Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Elevated O-GlcNAcylation Promotes Malignant Phenotypes of Hypopharyngeal Squamous Cell Carcinoma by Stabilizing Nrf2 through Regulation of the PI3K/Akt Pathway

Author(s): Wencheng Dai, Xiaoxia Jin, Bin Jiang, Weixian Chen, Zhenhua Ji, Xinjiang Xu, Mingming Tang, Kui Dai and Liang Han*

Volume 20, Issue 16, 2020

Page: [1933 - 1942] Pages: 10

DOI: 10.2174/1871520620666200615132435

Price: $65

Abstract

Background and Purpose: O-GlcNAcylation is a significant protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc) for intracellular signaling. Elevated O-GlcNAcylation contributes to cell proliferation, cell migration, cell apoptosis and signal transduction in various cancers. However, the expression level and functional role of O-GlcNAcylation in Hypopharyngeal Squamous Cell Carcinoma (HSCC) is not clearly elucidated. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a master transcriptional factor that has been found to be aberrantly activated in HSCC. Here, we provide a molecular rationale between O-GlcNAcylation and Nrf2 in HSCC patients.

Methods: The protein levels of O-GlcNAcylation and Nrf2 in HSCC tissues were detected by immunohistochemistry technique and western blot analysis. Then, O‐GlcNAcylation knockdown HSCC cells were applied in this study. Cell proliferation was detected by CCK8, colony-forming analysis, and cell cycle assays. Cell migration and invasion ability was evaluated by transwell assays. Cell apoptosis was measured by TUNEL analysis.

Results: O-GlcNAcylation was obviously up-regulated in HSCC tissues, which correlated with tumor size and lymph node metastasis. In addition, the protein level of Nrf2 was found to positively correlate with the expression of O‐GlcNAcylation both in vivo and in vitro. Knockdown of O-GlcNAcylation significantly inhibited HSCC cell growth, suppressed cell migration, and promoted cell apoptosis, whereas overexpression of Nrf2 reversed these phenotypes. Mechanismly, the upregulation of O-GlcNAcylation promoted the phosphorylation of Akt, leading to the stabilization of Nrf2; this could be attenuated by inhibition of the PI3K/Akt signaling pathway.

Conclusion: Here, we provide a molecular association between O-GlcNAcylation and Nrf2 in HSCC patients, thus providing valuable therapeutic targets for the disease.

Keywords: O-GlcNAcylation, Nrf2, hypopharyngeal squamous cell carcinoma, Akt, tumor progression, cell proliferation.

Graphical Abstract
[1]
Budach, V.; Tinhofer, I. Novel prognostic clinical factors and biomarkers for outcome prediction in head and neck cancer: A systematic review. Lancet Oncol., 2019, 20(6), e313-e326.
[http://dx.doi.org/10.1016/S1470-2045(19)30177-9 ] [PMID: 31162105]
[2]
Kuo, P.; Sosa, J.A.; Burtness, B.A.; Husain, Z.A.; Mehra, S.; Roman, S.A.; Yarbrough, W.G.; Judson, B.L. Treatment trends and survival effects of chemotherapy for hypopharyngeal cancer: Analysis of the National Cancer Data Base. Cancer, 2016, 122(12), 1853-1860.
[http://dx.doi.org/10.1002/cncr.29962 ] [PMID: 27019213]
[3]
Hamoir, M.; Schmitz, S.; Suarez, C.; Strojan, P.; Hutcheson, K.A.; Rodrigo, J.P.; Mendenhall, W.M.; Simo, R.; Saba, N.F.; D’Cruz, A.K.; Haigentz, M., Jr; Bradford, C.R.; Genden, E.M.; Rinaldo, A.; Ferlito, A. The current role of salvage surgery in recurrent head and neck squamous cell carcinoma. Cancers (Basel), 2018, 10(8)E267
[http://dx.doi.org/10.3390/cancers10080267]
[4]
de Bree, R. The current indications for non-surgical treatment of hypopharyngeal cancer. Adv. Otorhinolaryngol., 2019, 83, 76-89.
[http://dx.doi.org/10.1159/000492314 ] [PMID: 30754041]
[5]
Shi, J.; Ruijtenbeek, R.; Pieters, R.J. Demystifying O-GlcNAcylation: Hints from peptide substrates. Glycobiology, 2018, 28(11), 814-824.
[http://dx.doi.org/10.1093/glycob/cwy031 ] [PMID: 29635275]
[6]
Bacigalupa, Z.A.; Bhadiadra, C.H.; Reginato, M.J. O-GlcNAcylation: Key regulator of glycolytic pathways. J. Bioenerg. Biomembr., 2018, 50(3), 189-198.
[http://dx.doi.org/10.1007/s10863-018-9742-3 ] [PMID: 29344764]
[7]
Ong, Q.; Han, W.; Yang, X. O-GlcNAc as an integrator of signaling pathways. Front. Endocrinol. (Lausanne), 2018, 9, 599.
[http://dx.doi.org/10.3389/fendo.2018.00599 ] [PMID: 30464755]
[8]
Hanover, J.A.; Chen, W.; Bond, M.R. O-GlcNAc in cancer: An oncometabolism-fueled vicious cycle. J. Bioenerg. Biomembr., 2018, 50(3), 155-173.
[http://dx.doi.org/10.1007/s10863-018-9751-2 ] [PMID: 29594839]
[9]
Cloer, E.W.; Goldfarb, D.; Schrank, T.P.; Weissman, B.E.; Major, M.B. NRF2 Activation in cancer: From DNA to protein. Cancer Res., 2019, 79(5), 889-898.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2723 ] [PMID: 30760522]
[10]
Guo, H.; Xu, J.; Zheng, Q.; He, J.; Zhou, W.; Wang, K.; Huang, X.; Fan, Q.; Ma, J.; Cheng, J.; Mei, W.; Xing, R.; Cai, R. NRF2 SUMOylation promotes de novo serine synthesis and maintains HCC tumorigenesis. Cancer Lett., 2019, 466, 39-48.
[http://dx.doi.org/10.1016/j.canlet.2019.09.010 ] [PMID: 31546024]
[11]
Jeddi, F.; Soozangar, N.; Sadeghi, M.R.; Somi, M.H.; Shirmohamadi, M.; Eftekhar-Sadat, A.T.; Samadi, N. Nrf2 overexpression is associated with P-glycoprotein upregulation in gastric cancer. Biomed. Pharmacother., 2018, 97, 286-292.
[http://dx.doi.org/10.1016/j.biopha.2017.10.129 ] [PMID: 29091877]
[12]
Zhang, H.S.; Zhang, Z.G.; Du, G.Y.; Sun, H.L.; Liu, H.Y.; Zhou, Z.; Gou, X.M.; Wu, X.H.; Yu, X.Y.; Huang, Y.H. Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis. J. Cell. Mol. Med., 2019, 23(5), 3451-3463.
[http://dx.doi.org/10.1111/jcmm.14241 ] [PMID: 30809937]
[13]
Lignitto, L.; LeBoeuf, S.E.; Homer, H.; Jiang, S.; Askenazi, M.; Karakousi, T.R.; Pass, H.I.; Bhutkar, A.J.; Tsirigos, A.; Ueberheide, B.; Sayin, V.I.; Papagiannakopoulos, T.; Pagano, M. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell, 2019, 178(2), 316-329.
[http://dx.doi.org/10.1016/j.cell.2019.06.003 ] [PMID: 31257023]
[14]
Arai, A.; Chano, T.; Ikebuchi, K.; Hama, Y.; Ochi, Y.; Tameno, H.; Shimada, T. p62/SQSTM1 levels predicts radiotherapy resistance in hypopharyngeal carcinomas. Am. J. Cancer Res., 2017, 7(4), 881-891.
[PMID: 28469960]
[15]
Moldogazieva, N.T.; Lutsenko, S.V.; Terentiev, A.A. Reactive oxygen and nitrogen species-induced protein modifications: Implication in carcinogenesis and anticancer therapy. Cancer Res., 2018, 78(21), 6040-6047.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0980 ] [PMID: 30327380]
[16]
Yang, X.; Park, S.H.; Chang, H.C.; Shapiro, J.S.; Vassilopoulos, A.; Sawicki, K.T.; Chen, C.; Shang, M.; Burridge, P.W.; Epting, C.L.; Wilsbacher, L.D.; Jenkitkasemwong, S.; Knutson, M.; Gius, D.; Ardehali, H. Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2. J. Clin. Invest., 2017, 127(4), 1505-1516.
[http://dx.doi.org/10.1172/JCI88574 ] [PMID: 28287409]
[17]
Makwana, V.; Ryan, P.; Patel, B.; Dukie, S.A.; Rudrawar, S. Essential role of O-GlcNAcylation in stabilization of oncogenic factors. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(8), 1302-1317.
[http://dx.doi.org/10.1016/j.bbagen.2019.04.002 ] [PMID: 31034911]
[18]
Li, Y.; Guo, Y.; Feng, Z.; Bergan, R.; Li, B.; Qin, Y.; Zhao, L.; Zhang, Z.; Shi, M. Involvement of the PI3K/Akt/Nrf2 signaling pathway in resveratrol-mediated reversal of drug resistance in HL-60/ADR cells. Nutr. Cancer, 2019, 71(6), 1007-1018.
[http://dx.doi.org/10.1080/01635581.2019.1578387 ] [PMID: 31032633]
[19]
Wu, J.; Williams, D.; Walter, G.A.; Thompson, W.E.; Sidell, N. Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells. Exp. Cell Res., 2014, 328(2), 351-360.
[http://dx.doi.org/10.1016/j.yexcr.2014.08.030 ] [PMID: 25172557]
[20]
Liu, D.; Zhang, Y.; Wei, Y.; Liu, G.; Liu, Y.; Gao, Q.; Zou, L.; Zeng, W.; Zhang, N. Activation of AKT pathway by Nrf2/PDGFA feedback loop contributes to HCC progression. Oncotarget, 2016, 7(40), 65389-65402.
[http://dx.doi.org/10.18632/oncotarget.11700 ] [PMID: 27588483]
[21]
Zhang, J.; An, X.; Han, Y.; Ma, R.; Yang, K.; Zhang, L.; Chi, J.; Li, W.; Llobet-Navas, D.; Xu, Y.; Jiang, Y. Overexpression of JARID1B promotes differentiation via SHIP1/AKT signaling in human hypopharyngeal squamous cell carcinoma. Cell Death Dis., 2016, 7(9)e2358
[PMID: 27584795] [http://dx.doi.org/10.1038/cddis.2016.262]
[22]
Duan, F.; Wu, H.; Jia, D.; Wu, W.; Ren, S.; Wang, L.; Song, S.; Guo, X.; Liu, F.; Ruan, Y.; Gu, J. O-GlcNAcylation of RACK1 promotes hepatocellular carcinogenesis. J. Hepatol., 2018, 68(6), 1191-1202.
[http://dx.doi.org/10.1016/j.jhep.2018.02.003 ] [PMID: 29454068]
[23]
Wu, N.; Jiang, M.; Han, Y.; Liu, H.; Chu, Y.; Liu, H.; Cao, J.; Hou, Q.; Zhao, Y.; Xu, B.; Xie, X. O-GlcNAcylation promotes colorectal cancer progression by regulating protein stability and potential catcinogenic function of DDX5. J. Cell. Mol. Med., 2019, 23(2), 1354-1362.
[http://dx.doi.org/10.1111/jcmm.14038 ] [PMID: 30484950]
[24]
Vomund, S.; Schäfer, A.; Parnham, M.J.; Brüne, B.; von Knethen, A. Nrf2, the master regulator of anti-oxidative responses. Int. J. Mol. Sci., 2017, 18(12)E2772
[http://dx.doi.org/10.3390/ijms18122772]
[25]
Leung, C.H.; Zhang, J.T.; Yang, G.J.; Liu, H.; Han, Q.B.; Ma, D.L. Emerging screening approaches in the development of Nrf2-Keap1 protein-protein interaction inhibitors. Int. J. Mol. Sci., 2019, 20(18)E4445
[http://dx.doi.org/10.3390/ijms20184445]
[26]
Ji, L.; Zhang, R.; Chen, J.; Xue, Q.; Moghal, N.; Tsao, M.S. PIDD interaction with KEAP1 as a new mutation-independent mechanism to promote NRF2 stabilization and chemoresistance in NSCLC. Sci. Rep., 2019, 9(1), 12437.
[http://dx.doi.org/10.1038/s41598-019-48763-4 ] [PMID: 31455821]
[27]
Wan, Z.H.; Jiang, T.Y.; Shi, Y.Y.; Pan, Y.F.; Lin, Y.K.; Ma, Y.H.; Yang, C.; Feng, X.F.; Huang, L.F.; Kong, X.N.; Ding, Z.W.; Tan, Y.X.; Dong, L.W.; Wang, H.Y. RPB5-mediating protein promotes cholangiocarcinoma tumorigenesis and drug resistance by competing with NRF2 for KEAP1 binding. Hepatology, 2019, 30962 Epub ahead of print
[http://dx.doi.org/10.1002/hep] [PMID: 31541481]
[28]
Zhang, Q.; Zhang, Z.Y.; Du, H.; Li, S.Z.; Tu, R.; Jia, Y.F.; Zheng, Z.; Song, X.M.; Du, R.L.; Zhang, X.D. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ., 2019, 26(11), 2300-2313.
[http://dx.doi.org/10.1038/s41418-019-0303-z ] [PMID: 30778200]
[29]
Wang, Q.; Tan, L.; Liu, J.; Zhao, J.; Zhou, X.; Yu, T. MicroRNA98/PTEN/AKT pathway inhibits cell proliferation and malignant progression of hypopharyngeal carcinoma by MTDH. Oncol. Rep., 2019, 41(2), 863-874.
[PMID: 30535507]
[30]
Chan, C.H.; Jo, U.; Kohrman, A.; Rezaeian, A.H.; Chou, P.C.; Logothetis, C.; Lin, H.K. Posttranslational regulation of Akt in human cancer. Cell Biosci., 2014, 4(1), 59.
[http://dx.doi.org/10.1186/2045-3701-4-59 ] [PMID: 25309720]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy