Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Heteroatom Doped Graphitic Carbon Nitride (g-C3N4) and g-C3N4/Metal Oxide Composite Photocatalysts

Author(s): Haiyan Jiang, Yang Li, Daohan Wang, Xiaodong Hong* and Bing Liang

Volume 24, Issue 6, 2020

Page: [673 - 693] Pages: 21

DOI: 10.2174/1385272824666200309151648

Price: $65

Abstract

Industrial wastewater contains abundant organic dyes, antibiotics, pesticides, chemical fertilizers or heavy metal ions, which seriously deteriorate the ecological environment. Among the practical techniques for reducing water pollution, photocatalysis is a kind of sustainable solar energy conversion technique for removing organic contaminants. In this review, the advances in the preparation, modification, and doping of graphitic carbon nitride (g-C3N4), including non-metal doping, metal doping, dual- or tri-doping, are introduced firstly. Then, we systematically reviewed the recent progress of g-C3N4/metal oxide composite photocatalysts, including a g-C3N4/n-type metal oxide, such as TiO2, ZnO, SnO2, WO3, FexOy, CeO2, V2O5, MoO3, MnO2, Nb2O5, In2O3, and a g-C3N4/p-type metal oxide, such as Co3O4, Bi2O3, NiO and Cu2O. At last, we summarized the design principles for preparing heteroatom doped g-C3N4 and g-C3N4/metal oxide composites, and forecast the promising research directions. The main objective is to provide a guideline for designing highperformance heteroatom doped g-C3N4 and g-C3N4/metal oxide photocatalysts.

Keywords: Photocatalytic activity, graphitic carbon nitride, metal oxide, photocatalyst, organic dyes, non-metal doping.

Graphical Abstract
[1]
Tachibana, Y.; Vayssieres, L.; Durrant, J.R. Artificial photosynthesis for solar water-splitting. Nat. Photonics, 2012, 6(8), 511-518.
[http://dx.doi.org/10.1038/nphoton.2012.175]
[2]
Sudhaik, A.; Raizada, P.; Shandilya, P.; Singh, P. Magnetically recoverable graphitic carbon nitride and NiFe2O4 based magnetic photocatalyst for degradation of oxytetracycline antibiotic in simulated wastewater under solar light. J. Environ. Chem. Eng., 2018, 6(4), 3874-3883.
[http://dx.doi.org/10.1016/j.jece.2018.05.039]
[3]
Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H. Doping of graphitic carbon nitride for photocatalysis. Appl. Catal. B, 2017, 217, 388-406.
[http://dx.doi.org/10.1016/j.apcatb.2017.06.003]
[4]
Yan, S.C.; Lv, S.B.; Li, Z.S.; Zou, Z.G. Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton T., 2010, 39(6), 1488-1491.
[http://dx.doi.org/10.1039/B914110C]
[5]
Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, 2009, 25(17), 10397-10401.
[http://dx.doi.org/10.1021/la900923z]
[6]
Yan, H.; Chen, Y.; Xu, S. Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light. Int. J. Hydrogen Energy, 2012, 37(1), 125-133.
[http://dx.doi.org/10.1016/j.ijhydene.2011.09.072]
[7]
Zhang, G.; Zhang, J.; Zhang, M.; Wang, X. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem., 2012, 22(16), 8083-8091.
[http://dx.doi.org/10.1039/c2jm00097k]
[8]
Dong, F.; Wang, Z.; Sun, Y.; Ho, W.K.; Zhang, H. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. J. Colloid Interface Sci., 2013, 401, 70-79.
[http://dx.doi.org/10.1016/j.jcis.2013.03.034]
[9]
Jorge, A.B.; Martin, D.J.; Dhanoa, M.T.S.; Rahman, A.S.; Makwana, N.; Tang, J.; Sella, A.; Corà, F.; Firth, S.; Darr, J.A.; McMillan, P.F.H. 2 and O2 Evolution from water half-splitting reactions by graphitic carbon nitride materials. J. Phys. Chem. C, 2013, 117(14), 7178-7185.
[http://dx.doi.org/10.1021/jp4009338]
[10]
Groenewolt, M.; Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater., 2005, 17(14), 1789-1792.
[http://dx.doi.org/10.1002/adma.200401756]
[11]
Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.; Antonietti, M. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc., 2009, 131(5), 1680-1681.
[http://dx.doi.org/10.1021/ja809307s]
[12]
Li, X.H.; Wang, X.; Antonietti, M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. (Camb.), 2012, 3(6), 2170-2174.
[http://dx.doi.org/10.1039/c2sc20289a]
[13]
Xing, W.; Tu, W.; Han, Z.; Hu, Y.; Meng, Q.; Chen, G. Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution. ACS Energy Lett., 2018, 3(3), 514-519.
[http://dx.doi.org/10.1021/acsenergylett.7b01328]
[14]
Yan, H. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem. Commun. (Camb.), 2012, 48(28), 3430-3432.
[http://dx.doi.org/10.1039/c2cc00001f]
[15]
Wang, Y.; Wang, X.; Antonietti, M.; Zhang, Y. Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. ChemSusChem, 2010, 3(4), 435-439.
[http://dx.doi.org/10.1002/cssc.200900284]
[16]
Wang, Y.; Zhang, J.; Wang, X.; Antonietti, M.; Li, H. Boron- and fluorine-containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation. Angew. Chem. Int. Ed., 2010, 49(19), 3356-3359.
[http://dx.doi.org/10.1002/anie.201000120]
[17]
Lin, Z.; Wang, X. Ionic liquid promoted synthesis of conjugated carbon nitride photocatalysts from urea. ChemSusChem, 2014, 7(6), 1547-1550.
[http://dx.doi.org/10.1002/cssc.201400016]
[18]
Khabashesku, V.N.; Zimmerman, J.L.; Margrave, J.L. Powder synthesis and characterization of amorphous carbon nitride. Chem. Mater., 2000, 12(11), 3264-3270.
[http://dx.doi.org/10.1021/cm000328r]
[19]
Zimmerman, J.L.; Williams, R.; Khabashesku, V.N.; Margrave, J.L. Synthesis of spherical carbon nitride nanostructures. Nano Lett., 2001, 1(12), 731-734.
[http://dx.doi.org/10.1021/nl015626h]
[20]
Cui, Y.; Ding, Z.; Fu, X.; Wang, X. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. Angew. Chem. Int. Ed., 2012, 51(47), 11814-11818.
[http://dx.doi.org/10.1002/anie.201206534]
[21]
Bai, X.; Li, J.; Cao, C.; Hussain, S. Solvothermal synthesis of the special shape (deformable) hollow g-C3N4 nanospheres. Mater. Lett., 2011, 65(7), 1101-1104.
[http://dx.doi.org/10.1016/j.matlet.2011.01.008]
[22]
Hu, C.; Chu, Y.C.; Wang, M.S.; Wu, X.H. Rapid synthesis of g-C3N4 spheres using microwave-assisted solvothermal method for enhanced photocatalytic activity. J. Photoch. Photobio. A, 2017, 348, 8-17.
[http://dx.doi.org/10.1016/j.jphotochem.2017.08.006]
[23]
Niu, P.; Zhang, L.; Liu, G.; Cheng, H.M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater., 2012, 22(22), 4763-4770.
[http://dx.doi.org/10.1002/adfm.201200922]
[24]
Dong, F.; Li, Y.; Wang, Z.; Ho, W.K. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Appl. Surf. Sci., 2015, 358, 393-403.
[http://dx.doi.org/10.1016/j.apsusc.2015.04.034]
[25]
Qiu, P.; Chen, H.; Xu, C.; Zhou, N.; Jiang, F.; Wang, X.; Fu, Y. Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(48), 24237-24244.
[http://dx.doi.org/10.1039/C5TA08406G]
[26]
Yang, L.; Liu, X.; Liu, Z.; Wang, C.; Liu, G.; Li, Q.; Feng, X. Enhanced photocatalytic activity of g-C3N4 2D nanosheets through thermal exfoliation using dicyandiamide as precursor. Ceram. Int., 2018, 44(17), 20613-20619.
[http://dx.doi.org/10.1016/j.ceramint.2018.06.105]
[27]
Xu, J.; Zhang, L.; Shi, R.; Zhu, Y. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(46), 14766-14772.
[http://dx.doi.org/10.1039/c3ta13188b]
[28]
Ma, Y.; Liu, E.; Hu, X.; Tang, C.; Wan, J.; Li, J.; Fan, J. A simple process to prepare few-layer g-C3N4 nanosheets with enhanced photocatalytic activities. Appl. Surf. Sci., 2015, 358, 246-251.
[http://dx.doi.org/10.1016/j.apsusc.2015.08.174]
[29]
Miao, H.; Zhang, G.; Hu, X.; Mu, J.; Han, T.; Fan, J.; Zhu, C.; Song, L.; Bai, J.; Hou, X. A novel strategy to prepare 2D g-C3N4 nanosheets and their photoelectrochemical properties. J. Alloys Compd., 2017, 690, 669-676.
[http://dx.doi.org/10.1016/j.jallcom.2016.08.184]
[30]
Li, H.J.; Sun, B.W.; Sui, L.; Qian, D.J.; Chen, M. Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys. Chem. Chem. Phys., 2015, 17(5), 3309-3315.
[http://dx.doi.org/10.1039/C4CP05020G]
[31]
Tong, J.; Zhang, L.; Li, F.; Wang, K.; Han, L.; Cao, S. Rapid and high-yield production of g-C3N4 nanosheets via chemical exfoliation for photocatalytic H2 evolution. RSC Advances, 2015, 5(107), 88149-88153.
[http://dx.doi.org/10.1039/C5RA16988G]
[32]
Papailias, I.; Todorova, N.; Giannakopoulou, T.; Ioannidis, N.; Boukos, N.; Athanasekou, C.P.; Dimotikali, D.; Trapalis, C. Chemical vs thermal exfoliation of g-C3N4 for NOx removal under visible light irradiation. Appl. Catal. B, 2018, 239, 16-26.
[http://dx.doi.org/10.1016/j.apcatb.2018.07.078]
[33]
Yuan, X.; Zhou, C.; Jin, Y.; Jing, Q.; Yang, Y.; Shen, X.; Tang, Q.; Mu, Y.; Du, A-K. Facile synthesis of 3D porous thermally exfoliated g-C3N4 nanosheet with enhanced photocatalytic degradation of organic dye. J. Colloid Interface Sci., 2016, 468, 211-219.
[http://dx.doi.org/10.1016/j.jcis.2016.01.048]
[34]
Wang, J.; Yang, Z.; Yao, W.; Gao, X.; Tao, D. Defects modified in the exfoliation of g-C3N4 nanosheets via a self-assembly process for improved hydrogen evolution performance. Appl. Catal. B, 2018, 238, 629-637.
[http://dx.doi.org/10.1016/j.apcatb.2018.07.017]
[35]
Ming, L.; Yue, H.; Xu, L.; Chen, F. Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(45), 19145-19149.
[http://dx.doi.org/10.1039/C4TA04041D]
[36]
Wu, X.; Chen, F.; Wang, X.; Yu, H. In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C3N4 for the improved photocatalytic H2-evolution performance. Appl. Surf. Sci., 2018, 427, 645-653.
[http://dx.doi.org/10.1016/j.apsusc.2017.08.050]
[37]
Nie, H.; Ou, M.; Zhong, Q.; Zhang, S.; Yu, L. Efficient visible-light photocatalytic oxidation of gaseous NO with graphitic carbon nitride (g-C3N4) activated by the alkaline hydrothermal treatment and mechanism analysis. J. Hazard. Mater., 2015, 300, 598-606.
[http://dx.doi.org/10.1016/j.jhazmat.2015.07.066]
[38]
Wei, H.; Zhang, Q.; Zhang, Y.; Yang, Z.; Zhu, A.; Dionysiou, D.D. Enhancement of the Cr(VI) adsorption and photocatalytic reduction activity of g-C3N4 by hydrothermal treatment in HNO3 aqueous solution. Appl. Catal. A Gen., 2016, 521, 9-18.
[http://dx.doi.org/10.1016/j.apcata.2015.11.005]
[39]
Lin, B.; An, H.; Yan, X.; Zhang, T.; Wei, J.; Yang, G. Fish-scale structured g-C3N4 nanosheet with unusual spatial electron transfer property for high-efficiency photocatalytic hydrogen evolution. Appl. Catal. B, 2017, 210, 173-183.
[http://dx.doi.org/10.1016/j.apcatb.2017.03.066]
[40]
Yang, L.; Huang, J.; Shi, L.; Cao, L.; Yu, Q.; Jie, Y.; Fei, J.; Ouyang, H.; Ye, J. A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Appl. Catal. B, 2017, 204, 335-345.
[http://dx.doi.org/10.1016/j.apcatb.2016.11.047]
[41]
Cai, Q.; Shen, J.; Feng, Y.; Shen, Q.; Yang, H. Template-free preparation and characterization of nanoporous g-C3N4 with enhanced visible photocatalytic activity. J. Alloys Compd., 2015, 628, 372-378.
[http://dx.doi.org/10.1016/j.jallcom.2014.12.013]
[42]
Hasija, V.; Raizada, P.; Sudhaik, A.; Sharma, K.; Kumar, A.; Singh, P.; Jonnalagadda, S.B.; Thakur, V.K. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. App. Mater. Today, 2019, 15, 494-524.
[http://dx.doi.org/10.1016/j.apmt.2019.04.003]
[43]
Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.; Ajayan, P.M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater., 2013, 25(17), 2452-2456.
[http://dx.doi.org/10.1002/adma.201204453]
[44]
Li, Y.; Wu, S.; Huang, L.; Wang, J.; Xu, H.; Li, H. Synthesis of carbon-doped g-C3N4 composites with enhanced visible-light photocatalytic activity. Mater. Lett., 2014, 137, 281-284.
[http://dx.doi.org/10.1016/j.matlet.2014.08.142]
[45]
Dong, G.; Zhao, K.; Zhang, L. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem. Commun. (Camb.), 2012, 48(49), 6178-6180.
[http://dx.doi.org/10.1039/c2cc32181e]
[46]
Bao, N.; Hu, X.; Zhang, Q.; Miao, X.; Jie, X.; Zhou, S. Synthesis of porous carbon-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Appl. Surf. Sci., 2017, 403, 682-690.
[http://dx.doi.org/10.1016/j.apsusc.2017.01.256]
[47]
She, X.; Liu, L.; Ji, H.; Mo, Z.; Li, Y.; Huang, L.; Du, D.; Xu, H.; Li, H. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl. Catal. B, 2016, 187, 144-153.
[http://dx.doi.org/10.1016/j.apcatb.2015.12.046]
[48]
Zeng, Y.; Liu, X.; Liu, C.; Wang, L.; Xia, Y.; Zhang, S.; Luo, S.; Pei, Y. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity. Appl. Catal. B, 2018, 224, 1-9.
[http://dx.doi.org/10.1016/j.apcatb.2017.10.042]
[49]
Fu, J.; Zhu, B.; Jiang, C.; Cheng, B.; You, W.; Yu, J. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small, 2017, 13(15), 1603938
[http://dx.doi.org/10.1002/smll.201603938]
[50]
Cao, L.; Wang, R.; Wang, D. Synthesis and characterization of sulfur self-doped g-C3N4 with efficient visible-light photocatalytic activity. Mater. Lett., 2015, 149, 50-53.
[http://dx.doi.org/10.1016/j.matlet.2015.02.119]
[51]
Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B, 2015, 176-177, 44-52.
[http://dx.doi.org/10.1016/j.apcatb.2015.03.045]
[52]
Liu, G.; Niu, P.; Sun, C.; Smith, S.C.; Chen, Z.; Lu, G.Q.; Cheng, H.M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc., 2010, 132(33), 11642-11648.
[http://dx.doi.org/10.1021/ja103798k]
[53]
Ge, L.; Han, C.; Xiao, X.; Guo, L.; Li, Y. Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts. Mater. Res. Bull., 2013, 48(10), 3919-3925.
[http://dx.doi.org/10.1016/j.materresbull.2013.06.002]
[54]
Zhang, Y.; Mori, T.; Ye, J.; Antonietti, M. Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc., 2010, 132(18), 6294-6295.
[http://dx.doi.org/10.1021/ja101749y]
[55]
Zhou, Y.; Zhang, L.; Liu, J.; Fan, X.; Wang, B.; Wang, M.; Ren, W.; Wang, J.; Li, M.; Shi, J. Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and rhodamine B degradation under visible light. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(7), 3862-3867.
[http://dx.doi.org/10.1039/C4TA05292G]
[56]
Liu, S.; Zhu, H.; Yao, W.; Chen, K.; Chen, D. One step synthesis of P-doped g-C3N4 with the enhanced visible light photocatalytic activity. Appl. Surf. Sci., 2018, 430, 309-315.
[http://dx.doi.org/10.1016/j.apsusc.2017.07.108]
[57]
Zhu, Y.P.; Ren, T.Z.; Yuan, Z.Y. Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces, 2015, 7(30), 16850-16856.
[http://dx.doi.org/10.1021/acsami.5b04947]
[58]
Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation of rhodamine B and Methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir, 2010, 26(6), 3894-3901.
[http://dx.doi.org/10.1021/la904023j]
[59]
Lu, C.; Chen, R.; Wu, X.; Fan, M.; Liu, Y.; Le, Z.; Jiang, S.; Song, S. Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance. Appl. Surf. Sci., 2016, 360, 1016-1022.
[http://dx.doi.org/10.1016/j.apsusc.2015.11.112]
[60]
Thaweesak, S.; Wang, S.; Lyu, M.; Xiao, M.; Peerakiatkhajohn, P.; Wang, L. Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting. Dalton T., 2017, 46(32), 10714-10720.
[http://dx.doi.org/10.1039/C7DT00933J]
[61]
Chen, P.; Xing, P.; Chen, Z.; Lin, H.; He, Y. Rapid and energy-efficient preparation of boron doped g-C3N4 with excellent performance in photocatalytic H2-evolution. Int. J. Hydrogen Energy, 2018, 43(43), 19984-19989.
[http://dx.doi.org/10.1016/j.ijhydene.2018.09.078]
[62]
Guo, F.; Li, M.; Ren, H.; Huang, X.; Shu, K.; Shi, W.; Lu, C. Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light. Separ. Purif. Tech., 2019, 228, 115770
[http://dx.doi.org/10.1016/j.seppur.2019.115770]
[63]
Hong, J.; Hwang, D.K.; Selvaraj, R.; Kim, Y. Facile synthesis of Br-doped g-C3N4 nanosheets via one-step exfoliation using ammonium bromide for photodegradation of oxytetracycline antibiotics. J. Ind. Eng. Chem., 2019, 79, 473-481.
[http://dx.doi.org/10.1016/j.jiec.2019.07.024]
[64]
Cheng, Z.; Zheng, K.; Lin, G.; Fang, S.; Li, L.; Bi, J.; Shen, J.; Wu, L. Constructing a novel family of halogen-doped covalent triazine-based frameworks as efficient metal-free photocatalysts for hydrogen production. Nanoscale Adv., 2019, 1(7), 2674-2680.
[http://dx.doi.org/10.1039/C9NA00089E]
[65]
Wang, Y.; Zhao, S.; Zhang, Y.; Fang, J.; Zhou, Y.; Yuan, S.; Zhang, C.; Chen, W. One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation. Appl. Surf. Sci., 2018, 440, 258-265.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.091]
[66]
Jiang, J.; Cao, S.; Hu, C.; Chen, C. A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution. Chin. J. Catal., 2017, 38(12), 1981-1989.
[http://dx.doi.org/10.1016/S1872-2067(17)62936-X]
[67]
Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M. Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material. Adv. Mater., 2009, 21(16), 1609-1612.
[http://dx.doi.org/10.1002/adma.200802627]
[68]
Liu, Q.; Guo, Y.; Chen, Z.; Zhang, Z.; Fang, X. Constructing a novel ternary Fe(III)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect. Appl. Catal. B, 2016, 183, 231-241.
[http://dx.doi.org/10.1016/j.apcatb.2015.10.054]
[69]
Tonda, S.; Kumar, S.; Kandula, S.; Shanker, V. Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(19), 6772-6780.
[http://dx.doi.org/10.1039/c3ta15358d]
[70]
Gao, J.; Wang, Y.; Zhou, S.; Lin, W.; Kong, Y. A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance. ChemCatChem, 2017, 9(9), 1708-1715.
[http://dx.doi.org/10.1002/cctc.201700492]
[71]
Oh, W.D.; Chang, V.W.C.; Hu, Z.T.; Goei, R.; Lim, T.T. Enhancing the catalytic activity of g-C3N4 through Me doping (Me=Cu, Co and Fe) for selective sulfathiazole degradation via redox-based advanced oxidation process. Chem. Eng. J., 2017, 323, 260-269.
[http://dx.doi.org/10.1016/j.cej.2017.04.107]
[72]
Zou, X.; Silva, R.; Goswami, A.; Asefa, T. Cu-doped carbon nitride: Bio-inspired synthesis of H2-evolving electrocatalysts using graphitic carbon nitride (g-C3N4) as a host material. Appl. Surf. Sci., 2015, 357, 221-228.
[http://dx.doi.org/10.1016/j.apsusc.2015.08.197]
[73]
Hu, S.; Qu, X.; Bai, J.; Li, P.; Li, Q.; Wang, F.; Song, L. Effect of Cu(I)–N active sites on the N2 photofixation ability over flowerlike copper-doped g-c3n4 prepared via a novel molten salt-assisted microwave process: the experimental and density functional theory simulation analysis. ACS Sustain. Chem.& Eng., 2017, 5(8), 6863-6872.
[http://dx.doi.org/10.1021/acssuschemeng.7b01089]
[74]
Le, S.; Jiang, T.; Zhao, Q.; Liu, X.; Li, Y.; Fang, B.; Gong, M. Cu-doped mesoporous graphitic carbon nitride for enhanced visible-light driven photocatalysis. RSC Advances, 2016, 6(45), 38811-38819.
[http://dx.doi.org/10.1039/C6RA03982K]
[75]
Li, Z.; Kong, C.; Lu, G. Visible photocatalytic water splitting and photocatalytic two-electron oxygen formation over Cu- and Fe-doped g-C3N4. J. Phys. Chem. C, 2016, 120(1), 56-63.
[http://dx.doi.org/10.1021/acs.jpcc.5b09469]
[76]
Xu, J.; Long, K.Z.; Wang, Y.; Xue, B.; Li, Y.X. Fast and facile preparation of metal-doped g-C3N4 composites for catalytic synthesis of dimethyl carbonate. Appl. Catal. A Gen., 2015, 496, 1-8.
[http://dx.doi.org/10.1016/j.apcata.2015.02.025]
[77]
Li, N.; Li, Y.; Jiang, R.; Zhou, J.; Liu, M. Photocatalytic coupling of methane and CO2 into C2-hydrocarbons over Zn doped g-C3N4 catalysts. Appl. Surf. Sci., 2019, 498, 143861
[http://dx.doi.org/10.1016/j.apsusc.2019.143861]
[78]
Wang, J.C.; Cui, C.X.; Li, Y.; Liu, L.; Zhang, Y.P.; Shi, W. Porous Mn doped g-C3N4 photocatalysts for enhanced synergetic degradation under visible-light illumination. J. Hazard. Mater., 2017, 339, 43-53.
[http://dx.doi.org/10.1016/j.jhazmat.2017.06.011]
[79]
Wang, L.; Guo, X.; Chen, Y.; Ai, S.; Ding, H. Cobalt-doped g-C3N4 as a heterogeneous catalyst for photo-assisted activation of peroxymonosulfate for the degradation of organic contaminants. Appl. Surf. Sci., 2019, 467-468, 954-962.
[http://dx.doi.org/10.1016/j.apsusc.2018.10.262]
[80]
Wu, G.; Hu, S.; Han, Z.; Liu, C.; Li, Q. The effect of Ni(I)-N active sites on the photocatalytic H2O2 production ability over nickel doped graphitic carbon nitride nanofibers. New J. Chem., 2017, 41(24), 15289-15297.
[http://dx.doi.org/10.1039/C7NJ03298F]
[81]
Wang, M.; Che, Y.; Niu, C.; Dang, M.; Dong, D. Effective visible light-active boron and europium co-doped BiVO4 synthesized by sol-gel method for photodegradion of methyl orange. J. Hazard. Mater., 2013, 262, 447-455.
[http://dx.doi.org/10.1016/j.jhazmat.2013.08.063]
[82]
Xu, D.; Li, X.; Liu, J.; Huang, L. Synthesis and photocatalytic performance of europium-doped graphitic carbon nitride. J. Rare Earths, 2013, 31(11), 1085-1091.
[http://dx.doi.org/10.1016/S1002-0721(12)60408-6]
[83]
Wang, M.; Guo, P.; Zhang, Y.; Lv, C.; Liu, T.; Chai, T.; Xie, Y.; Wang, Y.; Zhu, T. Synthesis of hollow lantern-like Eu(III)-doped g-C3N4 with enhanced visible light photocatalytic perfomance for organic degradation. J. Hazard. Mater., 2018, 349, 224-233.
[http://dx.doi.org/10.1016/j.jhazmat.2018.01.058]
[84]
Faisal, M.; Ismail, A.A.; Harraz, F.A.; Al-Sayari, S.A.; El-Toni, A.M.; Al-Assiri, M.S. Synthesis of highly dispersed silver doped g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity. Mater. Des., 2016, 98, 223-230.
[http://dx.doi.org/10.1016/j.matdes.2016.03.019]
[85]
Zi-ya, L.I.U.; Man-ying, Z.; Jing-ling, W.U. Enhanced visible-light photocatalytic and antibacterial activities of Ag-doped g-C3N4 nanocomposites. ChemistrySelect, 2018, 3(38), 10630-10636.
[http://dx.doi.org/10.1002/slct.201802287]
[86]
Guo, Q.; Zhang, Y.; Qiu, J.; Dong, G. Engineering the electronic structure and optical properties of g-C3N4 by non-metal ion doping. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(28), 6839-6847.
[http://dx.doi.org/10.1039/C6TC01831A]
[87]
Ma, H.; Li, Y.; Li, S.; Liu, N. Novel PO codoped g-C3N4 with large specific surface area: hydrothermal synthesis assisted by dissolution-precipitation process and their visible light activity under anoxic conditions. Appl. Surf. Sci., 2015, 357, 131-138.
[http://dx.doi.org/10.1016/j.apsusc.2015.09.009]
[88]
Jiang, L.; Yuan, X.; Zeng, G.; Chen, X.; Wu, Z.; Liang, J.; Zhang, J.; Wang, H.; Wang, H. Phosphorus- and sulfur-codoped g-C3N4: facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation. ACS Sustain. Chem.& Eng., 2017, 5(7), 5831-5841.
[http://dx.doi.org/10.1021/acssuschemeng.7b00559]
[89]
Hu, C.; Hung, W.Z.; Wang, M.S.; Lu, P.J. Phosphorus and sulfur codoped g-C3N4 as an efficient metal-free photocatalyst. Carbon, 2018, 127, 374-383.
[http://dx.doi.org/10.1016/j.carbon.2017.11.019]
[90]
Hu, S.; Ma, L.; You, J.; Li, F.; Fan, Z.; Lu, G.; Liu, D.; Gui, J. Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Appl. Surf. Sci., 2014, 311, 164-171.
[http://dx.doi.org/10.1016/j.apsusc.2014.05.036]
[91]
Cao, S.; Huang, Q.; Zhu, B.; Yu, J. Trace-level phosphorus and sodium co-doping of g-C3N4 for enhanced photocatalytic H2 production. J. Power Sources, 2017, 351, 151-159.
[http://dx.doi.org/10.1016/j.jpowsour.2017.03.089]
[92]
Zhu, Q.H.; Chen, Z.; Tang, L.N.; Zhong, Y.; Zhao, X.F.; Zhang, L.Z.; Li, J.H. K and halogen binary-doped graphitic carbon nitride (g-C3N4) toward enhanced visible light hydrogen evolution. Int. J. Hydrogen Energy, 2019, 44(51), 27704-27712.
[http://dx.doi.org/10.1016/j.ijhydene.2019.09.013]
[93]
Li, J.; Zhang, Z.; Cui, W.; Wang, H.; Cen, W.; Johnson, G.; Jiang, G.; Zhang, S.; Dong, F. The spatially oriented charge flow and photocatalysis mechanism on internal Van der Waals heterostructures enhanced g-C3N4. ACS Catal., 2018, 8(9), 8376-8385.
[http://dx.doi.org/10.1021/acscatal.8b02459]
[94]
Zhang, S.; Li, J.; Zeng, M.; Li, J.; Xu, J.; Wang, X. Bandgap engineering and mechanism study of nonmetal and metal ion codoped carbon nitride: C+Fe as an example. Chemistry, 2014, 20(31), 9805-9812.
[http://dx.doi.org/10.1002/chem.201400060]
[95]
Liu, Q.; Shen, J.; Yu, X.; Yang, X.; Liu, W.; Yang, J.; Tang, H.; Xu, H.; Li, H.; Li, Y.; Xu, J. Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C3N4 nanosheets. Appl. Catal. B, 2019, 248, 84-94.
[http://dx.doi.org/10.1016/j.apcatb.2019.02.020]
[96]
Ma, H.; Zhao, S.; Li, S.; Liu, N. A facile approach to synthesizing S-Co-O tridoped g-C3N4 with enhanced oxygen-free photocatalytic performance via a hydrothermal post-treatment. RSC Advances, 2015, 5(97), 79585-79592.
[http://dx.doi.org/10.1039/C5RA14081A]
[97]
Huang, Z.A.; Sun, Q.; Lv, K.; Zhang, Z.; Li, M.; Li, B. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2. Appl. Catal. B, 2015, 164, 420-427.
[http://dx.doi.org/10.1016/j.apcatb.2014.09.043]
[98]
Zhong, X.; Jin, M.; Dong, H.; Liu, L.; Wang, L.; Yu, H.; Leng, S.; Zhuang, G.; Li, X.; Wang, J.G. TiO2 nanobelts with a uniform coating of g-C3N4 as a highly effective heterostructure for enhanced photocatalytic activities. J. Solid State Chem., 2014, 220, 54-59.
[http://dx.doi.org/10.1016/j.jssc.2014.08.016]
[99]
Zhang, X.; Li, L.; Zeng, Y.; Liu, F.; Yuan, J.; Li, X.; Yu, Y.; Zhu, X.; Xiong, Z.; Yu, H.; Xie, Y. TiO2/Graphitic carbon nitride nanosheets for the photocatalytic degradation of rhodamine B under simulated sunlight. ACS Appl. Nano Mater., 2019, 2(11), 7255-7265.
[http://dx.doi.org/10.1021/acsanm.9b01739]
[100]
Adhikari, S.P.; Awasthi, G.P.; Kim, H.J.; Park, C.H.; Kim, C.S. Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation. Langmuir, 2016, 32(24), 6163-6175.
[http://dx.doi.org/10.1021/acs.langmuir.6b01085]
[101]
Wang, X.; Jiang, S.; Huo, X.; Xia, R.; Muhire, E.; Gao, M. Facile preparation of a TiO2 quantum dot/graphitic carbon nitride heterojunction with highly efficient photocatalytic activity. Nanotechnology, 2018, 29(20), 205702
[http://dx.doi.org/10.1088/1361-6528/aab1be]
[102]
Su, J.; Zhu, L.; Geng, P.; Chen, G. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: an efficient heterojunction for pollutants degradation under solar light. J. Hazard. Mater., 2016, 316, 159-168.
[http://dx.doi.org/10.1016/j.jhazmat.2016.05.004]
[103]
Sun, M.; Fang, Y.; Kong, Y.; Sun, S.; Yu, Z.; Umar, A. Graphitic carbon nitride (g-C3N4) coated titanium oxide nanotube arrays with enhanced photo-electrochemical performance. Dalton T., 2016, 45(32), 12702-12709.
[http://dx.doi.org/10.1039/C6DT02071B]
[104]
Sun, J.X.; Yuan, Y.P.; Qiu, L.G.; Jiang, X.; Xie, A.J.; Shen, Y.H.; Zhu, J.F. Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light. Dalton T., 2012, 41(22), 6756-6763.
[http://dx.doi.org/10.1039/c2dt12474b]
[105]
Sundaram, I.M.; Kalimuthu, S.; Ponniah, G. Highly active ZnO modified g-C3N4 nanocomposite for dye degradation under UV and visible light with enhanced stability and antimicrobial activity. Compos. Commun., 2017, 5, 64-71.
[http://dx.doi.org/10.1016/j.coco.2017.07.003]
[106]
Kuang, P.Y.; Su, Y.Z.; Chen, G.F.; Luo, Z.; Xing, S.Y.; Li, N.; Liu, Z.Q. g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance. Appl. Surf. Sci., 2015, 358, 296-303.
[http://dx.doi.org/10.1016/j.apsusc.2015.08.066]
[107]
Chen, D.; Wang, K.; Xiang, D.; Zong, R.; Yao, W.; Zhu, Y. Significantly enhancement of photocatalytic performances via core-shell structure of ZnO@mpg-C3N4. Appl. Catal. B, 2014, 147, 554-561.
[http://dx.doi.org/10.1016/j.apcatb.2013.09.039]
[108]
Wang, J.; Xia, Y.; Zhao, H.; Wang, G.; Xiang, L.; Xu, J.; Komarneni, S. Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Appl. Catal. B, 2017, 206, 406-416.
[http://dx.doi.org/10.1016/j.apcatb.2017.01.067]
[109]
Le, S.; Jiang, T.; Li, Y.; Zhao, Q.; Li, Y.; Fang, W.; Gong, M. Highly efficient visible-light-driven mesoporous graphitic carbon nitride/ZnO nanocomposite photocatalysts. Appl. Catal. B, 2017, 200, 601-610.
[http://dx.doi.org/10.1016/j.apcatb.2016.07.027]
[110]
Zang, Y.; Li, L.; Li, X.; Lin, R.; Li, G. Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chem. Eng. J., 2014, 246, 277-286.
[http://dx.doi.org/10.1016/j.cej.2014.02.068]
[111]
Mohammad, A.; Khan, M.E.; Karim, M.R.; Cho, M.H. Synergistically effective and highly visible light responsive SnO2-g-C3N4 nanostructures for improved photocatalytic and photoelectrochemical performance. Appl. Surf. Sci., 2019, 495, 143432
[http://dx.doi.org/10.1016/j.apsusc.2019.07.174]
[112]
Wang, X.; Ren, P. Flower-like SnO2/g-C3N4 heterojunctions: the face-to-face contact interface and improved photocatalytic properties. Adv. Powder Technol., 2018, 29(5), 1153-1157.
[http://dx.doi.org/10.1016/j.apt.2018.02.006]
[113]
Shen, H.; Zhao, X.; Duan, L.; Liu, R.; Li, H. Enhanced visible light photocatalytic activity in SnO2@g-C3N4 core-shell structures. Mater. Sci. Eng. B, 2017, 218, 23-30.
[http://dx.doi.org/10.1016/j.mseb.2017.01.006]
[114]
Babu, B.; Cho, M.; Byon, C.; Shim, J. Sunlight-driven photocatalytic activity of SnO2 QDs-g-C3N4 nanolayers. Mater. Lett., 2018, 212, 327-331.
[http://dx.doi.org/10.1016/j.matlet.2017.10.110]
[115]
Ali, W.; Zhang, X.; Zhang, X.; Ali, S.; Zhao, L.; Shaheen, S.; Jing, L. Improved visible-light activities of g-C3N4 nanosheets by co-modifying nano-sized SnO2 and Ag for CO2 reduction and 2,4-dichlorophenol degradation. Mater. Res. Bull., 2020, 122, 110676
[http://dx.doi.org/10.1016/j.materresbull.2019.110676]
[116]
Raziq, F.; Qu, Y.; Humayun, M.; Zada, A.; Yu, H.; Jing, L. Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl. Catal. B, 2017, 201, 486-494.
[http://dx.doi.org/10.1016/j.apcatb.2016.08.057]
[117]
Zhu, K.; Lv, Y.; Liu, J.; Wang, W.; Wang, C.; Li, S.; Wang, P.; Zhang, M.; Meng, A.; Li, Z. Facile fabrication of g-C3N4/SnO2 composites and ball milling treatment for enhanced photocatalytic performance. J. Alloys Compd., 2019, 802, 13-18.
[http://dx.doi.org/10.1016/j.jallcom.2019.06.193]
[118]
Xiao, T.; Tang, Z.; Yang, Y.; Tang, L.; Zhou, Y.; Zou, Z. In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics. Appl. Catal. B, 2018, 220, 417-428.
[http://dx.doi.org/10.1016/j.apcatb.2017.08.070]
[119]
Chen, S.; Hu, Y.; Meng, S.; Fu, X. Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl. Catal. B, 2014, 150-151, 564-573.
[http://dx.doi.org/10.1016/j.apcatb.2013.12.053]
[120]
Wang, P.; Lu, N.; Su, Y.; Liu, N.; Yu, H.; Li, J.; Wu, Y. Fabrication of WO3@g-C3N4 with core@shell nanostructure for enhanced photocatalytic degradation activity under visible light. Appl. Surf. Sci., 2017, 423, 197-204.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.127]
[121]
Cui, L.; Ding, X.; Wang, Y.; Shi, H.; Huang, L.; Zuo, Y.; Kang, S. Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light. Appl. Surf. Sci., 2017, 391, 202-210.
[http://dx.doi.org/10.1016/j.apsusc.2016.07.055]
[122]
Liu, X.; Jin, A.; Jia, Y.; Xia, T.; Deng, C.; Zhu, M.; Chen, C.; Chen, X. Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Appl. Surf. Sci., 2017, 405, 359-371.
[http://dx.doi.org/10.1016/j.apsusc.2017.02.025]
[123]
Yang, M.; Hu, S.; Li, F.; Fan, Z.; Wang, F.; Liu, D.; Gui, J. The influence of preparation method on the photocatalytic performance of g-C3N4/WO3 composite photocatalyst. Ceram. Int., 2014, 40(8), 11963-11969.
[http://dx.doi.org/10.1016/j.ceramint.2014.04.033]
[124]
Zhao, J.; Ji, Z.; Shen, X.; Zhou, H.; Ma, L. Facile synthesis of WO3 nanorods/g-C3N4 composites with enhanced photocatalytic activity. Ceram. Int., 2015, 41(4), 5600-5606.
[http://dx.doi.org/10.1016/j.ceramint.2014.12.140]
[125]
Chai, B.; Liu, C.; Yan, J.; Ren, Z.; Wang, Z.J. In-situ synthesis of WO3 nanoplates anchored on g-C3N4 Z-scheme photocatalysts for significantly enhanced photocatalytic activity. Appl. Surf. Sci., 2018, 448, 1-8.
[http://dx.doi.org/10.1016/j.apsusc.2018.04.116]
[126]
Chen, G.; Bian, S.; Guo, C.Y.; Wu, X. Insight into the Z-scheme heterostructure WOC3N4/g-C3N4 for enhanced photocatalytic degradation of methyl orange. Mater. Lett., 2019, 236, 596-599.
[http://dx.doi.org/10.1016/j.matlet.2018.11.010]
[127]
Chen, J.; Xiao, X.; Wang, Y.; Ye, Z. Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation. Appl. Surf. Sci., 2019, 467-468, 1000-1010.
[http://dx.doi.org/10.1016/j.apsusc.2018.10.236]
[128]
Singh, J.; Arora, A.; Basu, S. Synthesis of coral like WO3/g-C3N4 nanocomposites for the removal of hazardous dyes under visible light. J. Alloys Compd., 2019, 808, 151734
[http://dx.doi.org/10.1016/j.jallcom.2019.151734]
[129]
Liu, X.; Jin, A.; Jia, Y.; Jiang, J.; Hu, N.; Chen, X. Facile synthesis and enhanced visible-light photocatalytic activity of graphitic carbon nitride decorated with ultrafine Fe2O3 nanoparticles. Rsc Adv., 2015, 5(112), 92033-92041.
[http://dx.doi.org/10.1039/C5RA18466E]
[130]
Hao, Q.; Mo, Z.; Chen, Z.; She, X.; Xu, Y.; Song, Y.; Ji, H.; Wu, X.; Yuan, S.; Xu, H.; Li, H. 0D/2D Fe2O3 quantum dots/g-C3N4 for enhanced visible-light-driven photocatalysis. Colloid Surface A, 2018, 541, 188-194.
[http://dx.doi.org/10.1016/j.colsurfa.2018.01.023]
[131]
Hu, S.; Jin, R.; Lu, G.; Liu, D.; Gui, J. The properties and photocatalytic performance comparison of Fe3+-doped g-C3N4 and Fe2O3/g-C3N4 composite catalysts. RSC Advances, 2014, 4(47), 24863-24869.
[http://dx.doi.org/10.1039/c4ra03290j]
[132]
Christoforidis, K.C.; Montini, T.; Bontempi, E.; Zafeiratos, S.; Jaén, J.J.D.; Fornasiero, P. Synthesis and photocatalytic application of visible-light active β-Fe2O3/g-C3N4 hybrid nanocomposites. Appl. Catal. B, 2016, 187, 171-180.
[http://dx.doi.org/10.1016/j.apcatb.2016.01.013]
[133]
Zhou, X.; Jin, B.; Chen, R.; Peng, F.; Fang, Y. Synthesis of porous Fe3O4/g-C3N4 nanospheres as highly efficient and recyclable photocatalysts. Mater. Res. Bull., 2013, 48(4), 1447-1452.
[http://dx.doi.org/10.1016/j.materresbull.2012.12.038]
[134]
Zhu, D.; Liu, S.; Chen, M.; Zhang, J.; Wang, X. Flower-like-flake Fe3O4/g-C3N4 nanocomposite: Facile synthesis, characterization, and enhanced photocatalytic performance. Colloid Surface A, 2018, 537, 372-382.
[http://dx.doi.org/10.1016/j.colsurfa.2017.10.053]
[135]
Yang, J.; Chen, H.; Gao, J.; Yan, T.; Zhou, F.; Cui, S.; Bi, W. Synthesis of Fe3O4/g-C3N4 nanocomposites and their application in the photodegradation of 2,4,6-trichlorophenol under visible light. Mater. Lett., 2016, 164, 183-189.
[http://dx.doi.org/10.1016/j.matlet.2015.10.130]
[136]
Zhu, Z.; Yu, Y.; Dong, H.; Liu, Z.; Li, C.; Huo, P.; Yan, Y. Intercalation effect of Attapulgite in g-C3N4 modified with Fe3O4 quantum dots to enhance photocatalytic activity for removing 2-mercaptobenzothiazole under visible light. ACS Sustain. Chem.& Eng., 2017, 5(11), 10614-10623.
[http://dx.doi.org/10.1021/acssuschemeng.7b02595]
[137]
Cheng, R.; Zhang, L.; Fan, X.; Wang, M.; Li, M.; Shi, J. One-step construction of FeOx modified g-C3N4 for largely enhanced visible-light photocatalytic hydrogen evolution. Carbon, 2016, 101, 62-70.
[http://dx.doi.org/10.1016/j.carbon.2016.01.070]
[138]
Xie, S.; Wang, Z.; Cheng, F.; Zhang, P.; Mai, W.; Tong, Y. Ceria and ceria-based nanostructured materials for photoenergy applications. Nano Energy, 2017, 34, 313-337.
[http://dx.doi.org/10.1016/j.nanoen.2017.02.029]
[139]
Huang, L.; Li, Y.; Xu, H.; Xu, Y.; Xia, J.; Wang, K.; Li, H.; Cheng, X. Synthesis and characterization of CeO2/g-C3N4 composites with enhanced visible-light photocatatalytic activity. RSC Advances, 2013, 3(44), 22269-22279.
[http://dx.doi.org/10.1039/c3ra42712a]
[140]
Liu, X.; He, L.; Chen, X.; Du, L.; Gu, X.; Wang, S.; Fu, M.; Dong, F.; Huang, H. Facile synthesis of CeO2/g-C3N4 nanocomposites with significantly improved visible-light photocatalytic activity for hydrogen evolution. Int. J. Hydrogen Energy, 2019, 44(31), 16154-16163.
[http://dx.doi.org/10.1016/j.ijhydene.2019.05.042]
[141]
Liu, W.; Zhou, J.; Hu, Z. Nano-sized g-C3N4 thin layer @ CeO2 sphere core-shell photocatalyst combined with H2O2 to degrade doxycycline in water under visible light irradiation. Separ. Purif. Tech., 2019, 227, 115665
[http://dx.doi.org/10.1016/j.seppur.2019.06.003]
[142]
Zou, W.; Deng, B.; Hu, X.; Zhou, Y.; Pu, Y.; Yu, S.; Ma, K.; Sun, J.; Wan, H.; Dong, L. Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution. Appl. Catal. B, 2018, 238, 111-118.
[http://dx.doi.org/10.1016/j.apcatb.2018.07.022]
[143]
Kesarla, M.K.; Torres, M.O.F.; Alcudia-Ramos, M.A.; Chi, F.O.; Espinosa-González, C.G.; Aleman, M.; Torres, J.G.T.; Godavarthi, S. Synthesis of g-C3N4/N-doped CeO2 composite for photocatalytic degradation of an herbicide. J. Mater. Res. Technol., 2019, 8(2), 1628-1635.
[http://dx.doi.org/10.1016/j.jmrt.2018.11.008]
[144]
Yang, H.; Xu, B.; Yuan, S.; Zhang, Q.; Zhang, M.; Ohno, T. Synthesis of Y-doped CeO2/PCN nanocomposited photocatalyst with promoted photoredox performance. Appl. Catal. B, 2019, 243, 513-521.
[http://dx.doi.org/10.1016/j.apcatb.2018.10.057]
[145]
Hong, Y.; Jiang, Y.; Li, C.; Fan, W.; Yan, X.; Yan, M.; Shi, W. In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Appl. Catal. B, 2016, 180, 663-673.
[http://dx.doi.org/10.1016/j.apcatb.2015.06.057]
[146]
Liu, Q.; Fan, C.; Tang, H.; Sun, X.; Yang, J.; Cheng, X. One-pot synthesis of g-C3N4/V2O5 composites for visible light-driven photocatalytic activity. Appl. Surf. Sci., 2015, 358, 188-195.
[http://dx.doi.org/10.1016/j.apsusc.2015.09.010]
[147]
Dadigala, R.; Bandi, R.; Gangapuram, B.R.; Dasari, A.; Belay, H.H.; Guttena, V. Fabrication of novel 1D/2D V2O5/g-C3N4 composites as Z-scheme photocatalysts for CR degradation and Cr (VI) reduction under sunlight irradiation. J. Environ. Chem. Eng., 2019, 7(1), 102822
[http://dx.doi.org/10.1016/j.jece.2018.102822]
[148]
Jayaraman, T.; Raja, S.A.; Priya, A.; Jagannathan, M.; Ashokkumar, M. Synthesis of a visible-light active V2O5-g-C3N4 heterojunction as an efficient photocatalytic and photoelectrochemical material. New J. Chem., 2015, 39(2), 1367-1374.
[http://dx.doi.org/10.1039/C4NJ01807A]
[149]
Huang, L.; Xu, H.; Zhang, R.; Cheng, X.; Xia, J.; Xu, Y.; Li, H. Synthesis and characterization of g-C3N4/MoO3 photocatalyst with improved visible-light photoactivity. Appl. Surf. Sci., 2013, 283, 25-32.
[http://dx.doi.org/10.1016/j.apsusc.2013.05.106]
[150]
Balasubramanian, P.; Annalakshmi, M.; Chen, S.M.; Chen, T.W. Sonochemical synthesis of molybdenum oxide (MoO3) microspheres anchored graphitic carbon nitride (g-C3N4) ultrathin sheets for enhanced electrochemical sensing of Furazolidone. Ultrason. Sonochem., 2019, 50, 96-104.
[http://dx.doi.org/10.1016/j.ultsonch.2018.09.006]
[151]
Xue, S.; Wu, C.; Pu, S.; Hou, Y.; Tong, T.; Yang, G.; Qin, Z.; Wang, Z.; Bao, J. Direct Z-Scheme charge transfer in heterostructured MoO3/g-C3N4 photocatalysts and the generation of active radicals in photocatalytic dye degradations. Environ. Pollut., 2019, 250, 338-345.
[http://dx.doi.org/10.1016/j.envpol.2019.04.010]
[152]
Zhang, X.; Yi, J.; Chen, H.; Mao, M.; Liu, L.; She, X.; Ji, H.; Wu, X.; Yuan, S.; Xu, H.; Li, H. Construction of a few-layer g-C3N4/α-MoO3 nanoneedles all-solid-state Z-scheme photocatalytic system for photocatalytic degradation. J. Energy Chem., 2019, 29, 65-71.
[http://dx.doi.org/10.1016/j.jechem.2018.01.014]
[153]
Xia, P.; Zhu, B.; Cheng, B.; Yu, J.; Xu, J. 2D/2D g-C3N4/MnO2 Nanocomposite as a direct Z-Scheme photocatalyst for enhanced photocatalytic activity. ACS Sustain. Chem.& Eng., 2018, 6(1), 965-973.
[http://dx.doi.org/10.1021/acssuschemeng.7b03289]
[154]
Elmacı, G.; Ertürk, A.S.; Sevim, M.; Metin, Ö. MnO2 nanowires anchored on mesoporous graphitic carbon nitride (MnO2@mpg-C3N4) as a highly efficient electrocatalyst for the oxygen evolution reaction. Int. J. Hydrogen Energy, 2019, 44(33), 17995-18006.
[http://dx.doi.org/10.1016/j.ijhydene.2019.05.089]
[155]
Hong, Y.; Li, C.; Zhang, G.; Meng, Y.; Yin, B.; Zhao, Y.; Shi, W. Efficient and stable Nb2O5 modified g-C3N4 photocatalyst for removal of antibiotic pollutant. Chem. Eng. J., 2016, 299, 74-84.
[http://dx.doi.org/10.1016/j.cej.2016.04.092]
[156]
Chen, L.Y.; Zhang, W.D. In2O3/g-C3N4 composite photocatalysts with enhanced visible light driven activity. Appl. Surf. Sci., 2014, 301, 428-435.
[http://dx.doi.org/10.1016/j.apsusc.2014.02.093]
[157]
Sun, Y.; Jiang, J.; Liu, Y.; Wu, S.; Zou, J. A facile one-pot preparation of Co3O4/g-C3N4 heterojunctions with excellent electrocatalytic activity for the detection of environmental phenolic hormones. Appl. Surf. Sci., 2018, 430, 362-370.
[http://dx.doi.org/10.1016/j.apsusc.2017.06.157]
[158]
Shao, H.; Zhao, X.; Wang, Y.; Mao, R.; Wang, Y.; Qiao, M.; Zhao, S.; Zhu, Y. Synergetic activation of peroxymonosulfate by Co3O4 modified g-C3N4 for enhanced degradation of diclofenac sodium under visible light irradiation. Appl. Catal. B, 2017, 218, 810-818.
[http://dx.doi.org/10.1016/j.apcatb.2017.07.016]
[159]
Yang, L.; Liu, J.; Yang, L.; Zhang, M.; Zhu, H.; Wang, F.; Yin, J. Co3O4 imbedded g-C3N4 heterojunction photocatalysts for visible-light-driven hydrogen evolution. Renew. Energy, 2020, 145, 691-698.
[http://dx.doi.org/10.1016/j.renene.2019.06.072]
[160]
Tang, J.Y.; Guo, R.T.; Zhou, W.G.; Huang, C.Y.; Pan, W.G. Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction. Appl. Catal. B, 2018, 237, 802-810.
[http://dx.doi.org/10.1016/j.apcatb.2018.06.042]
[161]
Chen, H.Y.; Qiu, L.G.; Xiao, J.D.; Ye, S.; Jiang, X.; Yuan, Y.P. Inorganic-organic hybrid NiO-g-C3N4 photocatalyst for efficient methylene blue degradation using visible light. RSC Advances, 2014, 4(43), 22491-22496.
[http://dx.doi.org/10.1039/C4RA01519C]
[162]
Fatima, U.; Shahid, S. Facile synthesis of novel highly photocatalytic graphitic carbon nitride/NiO nanocomposites for wastewater treatment. Mater. Res. Express, 2019, 6(11), 115541
[http://dx.doi.org/10.1088/2053-1591/ab4dd6]
[163]
Zhang, J.; Hu, Y.; Jiang, X.; Chen, S.; Meng, S.; Fu, X. Design of a direct Z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. J. Hazard. Mater., 2014, 280, 713-722.
[http://dx.doi.org/10.1016/j.jhazmat.2014.08.055]
[164]
Zhang, L.; Wang, G.; Xiong, Z.; Tang, H.; Jiang, C. Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation. Appl. Surf. Sci., 2018, 436, 162-171.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.280]
[165]
Bano, Z.; Muhmood, T.; Xia, M.; Lei, W.; Wang, F. Ultrathin nanosheets of graphitic carbon nitride heterojunction with flower like Bi2O3 for photodegradation of organic pollutants. Mater. Res. Express, 2018, 5(5), 055030
[http://dx.doi.org/10.1088/2053-1591/aac3a3]
[166]
He, R.; Zhou, J.; Fu, H.; Zhang, S.; Jiang, C. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci., 2018, 430, 273-282.
[http://dx.doi.org/10.1016/j.apsusc.2017.07.191]
[167]
Cui, Y.; Zhang, X.; Guo, R.; Zhang, H.; Li, B.; Xie, M.; Cheng, Q.; Cheng, X. Construction of Bi2O3/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic performance and mechanism. Separ. Purif. Tech., 2018, 203, 301-309.
[http://dx.doi.org/10.1016/j.seppur.2018.04.061]
[168]
Shafawi, A.N.; Mahmud, R.A.; Ahmed Ali, K.; Putri, L.K.; Md Rosli, N.I.; Mohamed, A.R. Bi2O3 particles decorated on porous g-C3N4 sheets: enhanced photocatalytic activity through a direct Z-scheme mechanism for degradation of reactive black 5 under UV-vis light. J. Photoch. Photobio. A, 2020, 389, 112289
[http://dx.doi.org/10.1016/j.jphotochem.2019.112289]
[169]
Devi, K.R.S.; Mathew, S.; Rajan, R.; Georgekutty, J.; Kasinathan, K.; Pinheiro, D.; Sugunan, S. Biogenic synthesis of g-C3N4/Bi2O3 heterojunction with enhanced photocatalytic activity and statistical optimization of reaction parameters. Appl. Surf. Sci., 2019, 494, 465-476.
[http://dx.doi.org/10.1016/j.apsusc.2019.07.125]
[170]
Xue, S.; Hou, X.; Xie, W.; Wei, X.; He, D. Dramatic improvement of photocatalytic activity for N-doped Bi2O3/g-C3N4 composites. Mater. Lett., 2015, 161, 640-643.
[http://dx.doi.org/10.1016/j.matlet.2015.09.067]
[171]
Chen, D.; Wu, S.; Fang, J.; Lu, S.; Zhou, G.; Feng, W.; Yang, F.; Chen, Y.; Fang, Z. A nanosheet-like α-Bi2O3/g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. Separ. Purif. Tech., 2018, 193, 232-241.
[http://dx.doi.org/10.1016/j.seppur.2017.11.011]
[172]
Xu, Y.; Wang, H.; Yu, Y.; Tian, L.; Zhao, W.; Zhang, B. Cu2O nanocrystals: surfactant-free room-temperature morphology-modulated synthesis and shape-dependent heterogeneous organic catalytic activities. J. Phys. Chem. C, 2011, 115(31), 15288-15296.
[http://dx.doi.org/10.1021/jp204982q]
[173]
Peng, B.; Zhang, S.; Yang, S.; Wang, H.; Yu, H.; Zhang, S.; Peng, F. Synthesis and characterization of g-C3N4/Cu2O composite catalyst with enhanced photocatalytic activity under visible light irradiation. Mater. Res. Bull., 2014, 56, 19-24.
[http://dx.doi.org/10.1016/j.materresbull.2014.04.042]
[174]
Zuo, S.; Xu, H.; Liao, W.; Yuan, X.; Sun, L.; Li, Q.; Zan, J.; Li, D.; Xia, D. Molten-salt synthesis of g-C3N4-Cu2O heterojunctions with highly enhanced photocatalytic performance. Colloid Surface A, 2018, 546, 307-315.
[http://dx.doi.org/10.1016/j.colsurfa.2018.03.013]
[175]
Zuo, S.; Xu, H.; Liao, W.; Sun, L.; Han, D.; Zan, J.; Zhang, B.; Li, D.; Xia, D. Acid-treated g-C3N4-Cu2O composite catalyst with enhanced photocatalytic activity under visible-light irradiation. Appl. Organomet. Chem., 2018, 32(9), e4448
[http://dx.doi.org/10.1002/aoc.4448]
[176]
Eshaq, G.; ElMetwally, A.E. Bmim[OAc]-Cu2O/g-C3N4 as a multi-function catalyst for sonophotocatalytic degradation of methylene blue. Ultrason. Sonochem., 2019, 53, 99-109.
[http://dx.doi.org/10.1016/j.ultsonch.2018.12.037]
[177]
Li, D.; Zuo, S.; Xu, H.; Zan, J.; Sun, L.; Han, D.; Liao, W.; Zhang, B.; Xia, D. Synthesis of a g-C3N4-Cu2O heterojunction with enhanced visible light photocatalytic activity by PEG. J. Colloid Interface Sci., 2018, 531, 28-36.
[http://dx.doi.org/10.1016/j.jcis.2018.07.018]
[178]
Induja, M.; Sivaprakash, K.; Priya, G.; Karthikeyan, S. Facile green synthesis and antimicrobial performance of Cu2O nanospheres decorated g-C3N4 nanocomposite. Mater. Res. Bull., 2019, 112, 331-335.
[http://dx.doi.org/10.1016/j.materresbull.2018.12.030]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy