4]
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[5]
Fuentes-Antrás J, Manzano A, Marquina G, et al. A snapshot of COVID-19 infection in patients with solid tumors. Int J Cancer 2020.
[http://dx.doi.org/10.1002/ijc.33420] [PMID: 33270902]
[6]
Kong Q, Xiang Z, Wu Y, Gu Y, Guo J, Geng F. Analysis of the susceptibility of lung cancer patients to SARS-CoV-2 infection. Mol Cancer 2020; 19(1): 80.
[http://dx.doi.org/10.1186/s12943-020-01209-2] [PMID: 32345328]
[7]
Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol 2020; 21(3): 335-7.
[http://dx.doi.org/10.1016/S1470-2045(20)30096-6] [PMID: 32066541]
[8]
Subbarayan K, Ulagappan K, Wickenhauser C, Seliger B. Expression and clinical significance of SARS-CoV-2 human targets in neoplastic and non-neoplastic lung tissues. Curr Cancer Drug Targets 2020.
[http://dx.doi.org/10.2174/1568009620666201207145019] [PMID: 33292131]
[9]
Turnquist C, Ryan BM, Horikawa I, Harris BT, Harris CC. Cytokine Storms in Cancer and COVID-19. Cancer Cell 2020; 38(5): 598-601.
[http://dx.doi.org/10.1016/j.ccell.2020.09.019] [PMID: 33038939]
[10]
Wang Q, Berger NA, Xu R. Analyses of risk, racial disparity, and outcomes among US patients with cancer and COVID-19 infection. JAMA Oncol 2021; 7(2): 220-7.
[http://dx.doi.org/10.1001/jamaoncol.2020.6178] [PMID: 33300956]
[11]
Zarifkar P, Kamath A, Robinson C, et al. Clinical characteristics and outcomes in patients with COVID-19 and cancer: A systematic review and meta-analysis. Clin Oncol (R Coll Radiol) 2021; 33(3): e180-91.
[http://dx.doi.org/10.1016/j.clon.2020.11.006] [PMID: 33261978]
[12]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[13]
Jia HP, Look DC, Shi L, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 2005; 79(23): 14614-21.
[http://dx.doi.org/10.1128/JVI.79.23.14614-14621.2005] [PMID: 16282461]
[14]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[15]
Gracia-Ramos AE. Is the ACE2 overexpression a risk factor for COVID-19 infection? Arch Med Res 2020; 51(4): 345-6.
[http://dx.doi.org/10.1016/j.arcmed.2020.03.011] [PMID: 32279908]
[16]
Winkler T, Ben-David U. Elevated expression of ACE2 in tumor-adjacent normal tissues of cancer patients. Int J Cancer 2020; 147(11): 3264-6.
[http://dx.doi.org/10.1002/ijc.33145] [PMID: 32525565]
[17]
Zhang H, Quek K, Chen R, Chen J, Chen B. Expression of the SAR2-Cov-2 receptor ACE2 reveals the susceptibility of COVID-19 in non-small cell lung cancer. J Cancer 2020; 11(18): 5289-92.
[http://dx.doi.org/10.7150/jca.49462] [PMID: 32742475]
[18]
Mahmood TB, Chowdhury AS, Hossain MU, et al. Evaluation of the susceptibility and fatality of lung cancer patients towards the COVID-19 infection: A systemic approach through analyzing the ACE2, CXCL10 and their co-expressed genes. Curr Res Microb Sci 2021; 2: 100022.
[http://dx.doi.org/10.1016/j.crmicr.2021.100022] [PMID: 33585826]
[19]
Song J, Han J, Liu F, et al. Systematic analysis of coronavirus disease 2019 (COVID-19) receptor ACE2 in malignant tumors: Pan-cancer analysis. Front Mol Biosci 2020; 7: 569414.
[http://dx.doi.org/10.3389/fmolb.2020.569414] [PMID: 33195415]
[20]
Lukassen S, Chua RL, Trefzer T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J 2020; 39(10): e105114.
[http://dx.doi.org/10.15252/embj.2020105114] [PMID: 32246845]
[21]
Piva F, Sabanovic B, Cecati M, Giulietti M. Expression and co-expression analyses of TMPRSS2, a key element in COVID-19. Eur J Clin Microbiol Infect Dis 2020; 27: 1-5.
[PMID: 33245471]
[22]
Schuler BA, Habermann AC, Plosa EJ, et al. Age-determined expression of priming protease TMPRSS2 and localization of SARS-CoV-2 in lung epithelium. J Clin Invest 2021; 131(1): 140766.
[http://dx.doi.org/10.1172/JCI140766] [PMID: 33180746]
[23]
Thunders M, Delahunt B. Gene of the month: TMPRSS2 (transmembrane serine protease 2). J Clin Pathol 2020; 73(12): 773-6.
[http://dx.doi.org/10.1136/jclinpath-2020-206987] [PMID: 32873700]
[24]
Zipeto D, Palmeira JDF, Argañaraz GA, Argañaraz ER. ACE2/ADAM17/TMPRSS2 interplay may be the main risk factor for COVID-19. Front Immunol 2020; 11: 576745.
[http://dx.doi.org/10.3389/fimmu.2020.576745] [PMID: 33117379]
[25]
Dai YJ, Zhang WN, Wang WD, He SY, Liang CC, Wang DW. Comprehensive analysis of two potential novel SARS-CoV-2 entries, TMPRSS2 and IFITM3, in healthy individuals and cancer patients. Int J Biol Sci 2020; 16(15): 3028-36.
[http://dx.doi.org/10.7150/ijbs.51234] [PMID: 33061814]
[26]
Ravaioli S, Tebaldi M, Fonzi E, et al. ACE2 and TMPRSS2 potential involvement in genetic susceptibility to SARS-COV-2 in cancer patients. Cell Transplant 2020; 29: 963689720968749.
[http://dx.doi.org/10.1177/0963689720968749] [PMID: 33108902]
[27]
Bao R, Hernandez K, Huang L, Luke JJ. ACE2 and TMPRSS2 expression by clinical, HLA, immune, and microbial correlates across 34 human cancers and matched normal tissues: Implications for SARS-CoV-2 COVID-19. J Immunother Cancer 2020; 8(2): e001020.
[http://dx.doi.org/10.1136/jitc-2020-001020] [PMID: 32675312]
[28]
Afshari A, Janfeshan S, Yaghobi R, Roozbeh J, Azarpira N. Covid-19 pathogenesis in prostatic cancer and TMPRSS2-ERG regulatory genetic pathway. Infect Genet Evol 2021; 88: 104669.
[http://dx.doi.org/10.1016/j.meegid.2020.104669] [PMID: 33301988]
[29]
Broman N, Rantasärkkä K, Feuth T, et al. IL-6 and other biomarkers as predictors of severity in COVID-19. Ann Med 2020; 11: 1-5.
[PMID: 33305624]
[30]
Patra T, Meyer K, Geerling L, et al. SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathog 2020; 16(12): e1009128.
[http://dx.doi.org/10.1371/journal.ppat.1009128] [PMID: 33284859]
[31]
Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med 2020; 383(23): 2255-73.
[http://dx.doi.org/10.1056/NEJMra2026131] [PMID: 33264547]
[32]
Shang GS, Liu L, Qin YW. IL-6 and TNF-α promote metastasis of lung cancer by inducing epithelial-mesenchymal transition. Oncol Lett 2017; 13(6): 4657-60.
[http://dx.doi.org/10.3892/ol.2017.6048] [PMID: 28599466]
[33]
Shimabukuro-Vornhagen A, Gödel P, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer 2018; 6(1): 56-69.
[http://dx.doi.org/10.1186/s40425-018-0343-9] [PMID: 29907163]
[34]
Bezel P, Valaperti A, Steiner U, et al. Evaluation of cytokines in the tumor microenvironment of lung cancer using bronchoalveolar lavage fluid analysis. Cancer Immunol Immunother 2021; 70(7): 1867-76.
[http://dx.doi.org/10.1007/s00262-020-02798-z] [PMID: 33394095]
[35]
Tang J, Ramis-Cabrer D, Curull V, et al. Immune cell subtypes and cytokines in lung tumor microenvironment: Influence of COPD. Cancers (Basel) 2020; 12(5): 1217.
[http://dx.doi.org/10.3390/cancers12051217] [PMID: 32414037]
[36]
Guo R, Li Y, Wang Z, et al. Hypoxia-inducible factor-1α and nuclear factor-κB play important roles in regulating programmed cell death ligand 1 expression by epidermal growth factor receptor mutants in non-small-cell lung cancer cells. Cancer Sci 2019; 110(5): 1665-75.
[http://dx.doi.org/10.1111/cas.13989] [PMID: 30844110]
[37]
Reiterer M, Colaço R, Emrouznejad P, et al. Acute and chronic hypoxia differentially predispose lungs for metastases. Sci Rep 2019; 9(1): 10246.
[http://dx.doi.org/10.1038/s41598-019-46763-y] [PMID: 31308473]
[38]
Jahani M, Dokaneheifard S, Mansouri K. Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J Inflamm (Lond) 2020; 17: 33.
[http://dx.doi.org/10.1186/s12950-020-00263-3] [PMID: 33139969]
[39]
Gupta I, Rizeq B, Elkord E, Vranic S, Al Moustafa AE. SARS- CoV-2 infection and lung cancer: Potential therapeutic modalities. Cancers (Basel) 2020; 12(8): 2186.
[http://dx.doi.org/10.3390/cancers12082186] [PMID: 32764454]
[40]
Monteleone G, Sarzi-Puttini PC, Ardizzone S. Preventing COVID-19-induced pneumonia with anticytokine therapy. Lancet Rheumatol 2020; 2(5): e255-6.
[http://dx.doi.org/10.1016/S2665-9913(20)30092-8] [PMID: 32368737]
[41]
Qu J, Mei Q, Chen L, Zhou J. Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): Current status and future perspectives. Cancer Immunol Immunother 2021; 70(3): 619-31.
[http://dx.doi.org/10.1007/s00262-020-02735-0] [PMID: 33025047]
[42]
Roschewski M, Lionakis MS, Sharman JP, et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci Immunol 2020; 5(48): eabd0110.
[http://dx.doi.org/10.1126/sciimmunol.abd0110] [PMID: 32503877]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy