Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Re-Sensitizing Tumor Cells to Cancer Drugs with Epigenetic Regulators

Author(s): Stefanie Rauscher, Richard Greil and Roland Geisberger*

Volume 21, Issue 4, 2021

Published on: 07 January, 2021

Page: [353 - 359] Pages: 7

DOI: 10.2174/1568009620666210108102723

open access plus

Abstract

Cancer drug resistance is a major problem for cancer therapy. While many drugs can be effective in first-line treatments, cancer cells can become resistant due to genetic (mutations and chromosomal aberrations) but also epigenetic changes. Hence, many research studies addressed epigenetic drugs in circumventing resistance to conventional therapeutics in different tumor entities and in increasing the efficiency of immune checkpoint therapies. Furthermore, repositioning of already approved drugs in combination with epigenetic modifiers could potentiate their efficacy and thus could be an attractive strategy for cancer treatment. Summarizing, we recapitulate current data on epigenetic drugs and their targets in modulating sensitivity towards conventional and immune therapies, providing evidence that altering expression profiles by epigenetic modifiers holds great potential to improve the clinical outcome of cancer patients.

Keywords: Cancer drug resistance, epigenetic drugs, DNA methylation, histone modification, re-sensitizing, combinatorial treatments.

Graphical Abstract
[1]
Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis, 2010, 31(1), 27-36.
[http://dx.doi.org/10.1093/carcin/bgp220] [PMID: 19752007]
[2]
Putiri, E.L.; Robertson, K.D. Epigenetic mechanisms and genome stability. Clin. Epigenetics, 2011, 2(2), 299-314.
[http://dx.doi.org/10.1007/s13148-010-0017-z] [PMID: 21927626]
[3]
Ducasse, M.; Brown, M.A. Epigenetic aberrations and cancer. Mol. Cancer, 2006, 5, 60.
[http://dx.doi.org/10.1186/1476-4598-5-60] [PMID: 17092350]
[4]
Esteller, M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene, 2002, 21(35), 5427-5440.
[http://dx.doi.org/10.1038/sj.onc.1205600] [PMID: 12154405]
[5]
Estécio, M.R.; Issa, J.P. Dissecting DNA hypermethylation in cancer. FEBS Lett., 2011, 585(13), 2078-2086.
[http://dx.doi.org/10.1016/j.febslet.2010.12.001] [PMID: 21146531]
[6]
Yang, X.; Han, H.; De Carvalho, D.D.; Lay, F.D.; Jones, P.A.; Liang, G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell, 2014, 26(4), 577-590.
[http://dx.doi.org/10.1016/j.ccr.2014.07.028] [PMID: 25263941]
[7]
Lu, Y.; Chan, Y.T.; Tan, H.Y.; Li, S.; Wang, N.; Feng, Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol. Cancer, 2020, 19(1), 79.
[http://dx.doi.org/10.1186/s12943-020-01197-3] [PMID: 32340605]
[8]
Jones, P.A. The DNA methylation paradox. Trends Genet., 1999, 15(1), 34-37.
[http://dx.doi.org/10.1016/S0168-9525(98)01636-9] [PMID: 10087932]
[9]
Wolff, F.; Leisch, M.; Greil, R.; Risch, A.; Pleyer, L. The double-edged sword of (re)expression of genes by hypomethylating agents: from viral mimicry to exploitation as priming agents for targeted immune checkpoint modulation. Cell Commun. Signal., 2017, 15(1), 13.
[http://dx.doi.org/10.1186/s12964-017-0168-z] [PMID: 28359286]
[10]
Pleyer, L.; Greil, R. Digging deep into “dirty” drugs - modulation of the methylation machinery. Drug Metab. Rev., 2015, 47(2), 252-279.
[http://dx.doi.org/10.3109/03602532.2014.995379] [PMID: 25566693]
[11]
Van, H.T.; Santos, M.A. Histone modifications and the DNA double-strand break response. Cell Cycle, 2018, 17(21-22), 2399-2410.
[http://dx.doi.org/10.1080/15384101.2018.1542899] [PMID: 30394812]
[12]
Audia, J.E.; Campbell, R.M. Histone Modifications and Cancer. Cold Spring Harb. Perspect. Biol., 2016, 8(4), a019521.
[http://dx.doi.org/10.1101/cshperspect.a019521] [PMID: 27037415]
[13]
Jones, P.A.; Issa, J.P.; Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet., 2016, 17(10), 630-641.
[http://dx.doi.org/10.1038/nrg.2016.93] [PMID: 27629931]
[14]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone Deacetylase Inhibitors as Anticancer Drugs. Int. J. Mol. Sci., 2017, 18(7), E1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[15]
Silverman, L.R.; Demakos, E.P.; Peterson, B.L.; Kornblith, A.B.; Holland, J.C.; Odchimar-Reissig, R.; Stone, R.M.; Nelson, D.; Powell, B.L.; DeCastro, C.M.; Ellerton, J.; Larson, R.A.; Schiffer, C.A.; Holland, J.F. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol., 2002, 20(10), 2429-2440.
[http://dx.doi.org/10.1200/JCO.2002.04.117] [PMID: 12011120]
[16]
Pleyer, L.; Burgstaller, S.; Stauder, R.; Girschikofsky, M.; Sill, H.; Schlick, K.; Thaler, J.; Halter, B.; Machherndl-Spandl, S.; Zebisch, A.; Pichler, A.; Pfeilstöcker, M.; Autzinger, E.M.; Lang, A.; Geissler, K.; Voskova, D.; Geissler, D.; Sperr, W.R.; Hojas, S.; Rogulj, I.M.; Andel, J.; Greil, R. Azacitidine front-line in 339 patients with myelodysplastic syndromes and acute myeloid leukaemia: comparison of French-American-British and World Health Organization classifications. J. Hematol. Oncol., 2016, 9, 39.
[http://dx.doi.org/10.1186/s13045-016-0263-4] [PMID: 27084507]
[17]
Kantarjian, H.; Issa, J.P.; Rosenfeld, C.S.; Bennett, J.M.; Albitar, M.; DiPersio, J.; Klimek, V.; Slack, J.; de Castro, C.; Ravandi, F.; Helmer, R., III; Shen, L.; Nimer, S.D.; Leavitt, R.; Raza, A.; Saba, H. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer, 2006, 106(8), 1794-1803.
[http://dx.doi.org/10.1002/cncr.21792] [PMID: 16532500]
[18]
McDermott, J.; Jimeno, A. Belinostat for the treatment of peripheral T-cell lymphomas. Drugs Today (Barc), 2014, 50(5), 337-345.
[http://dx.doi.org/10.1358/dot.2014.50.5.2138703] [PMID: 24918834]
[19]
Richardson, P.G.; Laubach, J.P.; Lonial, S.; Moreau, P.; Yoon, S.S.; Hungria, V.T.; Dimopoulos, M.A.; Beksac, M.; Alsina, M.; San-Miguel, J.F. Panobinostat: a novel pan-deacetylase inhibitor for the treatment of relapsed or relapsed and refractory multiple myeloma. Expert Rev. Anticancer Ther., 2015, 15(7), 737-748.
[http://dx.doi.org/10.1586/14737140.2015.1047770] [PMID: 26051506]
[20]
Frye, R.; Myers, M.; Axelrod, K.C.; Ness, E.A.; Piekarz, R.L.; Bates, S.E.; Booher, S. Romidepsin: a new drug for the treatment of cutaneous T-cell lymphoma. Clin. J. Oncol. Nurs., 2012, 16(2), 195-204.
[http://dx.doi.org/10.1188/12.CJON.195-204] [PMID: 22459529]
[21]
Mann, B.S.; Johnson, J.R.; Cohen, M.H.; Justice, R.; Pazdur, R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist, 2007, 12(10), 1247-1252.
[http://dx.doi.org/10.1634/theoncologist.12-10-1247] [PMID: 17962618]
[22]
Cheng, Y.; He, C.; Wang, M.; Ma, X.; Mo, F.; Yang, S.; Han, J.; Wei, X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct. Target. Ther., 2019, 4, 62.
[http://dx.doi.org/10.1038/s41392-019-0095-0] [PMID: 31871779]
[23]
Cuyàs, E.; Gumuzio, J.; Verdura, S.; Brunet, J.; Bosch-Barrera, J.; Martin-Castillo, B.; Alarcón, T.; Encinar, J.A.; Martin, Á.G.; Menendez, J.A. The LSD1 inhibitor iadademstat (ORY-1001) targets SOX2-driven breast cancer stem cells: a potential epigenetic therapy in luminal-B and HER2-positive breast cancer subtypes. Aging (Albany NY), 2020, 12(6), 4794-4814.
[http://dx.doi.org/10.18632/aging.102887] [PMID: 32191225]
[24]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[25]
Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5), 861-872.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[26]
Takeda, K.; Mizushima, T.; Yokoyama, Y.; Hirose, H.; Wu, X.; Qian, Y.; Ikehata, K.; Miyoshi, N.; Takahashi, H.; Haraguchi, N.; Hata, T.; Matsuda, C.; Doki, Y.; Mori, M.; Yamamoto, H. Sox2 is associated with cancer stem-like properties in colorectal cancer. Sci. Rep., 2018, 8(1), 17639.
[http://dx.doi.org/10.1038/s41598-018-36251-0] [PMID: 30518951]
[27]
Ravindran Menon, D.; Luo, Y.; Arcaroli, J.J.; Liu, S.; KrishnanKutty, L.N.; Osborne, D.G.; Li, Y.; Samson, J.M.; Bagby, S.; Tan, A.C.; Robinson, W.A.; Messersmith, W.A.; Fujita, M. CDK1 Interacts with Sox2 and Promotes Tumor Initiation in Human Melanoma. Cancer Res., 2018, 78(23), 6561-6574.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0330] [PMID: 30297536]
[28]
Chen, Y.; Jie, W.; Yan, W.; Zhou, K.; Xiao, Y. Lysine-specific histone demethylase 1 (LSD1): A potential molecular target for tumor therapy. Crit. Rev. Eukaryot. Gene Expr., 2012, 22(1), 53-59.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v22.i1.40] [PMID: 22339659]
[29]
Zhang, X.; Lu, F.; Wang, J.; Yin, F.; Xu, Z.; Qi, D.; Wu, X.; Cao, Y.; Liang, W.; Liu, Y.; Sun, H.; Ye, T.; Zhang, H. Pluripotent stem cell protein Sox2 confers sensitivity to LSD1 inhibition in cancer cells. Cell Rep., 2013, 5(2), 445-457.
[http://dx.doi.org/10.1016/j.celrep.2013.09.018] [PMID: 24139802]
[30]
Benedetti, R.; Dell’Aversana, C.; De Marchi, T.; Rotili, D.; Liu, N.Q.; Novakovic, B.; Boccella, S.; Di Maro, S.; Cosconati, S.; Baldi, A.; Niméus, E.; Schultz, J.; Höglund, U.; Maione, S.; Papulino, C.; Chianese, U.; Iovino, F.; Federico, A.; Mai, A.; Stunnenberg, H.G.; Nebbioso, A.; Altucci, L. Inhibition of Histone Demethylases LSD1 and UTX Regulates ERα Signaling in Breast Cancer. Cancers (Basel), 2019, 11(12), E2027.
[http://dx.doi.org/10.3390/cancers11122027] [PMID: 31888209]
[31]
Reinert, T.; Saad, E.D.; Barrios, C.H.; Bines, J. Clinical implications of ESR1 mutations in hormone receptor-positive advanced breast cancer. Front. Oncol., 2017, 7, 26.
[http://dx.doi.org/10.3389/fonc.2017.00026] [PMID: 28361033]
[32]
Siefker-Radtke, A.O. Surgical consolidation of initially unresectable urothelial carcinoma: an incremental opportunity to cure. Expert Rev. Anticancer Ther., 2009, 9(12), 1701-1703.
[http://dx.doi.org/10.1586/era.09.146] [PMID: 19954279]
[33]
Ryu, H.; Jin, H.; Ho, J.N.; Bae, J.; Lee, E.; Lee, S.E.; Lee, S. Suberoylanilide hydroxamic acid can re-sensitize a cisplatin-resistant human bladder cancer. Biol. Pharm. Bull., 2019, 42(1), 66-72.
[http://dx.doi.org/10.1248/bpb.b18-00545] [PMID: 30606990]
[34]
Komatsu, S.; Moriya, S.; Che, X.F.; Yokoyama, T.; Kohno, N.; Miyazawa, K. Combined treatment with SAHA, bortezomib, and clarithromycin for concomitant targeting of aggresome formation and intracellular proteolytic pathways enhances ER stress-mediated cell death in breast cancer cells. Biochem. Biophys. Res. Commun., 2013, 437(1), 41-47.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.032] [PMID: 23792097]
[35]
Jin, K.L.; Park, J.Y.; Noh, E.J.; Hoe, K.L.; Lee, J.H.; Kim, J.H.; Nam, J.H. The effect of combined treatment with cisplatin and histone deacetylase inhibitors on HeLa cells. J. Gynecol. Oncol., 2010, 21(4), 262-268.
[http://dx.doi.org/10.3802/jgo.2010.21.4.262] [PMID: 21278889]
[36]
Warrener, R.; Beamish, H.; Burgess, A.; Waterhouse, N.J.; Giles, N.; Fairlie, D.; Gabrielli, B. Tumor cell-selective cytotoxicity by targeting cell cycle checkpoints. FASEB J., 2003, 17(11), 1550-1552.
[http://dx.doi.org/10.1096/fj.02-1003fje] [PMID: 12824307]
[37]
Fang, F.; Balch, C.; Schilder, J.; Breen, T.; Zhang, S.; Shen, C.; Li, L.; Kulesavage, C.; Snyder, A.J.; Nephew, K.P.; Matei, D.E. A phase 1 and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer. Cancer, 2010, 116(17), 4043-4053.
[http://dx.doi.org/10.1002/cncr.25204] [PMID: 20564122]
[38]
Fang, F.; Munck, J.; Tang, J.; Taverna, P.; Wang, Y.; Miller, D.F.; Pilrose, J.; Choy, G.; Azab, M.; Pawelczak, K.S.; VanderVere- Carozza, P.; Wagner, M.; Lyons, J.; Matei, D.; Turchi, J.J.; Nephew, K.P. The novel, small-molecule DNA methylation inhibitor SGI-110 as an ovarian cancer chemosensitizer. Clin. Cancer Res., 2014, 20(24), 6504-6516.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1553] [PMID: 25316809]
[39]
Fang, F.; Zuo, Q.; Pilrose, J.; Wang, Y.; Shen, C.; Li, M.; Wulfridge, P.; Matei, D.; Nephew, K.P. Decitabine reactivated pathways in platinum resistant ovarian cancer. Oncotarget, 2014, 5(11), 3579-3589.
[http://dx.doi.org/10.18632/oncotarget.1961] [PMID: 25003579]
[40]
Matei, D.; Fang, F.; Shen, C.; Schilder, J.; Arnold, A.; Zeng, Y.; Berry, W.A.; Huang, T.; Nephew, K.P. Epigenetic resensitization to platinum in ovarian cancer. Cancer Res., 2012, 72(9), 2197-2205.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3909] [PMID: 22549947]
[41]
Jiang, Z.; Li, W.; Hu, X.; Zhang, Q.; Sun, T.; Cui, S.; Wang, S.; Ouyang, Q.; Yin, Y.; Geng, C.; Tong, Z.; Cheng, Y.; Pan, Y.; Sun, Y.; Wang, H.; Ouyang, T.; Gu, K.; Feng, J.; Wang, X.; Wang, S.; Liu, T.; Gao, J.; Cristofanilli, M.; Ning, Z.; Lu, X. Tucidinostat plus exemestane for postmenopausal patients with advanced, hormone receptor-positive breast cancer (ACE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol., 2019, 20(6), 806-815.
[http://dx.doi.org/10.1016/S1470-2045(19)30164-0] [PMID: 31036468]
[42]
Raynal, N.J.; Da Costa, E.M.; Lee, J.T.; Gharibyan, V.; Ahmed, S.; Zhang, H.; Sato, T.; Malouf, G.G.; Issa, J.J. Repositioning FDA-Approved Drugs in Combination with Epigenetic Drugs to Reprogram Colon Cancer Epigenome. Mol. Cancer Ther., 2017, 16(2), 397-407.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0588] [PMID: 27980103]
[43]
Si, J.; Boumber, Y.A.; Shu, J.; Qin, T.; Ahmed, S.; He, R.; Jelinek, J.; Issa, J.P. Chromatin remodeling is required for gene reactivation after decitabine-mediated DNA hypomethylation. Cancer Res., 2010, 70(17), 6968-6977.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4474] [PMID: 20713525]
[44]
Raynal, N.J.; Si, J.; Taby, R.F.; Gharibyan, V.; Ahmed, S.; Jelinek, J.; Estécio, M.R.; Issa, J.P. DNA methylation does not stably lock gene expression but instead serves as a molecular mark for gene silencing memory. Cancer Res., 2012, 72(5), 1170-1181.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3248] [PMID: 22219169]
[45]
Renaud, S.; Loukinov, D.; Abdullaev, Z.; Guilleret, I.; Bosman, F.T.; Lobanenkov, V.; Benhattar, J. Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene. Nucleic Acids Res., 2007, 35(4), 1245-1256.
[http://dx.doi.org/10.1093/nar/gkl1125] [PMID: 17267411]
[46]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[47]
Pestana, A.; Vinagre, J.; Sobrinho-Simões, M.; Soares, P. TERT biology and function in cancer: beyond immortalisation. J. Mol. Endocrinol., 2017, 58(2), R129-R146.
[http://dx.doi.org/10.1530/JME-16-0195] [PMID: 28057768]
[48]
Devereux, T.R.; Horikawa, I.; Anna, C.H.; Annab, L.A.; Afshari, C.A.; Barrett, J.C. DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene. Cancer Res., 1999, 59(24), 6087-6090.
[PMID: 10626795]
[49]
Guilleret, I.; Benhattar, J. Unusual distribution of DNA methylation within the hTERT CpG island in tissues and cell lines. Biochem. Biophys. Res. Commun., 2004, 325(3), 1037-1043.
[http://dx.doi.org/10.1016/j.bbrc.2004.10.137] [PMID: 15541393]
[50]
Guilleret, I.; Yan, P.; Grange, F.; Braunschweig, R.; Bosman, F.T.; Benhattar, J. Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int. J. Cancer, 2002, 101(4), 335-341.
[http://dx.doi.org/10.1002/ijc.10593] [PMID: 12209957]
[51]
Renaud, S.; Loukinov, D.; Bosman, F.T.; Lobanenkov, V.; Benhattar, J. CTCF binds the proximal exonic region of hTERT and inhibits its transcription. Nucleic Acids Res., 2005, 33(21), 6850-6860.
[http://dx.doi.org/10.1093/nar/gki989] [PMID: 16326864]
[52]
Dessain, S.K.; Yu, H.; Reddel, R.R.; Beijersbergen, R.L.; Weinberg, R.A. Methylation of the human telomerase gene CpG island. Cancer Res., 2000, 60(3), 537-541.
[PMID: 10676632]
[53]
Guilleret, I.; Benhattar, J. Demethylation of the human telomerase catalytic subunit (hTERT) gene promoter reduced hTERT expression and telomerase activity and shortened telomeres. Exp. Cell Res., 2003, 289(2), 326-334.
[http://dx.doi.org/10.1016/S0014-4827(03)00281-7] [PMID: 14499633]
[54]
Kitagawa, Y.; Kyo, S.; Takakura, M.; Kanaya, T.; Koshida, K.; Namiki, M.; Inoue, M. Demethylating reagent 5-azacytidine inhibits telomerase activity in human prostate cancer cells through transcriptional repression of hTERT. Clin. Cancer Res., 2000, 6(7), 2868-2875.
[PMID: 10914736]
[55]
Kumakura, S.; Tsutsui, T.W.; Yagisawa, J.; Barrett, J.C.; Tsutsui, T. Reversible conversion of immortal human cells from telomerase-positive to telomerase-negative cells. Cancer Res., 2005, 65(7), 2778-2786.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1819] [PMID: 15805278]
[56]
Azouz, A.; Wu, Y.L.; Hillion, J.; Tarkanyi, I.; Karniguian, A.; Aradi, J.; Lanotte, M.; Chen, G.Q.; Chehna, M.; Ségal-Bendirdjian, E. Epigenetic plasticity of hTERT gene promoter determines retinoid capacity to repress telomerase in maturation-resistant acute promyelocytic leukemia cells. Leukemia, 2010, 24(3), 613-622.
[http://dx.doi.org/10.1038/leu.2009.283] [PMID: 20072159]
[57]
Losi, L.; Lauriola, A.; Tazzioli, E.; Gozzi, G.; Scurani, L.; D’Arca, D.; Benhattar, J. Involvement of epigenetic modification of TERT promoter in response to all-trans retinoic acid in ovarian cancer cell lines. J. Ovarian Res., 2019, 12(1), 62.
[http://dx.doi.org/10.1186/s13048-019-0536-y] [PMID: 31291979]
[58]
Darvin, P.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp. Mol. Med., 2018, 50(12), 1-11.
[http://dx.doi.org/10.1038/s12276-018-0191-1] [PMID: 30546008]
[59]
Sasidharan Nair, V.; El Salhat, H.; Taha, R.Z.; John, A.; Ali, B.R.; Elkord, E. DNA methylation and repressive H3K9 and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer. Clin. Epigenetics, 2018, 10, 78.
[http://dx.doi.org/10.1186/s13148-018-0512-1] [PMID: 29983831]
[60]
Ghoneim, H.E. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell, 2017, 170(1), 142-157.
[61]
Luo, N.; Nixon, M.J.; Gonzalez-Ericsson, P.I.; Sanchez, V.; Opalenik, S.R.; Li, H.; Zahnow, C.A.; Nickels, M.L.; Liu, F.; Tantawy, M.N.; Sanders, M.E.; Manning, H.C.; Balko, J.M. DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer. Nat. Commun., 2018, 9(1), 248.
[http://dx.doi.org/10.1038/s41467-017-02630-w] [PMID: 29339738]
[62]
Marwitz, S.; Scheufele, S.; Perner, S.; Reck, M.; Ammerpohl, O.; Goldmann, T. Epigenetic modifications of the immune-checkpoint genes CTLA4 and PDCD1 in non-small cell lung cancer results in increased expression. Clin. Epigenetics, 2017, 9, 51.
[http://dx.doi.org/10.1186/s13148-017-0354-2] [PMID: 28503213]
[63]
Yang, H.; Bueso-Ramos, C.; DiNardo, C.; Estecio, M.R.; Davanlou, M.; Geng, Q.R.; Fang, Z.; Nguyen, M.; Pierce, S.; Wei, Y.; Parmar, S.; Cortes, J.; Kantarjian, H.; Garcia-Manero, G. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia, 2014, 28(6), 1280-1288.
[http://dx.doi.org/10.1038/leu.2013.355] [PMID: 24270737]
[64]
Ørskov, A.D.; Treppendahl, M.B.; Skovbo, A.; Holm, M.S.; Friis, L.S.; Hokland, M.; Grønbæk, K. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: A rationale for combined targeting of PD-1 and DNA methylation. Oncotarget, 2015, 6(11), 9612-9626.
[http://dx.doi.org/10.18632/oncotarget.3324] [PMID: 25823822]
[65]
Bally, A.P.; Austin, J.W.; Boss, J.M. Genetic and epigenetic regulation of PD-1 expression. J. Immunol., 2016, 196(6), 2431-2437.
[http://dx.doi.org/10.4049/jimmunol.1502643] [PMID: 26945088]
[66]
Goltz, D.; Gevensleben, H.; Vogt, T.J.; Dietrich, J.; Golletz, C.; Bootz, F.; Kristiansen, G.; Landsberg, J.; Dietrich, D. CTLA4 methylation predicts response to anti-PD-1 and anti-CTLA-4 immunotherapy in melanoma patients. JCI Insight, 2018, 3(13), 96793.
[http://dx.doi.org/10.1172/jci.insight.96793] [PMID: 29997292]
[67]
Sun, F.; Li, L.; Yan, P.; Zhou, J.; Shapiro, S.D.; Xiao, G.; Qu, Z. Causative role of PDLIM2 epigenetic repression in lung cancer and therapeutic resistance. Nat. Commun., 2019, 10(1), 5324.
[http://dx.doi.org/10.1038/s41467-019-13331-x] [PMID: 31757943]
[68]
Qu, Z.; Fu, J.; Yan, P.; Hu, J.; Cheng, S.Y.; Xiao, G. Epigenetic repression of PDZ-LIM domain-containing protein 2: implications for the biology and treatment of breast cancer. J. Biol. Chem., 2010, 285(16), 11786-11792.
[http://dx.doi.org/10.1074/jbc.M109.086561] [PMID: 20185823]
[69]
Qu, Z.; Yan, P.; Fu, J.; Jiang, J.; Grusby, M.J.; Smithgall, T.E.; Xiao, G. DNA methylation-dependent repression of PDZ-LIM domain-containing protein 2 in colon cancer and its role as a potential therapeutic target. Cancer Res., 2010, 70(5), 1766-1772.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3263] [PMID: 20145149]
[70]
Sun, F.; Xiao, Y.; Qu, Z. Oncovirus Kaposi sarcoma herpesvirus (KSHV) represses tumor suppressor PDLIM2 to persistently activate nuclear factor κB (NF-κB) and STAT3 transcription factors for tumorigenesis and tumor maintenance. J. Biol. Chem., 2015, 290(12), 7362-7368.
[http://dx.doi.org/10.1074/jbc.C115.637918] [PMID: 25681443]
[71]
Yan, P.; Fu, J.; Qu, Z.; Li, S.; Tanaka, T.; Grusby, M.J.; Xiao, G. PDLIM2 suppresses human T-cell leukemia virus type I Tax-mediated tumorigenesis by targeting Tax into the nuclear matrix for proteasomal degradation. Blood, 2009, 113(18), 4370-4380.
[http://dx.doi.org/10.1182/blood-2008-10-185660] [PMID: 19131544]

© 2024 Bentham Science Publishers | Privacy Policy