Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Novel Phospholipid-Based Labrasol Nanomicelles Loaded Flavonoids for Oral Delivery with Enhanced Penetration and Anti-Brain Tumor Efficiency

Author(s): Gang Wang*, Junjie Wang and Rui Guan

Volume 17, Issue 3, 2020

Page: [229 - 245] Pages: 17

DOI: 10.2174/1567201817666200210120950

Price: $65

Abstract

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment.

Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor.

Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs).

Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells.

Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.

Keywords: Nanomicelles, flavonoids, biodistribution, anti-tumor efficiency, toxicity, glioma.

Graphical Abstract
[1]
Hervey-Jumper, S.L.; Li, J.; Lau, D.; Molinaro, A.M.; Perry, D.W.; Meng, L.; Berger, M.S. Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. J. Neurosurg., 2015, 123(2), 325-339.
[http://dx.doi.org/10.3171/2014.10.JNS141520] [PMID: 25909573]
[2]
Wang, N.; Sun, P.; Lv, M.; Tong, G.; Jin, X.; Zhu, X. Mustard-inspired delivery shuttle for enhanced blood-brain barrier penetration and effective drug delivery in glioma therapy. Biomater. Sci., 2017, 5(5), 1041-1050.
[http://dx.doi.org/10.1039/C7BM00133A] [PMID: 28378865]
[3]
Li, Y.; Zheng, X.; Gong, M.; Zhang, J. Delivery of a peptide-drug conjugate targeting the blood brain barrier improved the efficacy of paclitaxel against glioma. Oncotarget, 2016, 7(48), 79401-79407.
[http://dx.doi.org/10.18632/oncotarget.12708] [PMID: 27765902]
[4]
Gornostaeva, S.V.; Revina, A.A.; Belyakova, L.D.; Larionov, O.G. Synthesis and properties of nickel nanoparticles and their nanocomposites. Prot. Met., 2008, 44, 372-375.
[http://dx.doi.org/10.1134/S0033173208040103]
[5]
Fangli, Y.; Peng, H.; Chunlei, Y.; Shulan, H.; Jinlin, L. Preparation and properties of zinc oxide nanoparticles coated with zinc aluminate. J. Mater. Chem., 2003, 13, 634-637.
[http://dx.doi.org/10.1039/b208346a]
[6]
Gill, K.K.; Kaddoumi, A.; Nazzal, S. PEG-lipid micelles as drug carriers: Physiochemical attributes, formulation principles and biological implication. J. Drug Target., 2014, 30, 1-10.
[PMID: 25547369]
[7]
Varshosaz, J.; Taymouri, S.; Hassanzadeh, F.; Javanmard, S.H.; Rostami, M. Self-assembly micelles with lipid core of cholesterol for docetaxel delivery to B16F10 melanoma and HepG2 cells. J. Liposome Res., 2014, 2, 1-9.
[PMID: 25275925]
[8]
Eaimtrakarn, S.; Rama Prasad, Y.V.; Ohno, T.; Konishi, T.; Yoshikawa, Y.; Shibata, N.; Takada, K. Absorption enhancing effect of labrasol on the intestinal absorption of insulin in rats. J. Drug Target., 2002, 10(3), 255-260.
[http://dx.doi.org/10.1080/10611860290022688] [PMID: 12075827]
[9]
Gan, L.; Gao, Y.P.; Zhu, C.L.; Zhang, X.X.; Gan, Y. Novel pH-sensitive lipid-polymer composite microspheres of 10-hydroxycamptothecin exhibiting colon-specific biodistribution and reduced systemic absorption. J. Pharm. Sci., 2013, 102(6), 1752-1759.
[http://dx.doi.org/10.1002/jps.23499] [PMID: 23605625]
[10]
Kandaswami, C.; Lee, L.T.; Lee, P.P.; Hwang, J.J.; Ke, F.C.; Huang, Y.T.; Lee, M.T. The antitumor activities of flavonoids. In Vivo, 2005, 19(5), 895-909.
[PMID: 16097445]
[11]
Williams, R.J.; Spencer, J.P.; Rice-Evans, C. Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med., 2004, 36(7), 838-849.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001] [PMID: 15019969]
[12]
Wang, G.; Wang, J.J. JAK2/STAT3 and mitochondrial pathway is essential for quercetin nanoliposomes induced cell death in C6 glioma cells. Cell Death Dis., 2013, 4e746
[http://dx.doi.org/10.1038/cddis.2013.242] [PMID: 23907460]
[13]
Gang, W.; Jie, W.J.; Ping, Z.L.; Ming, S.; Ying, L.J.; Lei, W.; Fang, Y. Liposomal quercetin: evaluating drug delivery in vitro and biodistribution in vivo. Expert Opin. Drug Deliv., 2012, 9(6), 599-613.
[http://dx.doi.org/10.1517/17425247.2012.679926] [PMID: 22607534]
[14]
Hu, J.; Wang, J.J.; Wang, G.; Yao, Z.J.; Xiao, Q.D. Pharmacokinetic and anti-tumor efficacy of PEG2000-DSPE polymeric liposome loaded with quercetin and temozolomide: Enhancing chemosensitization in drug resistant glioma cells. Int. J. Mol. Med., 2016, 37, 690-702.
[http://dx.doi.org/10.3892/ijmm.2016.2458] [PMID: 26782731]
[15]
Panickar, K.S.; Anderson, R.A. Mechanisms underlying the protective effects of myricetin and quercetin following oxygen-glucose deprivation-induced cell swelling and the reduction in glutamate uptake in glial cells. Neuroscience, 2011, 183, 1-14.
[http://dx.doi.org/10.1016/j.neuroscience.2011.03.064] [PMID: 21496478]
[16]
Sahoo, N.G.; Kakran, M.; Shaal, L.A.; Li, L.; Müller, R.H.; Pal, M.; Tan, L.P. Preparation and characterization of quercetin nanocrystals. J. Pharm. Sci., 2011, 100(6), 2379-2390.
[http://dx.doi.org/10.1002/jps.22446] [PMID: 21491450]
[17]
Wu, T.H.; Yen, F.L.; Lin, L.T.; Tsai, T.R.; Lin, C.C.; Cham, T.M. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int. J. Pharm., 2008, 346(1-2), 160-168.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.036] [PMID: 17689897]
[18]
Smith, A.J.; Kavuru, P.; Wojtas, L.; Zaworotko, M.J.; Shytle, R.D. Cocrystals of quercetin with improved solubility and oral bioavailability. Mol. Pharm., 2011, 8(5), 1867-1876.
[http://dx.doi.org/10.1021/mp200209j] [PMID: 21846121]
[19]
Siegelin, M.D.; Gaiser, T.; Habel, A.; Siegelin, Y. Myricetin sensitizes malignant glioma cells to TRAIL-mediated apoptosis by down-regulation of the short isoform of FLIP and bcl-2. Cancer Lett., 2009, 283(2), 230-238.
[http://dx.doi.org/10.1016/j.canlet.2009.04.002] [PMID: 19398149]
[20]
Khan, N.; Afaq, F.; Syed, D.N.; Mukhtar, H. Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle arrest in human prostate cancer LNCaP cells. Carcinogenesis, 2008, 29(5), 1049-1056.
[http://dx.doi.org/10.1093/carcin/bgn078] [PMID: 18359761]
[21]
Shao, K.; Huang, R.; Li, J.; Han, L.; Ye, L.; Lou, J.; Jiang, C. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J. Control. Release, 2010, 147(1), 118-126.
[http://dx.doi.org/10.1016/j.jconrel.2010.06.018] [PMID: 20609375]
[22]
Wu, H.; Zhong, Q.; Zhong, R.; Huang, H.; Xia, Z.; Ke, Z.; Zhang, Z.; Song, J.; Jia, X. Preparation and antitumor evaluation of self-assembling oleanolic acid-loaded Pluronic P105/d-α-tocopheryl polyethylene glycol succinate mixed micelles for non-small-cell lung cancer treatment. Int. J. Nanomedicine, 2016, 11, 6337-6352.
[http://dx.doi.org/10.2147/IJN.S119839] [PMID: 27932881]
[23]
Betton, B.; Gannon, P.O.; Koumakpayi, I.H.; Diallo, J.S.; Mes-Masson, A.M.; Saad, F. Influence of pH on the cytotoxic activity of Inositol Hexakisphosphate (IP6) in prostate cancer. Front. Oncol., 2011, 1, 40.
[http://dx.doi.org/10.3389/fonc.2011.00040] [PMID: 22655245]
[24]
Ferri, P.; Angelino, D.; Gennari, L.; Benedetti, S.; Ambrogini, P.; Del Grande, P.; Ninfali, P. Enhancement of flavonoid ability to cross the blood-brain barrier of rats by co-administration with α-tocopherol. Food Funct., 2015, 6(2), 394-400.
[http://dx.doi.org/10.1039/C4FO00817K] [PMID: 25474041]
[25]
Monsky, W.L.; Mouta Carreira, C.; Tsuzuki, Y.; Gohongi, T.; Fukumura, D.; Jain, R.K. Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin. Cancer Res., 2002, 8(4), 1008-1013.
[PMID: 11948107]
[26]
Beck-Broichsitter, M; Nicolas, J; Couvreur, P Design attributes of long-circulating polymeric drug delivery vehicles Eur. J. Pharm. Biopharm.,, 2015, 97(Pt B), 304-317.
[27]
Sahoo, P.; Rathore, R.K.; Awasthi, R.; Roy, B.; Verma, S.; Rathore, D.; Behari, S.; Husain, M.; Husain, N.; Pandey, C.M.; Mohakud, S.; Gupta, R.K. Subcompartmentalization of extracellular extravascular space (EES) into permeability and leaky space with local arterial input function (AIF) results in improved discrimination between high- and low-grade glioma using dynamic contrast-enhanced (DCE) MRI. J. Magn. Reson. Imaging, 2013, 38(3), 677-688.
[http://dx.doi.org/10.1002/jmri.24021] [PMID: 23390002]
[28]
Yu, Y.; Zhang, X.; Qiu, L. The anti-tumor efficacy of curcumin when delivered by size/charge-changing multistage polymeric micelles based on amphiphilic poly(β-amino ester) derivates. Biomaterials, 2014, 35(10), 3467-3479.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.096] [PMID: 24439418]
[29]
Murgia, S.; Falchi, A.M.; Meli, V.; Schillén, K.; Lippolis, V.; Monduzzi, M.; Rosa, A.; Schmidt, J.; Talmon, Y.; Bizzarri, R.; Caltagirone, C. Cubosome formulations stabilized by a dansyl-conjugated block copolymer for possible nanomedicine applications. Colloids Surf. B Biointerfaces, 2015, 129, 87-94.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.025] [PMID: 25829131]
[30]
Linares, J.; Matesanz, M.C.; Vila, M.; Feito, M.J.; Gonçalves, G.; Vallet-Regí, M.; Marques, P.A.; Portolés, M.T. Endocytic mechanisms of graphene oxide nanosheets in osteoblasts, hepatocytes and macrophages. ACS Appl. Mater. Interfaces, 2014, 6(16), 13697-13706.
[http://dx.doi.org/10.1021/am5031598] [PMID: 24979758]
[31]
Zhang, W.; Wang, G.; See, E.; Shaw, J.P.; Baguley, B.C.; Liu, J.; Amirapu, S.; Wu, Z. Post-insertion of poloxamer 188 strengthened liposomal membrane and reduced drug irritancy and in vivo precipitation, superior to PEGylation. J. Control. Release, 2015, 203, 161-169.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.026] [PMID: 25701612]
[32]
Sadauskas, E.; Wallin, H.; Stoltenberg, M.; Vogel, U.; Doering, P.; Larsen, A.; Danscher, G. Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol., 2007, 4, 10.
[http://dx.doi.org/10.1186/1743-8977-4-10] [PMID: 17949501]
[33]
Sadauskas, E.; Danscher, G.; Stoltenberg, M.; Vogel, U.; Larsen, A.; Wallin, H. Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine , 2009, 5(2), 162-169.
[http://dx.doi.org/10.1016/j.nano.2008.11.002] [PMID: 19217434]
[34]
Liu, Z.; Zhao, H.; Shu, L.; Zhang, Y.; Okeke, C.; Zhang, L.; Li, J.; Li, N. Preparation and evaluation of Baicalin-loaded cationic solid lipid nanoparticles conjugated with OX26 for improved delivery across the BBB. Drug Dev. Ind. Pharm., 2015, 41(3), 353-361.
[http://dx.doi.org/10.3109/03639045.2013.861478] [PMID: 25784073]
[35]
Guertler, A.; Kraemer, A.; Roessler, U.; Hornhardt, S.; Kulka, U.; Moertl, S.; Friedl, A.A.; Illig, T.; Wichmann, E.; Gomolka, M. The WST survival assay: an easy and reliable method to screen radiation-sensitive individuals. Radiat. Prot. Dosimetry, 2011, 143(2-4), 487-490.
[http://dx.doi.org/10.1093/rpd/ncq515] [PMID: 21183542]
[36]
Yi, L.; Chen, C.Y.; Jin, X.; Zhang, T.; Zhou, Y.; Zhang, Q.Y.; Zhu, J.D.; Mi, M.T. Differential suppression of intracellular reactive oxygen species-mediated signaling pathway in vascular endothelial cells by several subclasses of flavonoids. Biochimie, 2012, 94(9), 2035-2044.
[http://dx.doi.org/10.1016/j.biochi.2012.05.027] [PMID: 22683914]
[37]
Li, W.; Maloney, R.E.; Aw, T.Y. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature. Redox Biol., 2015, 5, 80-90.
[http://dx.doi.org/10.1016/j.redox.2015.03.005] [PMID: 25867911]
[38]
Yamada, N.; Nakagawa, S.; Horai, S.; Tanaka, K.; Deli, M.A.; Yatsuhashi, H.; Niwa, M. Hepatocyte growth factor enhances the barrier function in primary cultures of rat brain microvascular endothelial cells. Microvasc. Res., 2014, 92, 41-49.
[http://dx.doi.org/10.1016/j.mvr.2013.12.004] [PMID: 24370951]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy