Outwitting an Old Neglected Nemesis: A Review on Leveraging Integrated Data-Driven Approaches to Aid in Unraveling of Leishmanicides of Therapeutic Potential

Author(s): Samuel K. Kwofie*, Emmanuel Broni, Bismark Dankwa, Kweku S. Enninful, Gabriel B. Kwarko, Louis Darko, Ravi Durvasula, Prakasha Kempaiah, Brijesh Rathi, Whelton A. Miller III, Abu Yaya, Michael D. Wilson.

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


The global prevalence of leishmaniasis has increased with skyrocketed mortality in the past decade. The causative agent of leishmaniasis is Leishmania species, which infects populations in almost all the continents. Prevailing treatment regimens are consistently inefficient with reported side effects, toxicity and drug resistance. This review complements existing ones by discussing the current state of treatment options, therapeutic bottlenecks including chemoresistance and toxicity, as well as drug targets. It further highlights innovative applications of nanotherapeutics-based formulations, inhibitory potential of leishmanicides, anti-microbial peptides and organometallic compounds on leishmanial species. Moreover, it provides essential insights into recent machine learning-based models that have been used to predict novel leishmanicides and also discusses other new models that could be adopted to develop fast, efficient, robust and novel algorithms to aid in unraveling the next generation of anti-leishmanial drugs. A plethora of enriched functional genomic, proteomic, structural biology, high throughput bioassay and drug-related datasets are currently warehoused in both general and leishmania-specific databases. The warehoused datasets are essential inputs for training and testing algorithms to augment the prediction of biotherapeutic entities. In addition, we demonstrate how pharmacoinformatics techniques including ligand-, structure- and pharmacophore-based virtual screening approaches have been utilized to screen ligand libraries against both modeled and experimentally solved 3D structures of essential drug targets. In the era of data-driven decision-making, we believe that highlighting intricately linked topical issues relevant to leishmanial drug discovery offers a one-stop-shop opportunity to decipher critical literature with the potential to unlock implicit breakthroughs.

Keywords: Nemesis, Leveraging integrated data, Leishmanicides, Therapeutic potential, Drug resistance, Nanotherapeuticsbased formulations, Machine learning, Organometallics.

de Vries, H.J.C.; Reedijk, S.H.; Schallig, H.D.F.H. Cutaneous leishmaniasis: recent developments in diagnosis and management. Am. J. Clin. Dermatol., 2015, 16(2), 99-109.
[http://dx.doi.org/10.1007/s40257-015-0114-z] [PMID: 25687688]
WHO, Leishmaniasis. [Online]. [Available from: https://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis
Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M. WHO Leishmaniasis Control Team.Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7(5) e35671
[http://dx.doi.org/10.1371/journal.pone.0035671] [PMID: 22693548]
Nateghi Rostami, M.; Saghafipour, A.; Vesali, E. A newly emerged cutaneous leishmaniasis focus in central Iran. Int. J. Infect. Dis., 2013, 17(12), e1198-e1206.
[http://dx.doi.org/10.1016/j.ijid.2013.07.003] [PMID: 24011629]
Alvar, J.; Aparicio, P.; Aseffa, A.; Den Boer, M.; Cañavate, C.; Dedet, J.P.; Gradoni, L.; Ter Horst, R.; López-Vélez, R.; Moreno, J. The relationship between leishmaniasis and AIDS: the second 10 years. Clin. Microbiol. Rev., 2008, 21(2), 334-359.
[http://dx.doi.org/10.1128/CMR.00061-07] [PMID: 18400800]
Manomat, J. Prevalence and risk factors associated with Leishmania infection in Trang Province, southern Thailand. PLoS Negl. Trop. Dis., 2017, 11(11) e0006095
Badirzadeh, A.; Mohebali, M.; Sabzevari, S.; Ghafoori, M.; Arzamani, K.; Seyyedin, M.; Hashemi, S.A. Case Report: First coinfection report of mixed leishmania infantum/leishmania major and human immunodeficiency virus-acquired immune deficiency syndrome: Report of a case of disseminated cutaneous Leishmaniasis in Iran. Am. J. Trop. Med. Hyg., 2018, 98(1), 122-125.
[http://dx.doi.org/10.4269/ajtmh.17-0490] [PMID: 29165208]
Abdullahi, I.N. Serosurvey and factors associated with Leishmania donovani infection in febrile HIV infected individuals attending Abuja Teaching Hospital, Nigeria. Med. J. Zambia, 2018, 45(4), 216-225.
Barley, K.; Mubayi, A.; Safan, M.; Castillo-Chavez, C. A Comparative assessment of visceral leishmaniasis burden in two eco-epidemiologically different countries, India and Sudan. bioRxiv, 2019. 592220
WHO Recognizing neglected tropical diseases through changes on the skin., 2018, 48.
van Griensven, J.; Balasegaram, M.; Meheus, F.; Alvar, J.; Lynen, L.; Boelaert, M. Combination therapy for visceral leishmaniasis. Lancet Infect. Dis., 2010, 10(3), 184-194.
[http://dx.doi.org/10.1016/S1473-3099(10)70011-6] [PMID: 20185097]
Zulfiqar, B.; Shelper, T.B.; Avery, V.M. Leishmaniasis drug discovery: recent progress and challenges in assay development. Drug Discov. Today, 2017, 22(10), 1516-1531.
[http://dx.doi.org/10.1016/j.drudis.2017.06.004] [PMID: 28647378]
Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet, 2018, 392(10151), 951-970.
[http://dx.doi.org/10.1016/S0140-6736(18)31204-2] [PMID: 30126638]
Hefnawy, A.; Berg, M.; Dujardin, J.C.; De Muylder, G. Exploiting knowledge on leishmania drug resistance to support the quest for new drugs. Trends Parasitol., 2017, 33(3), 162-174.
[http://dx.doi.org/10.1016/j.pt.2016.11.003] [PMID: 27993477]
Hendrickx, S.; Guerin, P.J.; Caljon, G.; Croft, S.L.; Maes, L. Evaluating drug resistance in visceral leishmaniasis: the challenges. Parasitology, 2018, 145(4), 453-463.
[http://dx.doi.org/10.1017/S0031182016002031] [PMID: 27866478]
Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des. Devel. Ther., 2017, 12, 25-40.
[PMID: 29317800]
Sundar, S.; Singh, B. Emerging therapeutic targets for treatment of leishmaniasis. Expert Opin. Ther. Targets, 2018, 22(6), 467-486.
[http://dx.doi.org/10.1080/14728222.2018.1472241] [PMID: 29718739]
WHO. Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected diseases 2015. In: Invest. to overcome Glob. impact neglected Trop. Dis. third WHO Rep. neglected Dis., , 2015, xvi, 191 P..
De Rycker, M.; Baragaña, B.; Duce, S.L.; Gilbert, I.H. Challenges and recent progress in drug discovery for tropical diseases. Nature, 2018, 559(7715), 498-506.
[http://dx.doi.org/10.1038/s41586-018-0327-4] [PMID: 30046073]
Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.C.; Barrett, M.P.; López-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl. Trop. Dis., 2017, 11(12) e0006052
[http://dx.doi.org/10.1371/journal.pntd.0006052] [PMID: 29240765]
Gadelha, E. P. N. An open label randomized clinical trial comparing the safety and effectiveness of one, two or three weekly pentamidine isethionate doses (seven milligrams per kilogram) in the treatment of cutaneous leishmaniasis in the Amazon Region. PLoS Negl. Trop. Dis., 2018, 12(10) e0006850
Aronson, N. Diagnosis and treatment of leishmaniasis: clinical practice guidelines by the infectious diseases society of america (idsa) and the american society of tropical medicine and hygiene (ASTMH). Clin. Infect. Dis., 2017, 96(1), 24-45.
Croft, S.L.; Sundar, S.; Fairlamb, A.H. Drug resistance in leishmaniasis. Clin. Microbiol. Rev., 2006, 19(1), 111-126.
[http://dx.doi.org/10.1128/CMR.19.1.111-126.2006] [PMID: 16418526]
Sundar, S.; Rai, M. Treatment of visceral leishmaniasis. Expert Opin. Pharmacother., 2005, 6(16), 2821-2829.
[http://dx.doi.org/10.1517/14656566.6.16.2821] [PMID: 16318433]
Charlton, R.L.; Rossi-Bergmann, B.; Denny, P.W.; Steel, P.G. Repurposing as a strategy for the discovery of new anti-leishmanials: the-state-of-the-art. Parasitology, 2018, 145(2), 219-236.
[http://dx.doi.org/10.1017/S0031182017000993] [PMID: 28805165]
Georgiadou, S.P.; Makaritsis, K.P.; Dalekos, G.N. Leishmaniasis revisited: Current aspects on epidemiology, diagnosis and treatment. J. Transl. Int. Med., 2015, 3(2), 43-50.
Diro, E.A randomized trial of AmBisome monotherapy and AmBisome and miltefosine combination to treat visceral leishmaniasis in HIV co-infected patients in Ethiopia. PLoS Negl. Trop. Dis., 2019, 13(1) e0006988
Musa, A. Sodium stibogluconate (SSG) & paromomycin combination compared to SSG for visceral leishmaniasis in East Africa: a randomised controlled trial. PLoS Negl. Trop. Dis., 2012, 6(6) e1674
Amer, E.I.; Eissa, M.M.; Mossallam, S.F. Oral azithromycin versus its combination with miltefosine for the treatment of experimental Old World cutaneous leishmaniasis. J. Parasit. Dis., 2016, 40(2), 475-484.
[http://dx.doi.org/10.1007/s12639-014-0529-0] [PMID: 27413324]
Sundar, S.; Rai, M.; Chakravarty, J.; Agarwal, D.; Agrawal, N.; Vaillant, M.; Olliaro, P.; Murray, H.W. New treatment approach in Indian visceral leishmaniasis: single-dose liposomal amphotericin B followed by short-course oral miltefosine. Clin. Infect. Dis., 2008, 47(8), 1000-1006.
[http://dx.doi.org/10.1086/591972] [PMID: 18781879]
Melaku, Y.; Collin, S.M.; Keus, K.; Gatluak, F.; Ritmeijer, K.; Davidson, R.N. Treatment of kala-azar in southern Sudan using a 17-day regimen of sodium stibogluconate combined with paromomycin: a retrospective comparison with 30-day sodium stibogluconate monotherapy. Am. J. Trop. Med. Hyg., 2007, 77(1), 89-94.
[http://dx.doi.org/10.4269/ajtmh.2007.77.89] [PMID: 17620635]
Rahman, R. Safety and efficacy of short course combination regimens with AmBisome, miltefosine and paromomycin for the treatment of visceral leishmaniasis (VL) in Bangladesh. PLoS Negl. Trop. Dis., 2017, 11(5) e0005635
Wasunna, M.; Njenga, S.; Balasegaram, M.; Alexander, N.; Omollo, R.; Edwards, T.; Dorlo, T.P.; Musa, B.; Ali, M.H.; Elamin, M.Y.; Kirigi, G.; Juma, R.; Kip, A.E.; Schoone, G.J.; Hailu, A.; Olobo, J.; Ellis, S.; Kimutai, R.; Wells, S.; Khalil, E.A.; Strub Wourgaft, N.; Alves, F.; Musa, A. Efficacy and Safety of AmBisome in Combination with Sodium Stibogluconate or Miltefosine and Miltefosine Monotherapy for African Visceral Leishmaniasis: Phase II Randomized Trial. PLoS Negl. Trop. Dis., 2016, 10(9) e0004880
[http://dx.doi.org/10.1371/journal.pntd.0004880] [PMID: 27627654]
Goyal, V.; Mahajan, R.; Pandey, K.; Singh, S.N.; Singh, R.S.; Strub-Wourgaft, N.; Alves, F.; Rabi Das, V.N.; Topno, R.K.; Sharma, B.; Balasegaram, M.; Bern, C.; Hightower, A.; Rijal, S.; Ellis, S.; Sunyoto, T.; Burza, S.; Lima, N.; Das, P.; Alvar, J. Field safety and effectiveness of new visceral leishmaniasis treatment regimens within public health facilities in Bihar, India. PLoS Negl. Trop. Dis., 2018, 12(10) e0006830
[http://dx.doi.org/10.1371/journal.pntd.0006830] [PMID: 30346949]
Alves, F.; Bilbe, G.; Blesson, S.; Goyal, V.; Monnerat, S.; Mowbray, C.; Muthoni Ouattara, G.; Pécoul, B.; Rijal, S.; Rode, J.; Solomos, A.; Strub-Wourgaft, N.; Wasunna, M.; Wells, S.; Zijlstra, E.E.; Arana, B.; Alvar, J. Recent Development of Visceral Leishmaniasis Treatments: Successes, Pitfalls, and Perspectives. Clin. Microbiol. Rev., 2018, 31(4), e00048-e18.
[http://dx.doi.org/10.1128/CMR.00048-18] [PMID: 30158301]
Singh, O.P.; Singh, B.; Chakravarty, J.; Sundar, S. Current challenges in treatment options for visceral leishmaniasis in India: a public health perspective. Infect. Dis. Poverty, 2016, 5, 19.
[http://dx.doi.org/10.1186/s40249-016-0112-2] [PMID: 26951132]
Mohapatra, S. Drug resistance in leishmaniasis: Newer developments. Trop. Parasitol., 2014, 4(1), 4-9.
[http://dx.doi.org/10.4103/2229-5070.129142] [PMID: 24754020]
Wyatt, P.G.; Gilbert, I.H.; Read, K.D.; Fairlamb, A.H. Target validation: linking target and chemical properties to desired product profile. Curr. Top. Med. Chem., 2011, 11(10), 1275-1283.
[http://dx.doi.org/10.2174/156802611795429185] [PMID: 21401506]
Dorlo, T.P.C.; Rijal, S.; Ostyn, B.; de Vries, P.J.; Singh, R.; Bhattarai, N.; Uranw, S.; Dujardin, J.C.; Boelaert, M.; Beijnen, J.H.; Huitema, A.D. Failure of miltefosine in visceral leishmaniasis is associated with low drug exposure. J. Infect. Dis., 2014, 210(1), 146-153.
[http://dx.doi.org/10.1093/infdis/jiu039] [PMID: 24443541]
Mandal, G. Species-specific antimonial sensitivity in Leishmania is driven by post-transcriptional regulation of AQP1. PLoS Negl. Trop. Dis., 2015, 9(2) e0003500
Haldar, A.K.; Sen, P.; Roy, S. Use of antimony in the treatment of leishmaniasis: current status and future directions. Mol. Biol. Int., 2011, 2011 571242
[http://dx.doi.org/10.4061/2011/571242] [PMID: 22091408]
Singh, N. Drug resistance mechanisms in clinical isolates of Leishmania donovani. Indian J. Med. Res., 2006, 123(3), 411-422.
[PMID: 16778320]
Dumetz, F.; Cuypers, B.; Imamura, H.; Zander, D.; D’Haenens, E.; Maes, I.; Domagalska, M.A.; Clos, J.; Dujardin, J.C.; De Muylder, G. Molecular Preadaptation to Antimony Resistance in Leishmania donovani on the Indian Subcontinent. MSphere, 2018, 3(2), e00548-e17.
[http://dx.doi.org/10.1128/mSphere.00548-17] [PMID: 29669889]
Purkait, B.; Kumar, A.; Nandi, N.; Sardar, A.H.; Das, S.; Kumar, S.; Pandey, K.; Ravidas, V.; Kumar, M.; De, T.; Singh, D.; Das, P. Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob. Agents Chemother., 2012, 56(2), 1031-1041.
[http://dx.doi.org/10.1128/AAC.00030-11] [PMID: 22123699]
Escobar, P.; Matu, S.; Marques, C.; Croft, S.L. Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH(3) (edelfosine) and amphotericin B. Acta Trop., 2002, 81(2), 151-157.
[http://dx.doi.org/10.1016/S0001-706X(01)00197-8] [PMID: 11801222]
Jhingran, A.; Chawla, B.; Saxena, S.; Barrett, M.P.; Madhubala, R. Paromomycin: uptake and resistance in Leishmania donovani. Mol. Biochem. Parasitol., 2009, 164(2), 111-117.
[http://dx.doi.org/10.1016/j.molbiopara.2008.12.007] [PMID: 19146886]
Fong, D.; Chan, M.M.Y.; Rodriguez, R.; Gately, L.J.; Berman, J.D.; Grogl, M. Paromomycin resistance in Leishmania tropica: lack of correlation with mutation in the small subunit ribosomal RNA gene. Am. J. Trop. Med. Hyg., 1994, 51(6), 758-766.
[http://dx.doi.org/10.4269/ajtmh.1994.51.758] [PMID: 7810808]
de Carvalho, R.F.; Ribeiro, I.F.; Miranda-Vilela, A.L.; de Souza Filho, J.; Martins, O.P.; Cintra e Silva, Dde.O.; Tedesco, A.C.; Lacava, Z.G.; Báo, S.N.; Sampaio, R.N. Leishmanicidal activity of amphotericin B encapsulated in PLGA-DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. Exp. Parasitol., 2013, 135(2), 217-222.
[http://dx.doi.org/10.1016/j.exppara.2013.07.008] [PMID: 23891944]
Wyllie, S.; Cunningham, M.L.; Fairlamb, A.H. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J. Biol. Chem., 2004, 279(38), 39925-39932.
[http://dx.doi.org/10.1074/jbc.M405635200] [PMID: 15252045]
Mookerjee Basu, J.; Mookerjee, A.; Sen, P.; Bhaumik, S.; Sen, P.; Banerjee, S.; Naskar, K.; Choudhuri, S.K.; Saha, B.; Raha, S.; Roy, S. Sodium antimony gluconate induces generation of reactive oxygen species and nitric oxide via phosphoinositide 3-kinase and mitogen-activated protein kinase activation in Leishmania donovani-infected macrophages. Antimicrob. Agents Chemother., 2006, 50(5), 1788-1797.
[http://dx.doi.org/10.1128/AAC.50.5.1788-1797.2006] [PMID: 16641451]
Rais, S.; Perianin, A.; Lenoir, M.; Sadak, A.; Rivollet, D.; Paul, M.; Deniau, M. Sodium stibogluconate (Pentostam) potentiates oxidant production in murine visceral leishmaniasis and in human blood. Antimicrob. Agents Chemother., 2000, 44(9), 2406-2410.
[http://dx.doi.org/10.1128/AAC.44.9.2406-2410.2000] [PMID: 10952587]
Moreira, V.R.; de Jesus, L.C.L.; Soares, R.P.; Silva, L.D.M.; Pinto, B.A.S.; Melo, M.N.; Paes, A.M.A.; Pereira, S.R.F. Meglumine antimoniate (glucantime) causes oxidative stress-derived DNA damage in BALB/c mice infected by leishmania (leishmania) infantum. Antimicrob. Agents Chemother., 2017, 61(6), e02360-e16.
[http://dx.doi.org/10.1128/AAC.02360-16] [PMID: 28320726]
Yang, G.; Choi, G.; No, J.H. Antileishmanial mechanism of diamidines involves targeting kinetoplasts. Antimicrob. Agents Chemother., 2016, 60(11), 6828-6836.
[http://dx.doi.org/10.1128/AAC.01129-16] [PMID: 27600039]
Saha, A.K.; Mukherjee, T.; Bhaduri, A. Mechanism of action of amphotericin B on Leishmania donovani promastigotes. Mol. Biochem. Parasitol., 1986, 19(3), 195-200.
[http://dx.doi.org/10.1016/0166-6851(86)90001-0] [PMID: 3736592]
Sundar, S.; Chakravarty, J.; Agarwal, D.; Rai, M.; Murray, H.W. Single-dose liposomal amphotericin B for visceral leishmaniasis in India. N. Engl. J. Med., 2010, 362(6), 504-512.
[http://dx.doi.org/10.1056/NEJMoa0903627] [PMID: 20147716]
Sundar, S.; Singh, A.; Rai, M.; Prajapati, V.K.; Singh, A.K.; Ostyn, B.; Boelaert, M.; Dujardin, J.C.; Chakravarty, J. Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin. Infect. Dis., 2012, 55(4), 543-550.
[http://dx.doi.org/10.1093/cid/cis474] [PMID: 22573856]
Croft, S.L.; Olliaro, P. Leishmaniasis chemotherapy--challenges and opportunities. Clin. Microbiol. Infect., 2011, 17(10), 1478-1483.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03630.x] [PMID: 21933306]
Aslett, M. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res., 2010, 38(Database issue), D457-D462.
[PMID: 19843604]
Patel, P.; Mandlik, V.; Singh, S. LmSmdB: an integrated database for metabolic and gene regulatory network in Leishmania major and Schistosoma mansoni. Genom. Data, 2015, 7(C), 115-118.
[http://dx.doi.org/10.1016/j.gdata.2015.12.012] [PMID: 26981382]
Rose, P.W.; Prlić, A.; Altunkaya, A.; Bi, C.; Bradley, A.R.; Christie, C.H.; Costanzo, L.D.; Duarte, J.M.; Dutta, S.; Feng, Z.; Green, R.K.; Goodsell, D.S.; Hudson, B.; Kalro, T.; Lowe, R.; Peisach, E.; Randle, C.; Rose, A.S.; Shao, C.; Tao, Y.P.; Valasatava, Y.; Voigt, M.; Westbrook, J.D.; Woo, J.; Yang, H.; Young, J.Y.; Zardecki, C.; Berman, H.M.; Burley, S.K. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res., 2017, 45(D1), D271-D281.
[PMID: 27794042]
Wang, Y.; Xiao, J.; Suzek, T. O.; Zhang, J.; Wang, J.; Bryant, S. H. PubChem: A public information system for analyzing bioactivities of small molecules Nucl. Acids Res., 2009, 37(web server issue), w623-w635.
Vijayakumar, S.; Kant, V.; Das, P. LeishInDB: A web-accessible resource for small molecule inhibitors against Leishmania sp. Acta Trop., 2019, 190, 375-379.
[http://dx.doi.org/10.1016/j.actatropica.2018.12.022] [PMID: 30552881]
Lamotte, S.; Späth, G.F.; Rachidi, N.; Prina, E. The enemy within: Targeting host-parasite interaction for antileishmanial drug discovery. PLoS Negl. Trop. Dis., 2017, 11(6) e0005480
[http://dx.doi.org/10.1371/journal.pntd.0005480] [PMID: 28594938]
de Morais, C.G.V.; Castro Lima, A.K.; Terra, R.; dos Santos, R.F.; Da-Silva, S.A.G.; Dutra, P.M.L. The dialogue of the host-parasite relationship: Leishmania spp. and Trypanosoma cruzi Infection. BioMed Res. Int., 2015, 2015 324915
[http://dx.doi.org/10.1155/2015/324915] [PMID: 26090399]
Fernandes Rodrigues, J.C.; Concepcion, J.L.; Rodrigues, C.; Caldera, A.; Urbina, J.A.; de Souza, W. In vitro activities of ER-119884 and E5700, two potent squalene synthase inhibitors, against Leishmania amazonensis: antiproliferative, biochemical, and ultrastructural effects. Antimicrob. Agents Chemother., 2008, 52(11), 4098-4114.
[http://dx.doi.org/10.1128/AAC.01616-07] [PMID: 18765694]
Urbina, J.A.; Concepcion, J.L.; Rangel, S.; Visbal, G.; Lira, R. Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania mexicana. Mol. Biochem. Parasitol., 2002, 125(1-2), 35-45.
[http://dx.doi.org/10.1016/S0166-6851(02)00206-2] [PMID: 12467972]
Preeti, S. Tapas, P. Kumar, R. Madhubala, and S. Tomar. Structural insight into DFMO resistant ornithine decarboxylase from entamoeba histolytica: An inkling to adaptive evolution. PLoS One, 2013, 8(1) e53397
Ivanenkov, Y.A.; Chufarova, N.V. Small-molecule arginase inhibitors. Pharm. Pat. Anal., 2014, 3(1), 65-85.
[http://dx.doi.org/10.4155/ppa.13.75] [PMID: 24354980]
Iniesta, V.; Carcelén, J.; Molano, I.; Peixoto, P.M.; Redondo, E.; Parra, P.; Mangas, M.; Monroy, I.; Campo, M.L.; Nieto, C.G.; Corraliza, I. Arginase I induction during Leishmania major infection mediates the development of disease. Infect. Immun., 2005, 73(9), 6085-6090.
[http://dx.doi.org/10.1128/IAI.73.9.6085-6090.2005] [PMID: 16113329]
Boitz, J.M. Arginase is essential for survival of Leishmania donovani promastigotes but not intracellular amastigotes. Infect. Immun., 2017, 85(1), pii e00554-e16.
[http://dx.doi.org/10.1128/IAI.00554-16] [PMID: 27795357]
da Silva, E.R.; Boechat, N.; Pinheiro, L.C.; Bastos, M.M.; Costa, C.C.; Bartholomeu, J.C.; da Costa, T.H. Novel selective inhibitor of Leishmania (Leishmania) amazonensis arginase. Chem. Biol. Drug Des., 2015, 86(5), 969-978.
[http://dx.doi.org/10.1111/cbdd.12566] [PMID: 25845502]
Motoshima, R.A.; Rosa, T.D.F.; Mendes, L.D.C.; Silva, E.V.D.; Viana, S.R.F.; Amaral, B.S.D.; de Souza, D.H.F.; Lião, L.M.; Corradi da Silva, M.L.; de Sousa, L.R.F.; Carbonero, E.R. Inhibition of Leishmania amazonensis arginase by fucogalactan isolated from Agrocybe aegerita mushroom. Carbohydr. Polym., 2018, 201, 532-538.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.109] [PMID: 30241850]
da Silva, E.R.; Maquiaveli, Cdo.C.; Magalhães, P.P. The leishmanicidal flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase. Exp. Parasitol., 2012, 130(3), 183-188.
Grover, A.; Katiyar, S.P.; Singh, S.K.; Dubey, V.K.; Sundar, D. A leishmaniasis study: structure-based screening and molecular dynamics mechanistic analysis for discovering potent inhibitors of spermidine synthase. Biochim. Biophys. Acta, 2012, 1824(12), 1476-1483.
Gilroy, C.; Olenyik, T.; Roberts, S.C.; Ullman, B. Spermidine synthase is required for virulence of Leishmania donovani. Infect. Immun., 2011, 79(7), 2764-2769.
[http://dx.doi.org/10.1128/IAI.00073-11] [PMID: 21536795]
Taylor, M.C.; Kaur, H.; Blessington, B.; Kelly, J.M.; Wilkinson, S.R. Validation of spermidine synthase as a drug target in African trypanosomes. Biochem. J., 2008, 409(2), 563-569.
[http://dx.doi.org/10.1042/BJ20071185] [PMID: 17916066]
Jiang, Y.; Roberts, S.C.; Jardim, A.; Carter, N.S.; Shih, S.; Ariyanayagam, M.; Fairlamb, A.H.; Ullman, B. Ornithine decarboxylase gene deletion mutants of Leishmania donovani. J. Biol. Chem., 1999, 274(6), 3781-3788.
[http://dx.doi.org/10.1074/jbc.274.6.3781] [PMID: 9920931]
Boitz, J.M.; Yates, P.A.; Kline, C.; Gaur, U.; Wilson, M.E.; Ullman, B.; Roberts, S.C. Leishmania donovani ornithine decarboxylase is indispensable for parasite survival in the mammalian host. Infect. Immun., 2009, 77(2), 756-763.
[http://dx.doi.org/10.1128/IAI.01236-08] [PMID: 19064633]
Yadav, A.; Amit, A.; Chaudhary, R.; Chandel, A.S.; Mahantesh, V.; Suman, S.S.; Singh, S.K.; Dikhit, M.R.; Ali, V.; Rabidas, V.; Pandey, K.; Kumar, A.; Das, P.; Bimal, S. Leishmania donovani: impairment of the cellular immune response against recombinant ornithine decarboxylase protein as a possible evasion strategy of Leishmania in visceral leishmaniasis. Int. J. Parasitol., 2015, 45(1), 33-42.
[http://dx.doi.org/10.1016/j.ijpara.2014.08.013] [PMID: 25449949]
Saccoliti, F.; Angiulli, G.; Pupo, G.; Pescatori, L.; Madia, V.N.; Messore, A.; Colotti, G.; Fiorillo, A.; Scipione, L.; Gramiccia, M.; Di Muccio, T.; Di Santo, R.; Costi, R.; Ilari, A. Inhibition of Leishmania infantum trypanothione reductase by diaryl sulfide derivatives. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 304-310.
[http://dx.doi.org/10.1080/14756366.2016.1250755] [PMID: 28098499]
Dumas, C.; Ouellette, M.; Tovar, J.; Cunningham, M.L.; Fairlamb, A.H.; Tamar, S.; Olivier, M.; Papadopoulou, B. Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO J., 1997, 16(10), 2590-2598.
[http://dx.doi.org/10.1093/emboj/16.10.2590] [PMID: 9184206]
Chan, C.; Yin, H.; Garforth, J.; McKie, J.H.; Jaouhari, R.; Speers, P.; Douglas, K.T.; Rock, P.J.; Yardley, V.; Croft, S.L.; Fairlamb, A.H. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. J. Med. Chem., 1998, 41(2), 148-156.
[http://dx.doi.org/10.1021/jm960814j] [PMID: 9457238]
Richardson, J.L.; Nett, I.R.E.; Jones, D.C.; Abdille, M.H.; Gilbert, I.H.; Fairlamb, A.H. Improved tricyclic inhibitors of trypanothione reductase by screening and chemical synthesis. ChemMedChem, 2009, 4(8), 1333-1340.
[http://dx.doi.org/10.1002/cmdc.200900097] [PMID: 19557801]
Beig, M.; Oellien, F.; Garoff, L.; Noack, S. Luise Krauth-Siegel, R.; Selzer, P. M.Trypanothione reductase: a target protein for a combined in vitro and in silico screening approach. PLoS Negl. Trop. Dis., 2015, 9(6) e0003773
Rodrigues, R.F. Investigation of trypanothione reductase inhibitory activity by 1,3,4-thiadiazolium-2-aminide derivatives and molecular docking studies. Bioorg. Med. Chem., 2012, 20(5), 1760-1766.
Xingi, E.; Smirlis, D.; Myrianthopoulos, V.; Magiatis, P.; Grant, K.M.; Meijer, L.; Mikros, E.; Skaltsounis, A.L.; Soteriadou, K. 6-Br-5methylindirubin-3'oxime (5-Me-6-BIO) targeting the leishmanial glycogen synthase kinase-3 (GSK-3) short form affects cell-cycle progression and induces apoptosis-like death: exploitation of GSK-3 for treating leishmaniasis. Int. J. Parasitol., 2009, 39(12), 1289-1303.
[http://dx.doi.org/10.1016/j.ijpara.2009.04.005] [PMID: 19445946]
Corpas-Lopez, V.; Moniz, S.; Thomas, M.; Wall, R.J.; Torrie, L.S.; Zander-Dinse, D.; Tinti, M.; Brand, S.; Stojanovski, L.; Manthri, S.; Hallyburton, I.; Zuccotto, F.; Wyatt, P.G.; De Rycker, M.; Horn, D.; Ferguson, M.A.J.; Clos, J.; Read, K.D.; Fairlamb, A.H.; Gilbert, I.H.; Wyllie, S. Pharmacological validation of n-myristoyltransferase as a drug target in leishmania donovani. ACS Infect. Dis., 2019, 5(1), 111-122.
[http://dx.doi.org/10.1021/acsinfecdis.8b00226] [PMID: 30380837]
Verlinde, C.L.M.J.; Hannaert, V.; Blonski, C.; Willson, M.; Périé, J.J.; Fothergill-Gilmore, L.A.; Opperdoes, F.R.; Gelb, M.H.; Hol, W.G.; Michels, P.A. Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist. Updat., 2001, 4(1), 50-65.
[http://dx.doi.org/10.1054/drup.2000.0177] [PMID: 11512153]
Guido, R.; Balliano, T.; Andricopulo, A.; Oliva, G. Kinetic and crystallographic studies on glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma cruzi in complex with iodoacetate. Lett. Drug Des. Discov., 2009, 6(3), 210-214.
Meshram, R.J.; Goundge, M.B.; Kolte, B.S.; Gacche, R.N. An in silico approach in identification of drug targets in Leishmania: A subtractive genomic and metabolic simulation analysis. Parasitol. Int., 2019, 69, 59-70.
[http://dx.doi.org/10.1016/j.parint.2018.11.006] [PMID: 30503238]
Singh, S.; Babu, N.K. 3-Hydroxy-3-methylglutaryl-coa reductase (HMGR) enzyme of the sterol biosynthetic pathway: a potentialtarget against visceral leishmaniasis In: Leishmaniases as Reemerging Diseases. IntechOpen: London, , 2018.
Torrie, L.S.; Brand, S.; Robinson, D.A.; Ko, E.J.; Stojanovski, L.; Simeons, F.R.C.; Wyllie, S.; Thomas, J.; Ellis, L.; Osuna-Cabello, M.; Epemolu, O.; Nühs, A.; Riley, J.; MacLean, L.; Manthri, S.; Read, K.D.; Gilbert, I.H.; Fairlamb, A.H.; De Rycker, M. Chemical validation of methionyl-tRNA synthetase as a druggable target in leishmania donovani. ACS Infect. Dis., 2017, 3(10), 718-727.
[http://dx.doi.org/10.1021/acsinfecdis.7b00047] [PMID: 28967262]
Rajasekaran, R.; Chen, Y.P.P. Potential therapeutic targets and the role of technology in developing novel antileishmanial drugs. Drug Discov. Today, 2015, 20(8), 958-968.
[http://dx.doi.org/10.1016/j.drudis.2015.04.006] [PMID: 25936844]
Khare, S.; Nagle, A.S.; Biggart, A.; Lai, Y.H.; Liang, F.; Davis, L.C.; Barnes, S.W.; Mathison, C.J.; Myburgh, E.; Gao, M.Y.; Gillespie, J.R.; Liu, X.; Tan, J.L.; Stinson, M.; Rivera, I.C.; Ballard, J.; Yeh, V.; Groessl, T.; Federe, G.; Koh, H.X.; Venable, J.D.; Bursulaya, B.; Shapiro, M.; Mishra, P.K.; Spraggon, G.; Brock, A.; Mottram, J.C.; Buckner, F.S.; Rao, S.P.; Wen, B.G.; Walker, J.R.; Tuntland, T.; Molteni, V.; Glynne, R.J.; Supek, F. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature, 2016, 537(7619), 229-233.
[http://dx.doi.org/10.1038/nature19339] [PMID: 27501246]
Catta-Preta, C.M.C.; Mottram, J.C. Drug candidate and target for leishmaniasis. Nature, 2018, 560(7717), 171-172.
[http://dx.doi.org/10.1038/d41586-018-05765-y] [PMID: 30076375]
Wyllie, S.; Thomas, M.; Patterson, S.; Crouch, S.; De Rycker, M.; Lowe, R.; Gresham, S.; Urbaniak, M.D.; Otto, T.D.; Stojanovski, L.; Simeons, F.R.C.; Manthri, S.; MacLean, L.M.; Zuccotto, F.; Homeyer, N.; Pflaumer, H.; Boesche, M.; Sastry, L.; Connolly, P.; Albrecht, S.; Berriman, M.; Drewes, G.; Gray, D.W.; Ghidelli-Disse, S.; Dixon, S.; Fiandor, J.M.; Wyatt, P.G.; Ferguson, M.A.J.; Fairlamb, A.H.; Miles, T.J.; Read, K.D.; Gilbert, I.H. Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature, 2018, 560(7717), 192-197.
[http://dx.doi.org/10.1038/s41586-018-0356-z] [PMID: 30046105]
Camins, A.; Pizarro, J.G.; Folch, J. Cyclin-Dependent Kinases. In: Brenner’s Encyclopedia of Genetics; Academic Press: Cambridge, 2013.
Ferguson, F.M.; Gray, N.S. Kinase inhibitors: the road ahead. Nat. Rev. Drug Discov., 2018, 17(5), 353-377.
[http://dx.doi.org/10.1038/nrd.2018.21] [PMID: 29545548]
Yang, V.W. The cell cycle. In: Physiology of the Gastrointestinal Tract; Elsevier: Amsterdam, 2018; pp. 197-219.
Nagle, A.S.; Khare, S.; Kumar, A.B.; Supek, F.; Buchynskyy, A.; Mathison, C.J.; Chennamaneni, N.K.; Pendem, N.; Buckner, F.S.; Gelb, M.H.; Molteni, V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem. Rev., 2014, 114(22), 11305-11347.
[http://dx.doi.org/10.1021/cr500365f] [PMID: 25365529]
Jain, V.; Jain, K. Molecular targets and pathways for the treatment of visceral leishmaniasis. Drug Discov. Today, 2018, 23(1), 161-170.
[http://dx.doi.org/10.1016/j.drudis.2017.09.006] [PMID: 28919438]
Vijayakumar, S.; Das, P. Recent progress in drug targets and inhibitors towards combating leishmaniasis. Acta Trop., 2018, 181, 95-104.
Brumlik, M.J.; Pandeswara, S.; Ludwig, S.M.; Murthy, K.; Curiel, T.J. Parasite mitogen-activated protein kinases as drug discovery targets to treat human protozoan pathogens. J. Signal Transduct., 2011, 2011 971968
[http://dx.doi.org/10.1155/2011/971968] [PMID: 21637385]
Chen, M.; Zhai, L.; Christensen, S.B.; Theander, T.G.; Kharazmi, A. Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrob. Agents Chemother., 2001, 45(7), 2023-2029.
[http://dx.doi.org/10.1128/AAC.45.7.2023-2029.2001] [PMID: 11408218]
Kulkarni, P.G.; Shah, N.; Waghela, B.N.; Pathak, C.M.; Pappachan, A. Leishmania donovani adenylate kinase 2a prevents ATP-mediated cell cytolysis in macrophages. Parasitol. Int., 2019, 72 101929
[http://dx.doi.org/10.1016/j.parint.2019.101929] [PMID: 31108219]
Chawla, B.; Madhubala, R. Drug targets in Leishmania. J. Parasit. Dis., 2010, 34(1), 1-13.
Jones, N.G.; Catta-Preta, C.M.C.; Lima, A.P.C.A.; Mottram, J.C. Genetically validated drug targets in leishmania: current knowledge and future prospects. ACS Infect. Dis., 2018, 4(4), 467-477.
[http://dx.doi.org/10.1021/acsinfecdis.7b00244] [PMID: 29384366]
Ferreira, L.L.G.; Andricopulo, A.D. Chemoinformatics strategies for leishmaniasis drug discovery. Front. Pharmacol., 2018, 9, 1278.
[http://dx.doi.org/10.3389/fphar.2018.01278] [PMID: 30443215]
Gilbert, I.H. Drug discovery for neglected diseases: molecular target-based and phenotypic approaches. J. Med. Chem., 2013, 56(20), 7719-7726.
[http://dx.doi.org/10.1021/jm400362b] [PMID: 24015767]
Dos Santos Vasconcelos, C.R.; de Lima Campos, T.; Rezende, A.M. Building protein-protein interaction networks for Leishmania species through protein structural information. BMC Bioinformatics, 2018, 19(1), 85.
[http://dx.doi.org/10.1186/s12859-018-2105-6] [PMID: 29510668]
Chandra Sahoo, G. Structural modeling, evolution and ligand interaction of KMP11 protein of different leishmania strains. J. Comput. Sci. Syst. Biol., 2009, 2(02), 147-158.
Gupta, C.L.; Khan, M.K.A.; Khan, M.F.; Tiwari, A.K. Homology modeling of LmxMPK4 of Leishmania mexicana and virtual screening of potent inhibitors against it. Interdiscip. Sci., 2013, 5(2), 136-144.
[http://dx.doi.org/10.1007/s12539-013-0164-y] [PMID: 23740395]
Gupta, C.L.; Akhtar, S.; Kumar, N.; Ali, J.; Pathak, N.; Bajpai, P. In silico elucidation and inhibition studies of selected phytoligands against mitogen-activated protein kinases of protozoan parasites. Interdiscip. Sci., 2016, 8(1), 41-52.
[http://dx.doi.org/10.1007/s12539-015-0269-6] [PMID: 26264054]
Méndez-Cuesta, C.A.; Méndez-Lucio, O.; Castillo, R. Homology modeling, docking and molecular dynamics of the Leishmania mexicana arginase: a description of the catalytic site useful for drug design. J. Mol. Graph. Model., 2012, 38, 50-59.
[http://dx.doi.org/10.1016/j.jmgm.2012.08.003] [PMID: 23085157]
Merlino, A.; Vieites, M.; Gambino, D.; Coitiño, E.L. Homology modeling of T. cruzi and L. major NADH-dependent fumarate reductases: ligand docking, molecular dynamics validation, and insights on their binding modes. J. Mol. Graph. Model., 2014, 48, 47-59.
[http://dx.doi.org/10.1016/j.jmgm.2013.12.001] [PMID: 24370672]
Pandey, R.K.; Prajapati, P.; Goyal, S.; Grover, A.; Prajapati, V.K. Molecular modeling and virtual screening approach to discover potential antileishmanial inhibitors against ornithine decarboxylase. Comb. Chem. High Throughput Screen., 2016, 19(10), 813-823.
[http://dx.doi.org/10.2174/1386207319666160907100134] [PMID: 27604958]
Rana, S.; Mahato, J.P.; Kumar, M.; Sarsaiya, S. Modeling and docking of Cysteine Protease-A (CPA) of Leishmania donovani. J. Appl. Pharm. Sci., 2017, 7(9), 179-184.
Mahato, J.P.; Rana, S.; Kumar, M.; Sarsaiya, S. Homology modeling of Leishmania donovani enolase and its molecular interaction with novel inhibitors. J. Pharm. Bioallied Sci., 2017, 9(2), 99-105.
[PMID: 28717332]
Sahi, S.; Tewatia, P.; Ghosal, S. Leishmania donovani pteridine reductase 1: comparative protein modeling and protein-ligand interaction studies of the leishmanicidal constituents isolated from the fruits of Piper longum. J. Mol. Model., 2012, 18(12), 5065-5073.
[http://dx.doi.org/10.1007/s00894-012-1508-y] [PMID: 22752544]
Vadloori, B.; Sharath, A.K.; Prabhu, N.P.; Maurya, R. Homology modelling, molecular docking, and molecular dynamics simulations reveal the inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase enzyme by Withaferin-A. BMC Res. Notes, 2018, 11(1), 246.
[http://dx.doi.org/10.1186/s13104-018-3354-1] [PMID: 29661206]
Harigua-Souiai, E. Identification of novel leishmanicidal molecules by virtual and biochemical screenings targeting Leishmania eukaryotic translation initiation factor 4A. PLoS Negl. Trop. Dis., 2018, 12(1) e0006160
Stevanović, S.; Perdih, A.; Senćanski, M.; Glišić, S.; Duarte, M.; Tomás, A.M.; Sena, F.V.; Sousa, F.M.; Pereira, M.M.; Solmajer, T. In silico discovery of a substituted 6-methoxy-quinalidine with leishmanicidal activity in leishmania infantum. Molecules, 2018, 23(4) E772
[http://dx.doi.org/10.3390/molecules23040772] [PMID: 29584709]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
Escudero-Martínez, J.M.; Pérez-Pertejo, Y.; Reguera, R.M.; Castro, M.Á.; Rojo, M.V.; Santiago, C.; Abad, A.; García, P.A.; López-Pérez, J.L.; San Feliciano, A.; Balaña-Fouce, R. Antileishmanial activity and tubulin polymerization inhibition of podophyllotoxin derivatives on Leishmania infantum. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(3), 272-285.
[http://dx.doi.org/10.1016/j.ijpddr.2017.06.003] [PMID: 28719882]
Matadamas-Martínez, F.; Hernández-Campos, A.; Téllez-Valencia, A.; Vázquez-Raygoza, A.; Comparán-Alarcón, S.; Yépez-Mulia, L.; Castillo, R. Leishmania mexicana trypanothione reductase inhibitors: computational and biological studies. Molecules, 2019, 24(18), 3216.
[http://dx.doi.org/10.3390/molecules24183216] [PMID: 31487860]
Rajasekaran, R.; Chen, Y.P.P. Probing the structure of Leishmania major DHFR TS and structure based virtual screening of peptide library for the identification of anti-leishmanial leads. J. Mol. Model., 2012, 18(9), 4089-4100.
[http://dx.doi.org/10.1007/s00894-012-1411-6] [PMID: 22527276]
Baig, M.S.; Kumar, A.; Siddiqi, M.I.; Goyal, N. Characterization of dipeptidylcarboxypeptidase of Leishmania donovani: a molecular model for structure based design of antileishmanials. J. Comput. Aided Mol. Des., 2010, 24(1), 77-87.
[http://dx.doi.org/10.1007/s10822-009-9315-y] [PMID: 20039100]
Mutlu, O. In silico molecular modeling and docking studies on the leishmanial tryparedoxin peroxidase. Braz. Arch. Biol. Technol., 2014, 57(2), 244-252.
Stevanovic, S.; Sencanski, M.; Danel, M.; Menendez, C.; Belguedj, R.; Bouraiou, A.; Nikolic, K.; Cojean, S.; Loiseau, P.M.; Glisic, S.; Baltas, M.; García-Sosa, A.T. Synthesis, in silico, and in vitro evaluation of anti-leishmanial activity of oxadiazoles and indolizine containing compounds flagged against anti-targets. Molecules, 2019, 24(7) E1282
[http://dx.doi.org/10.3390/molecules24071282] [PMID: 30986947]
Pandey, R.K.; Sharma, D.; Bhatt, T.K.; Sundar, S.; Prajapati, V.K. Developing imidazole analogues as potential inhibitor for Leishmania donovani trypanothione reductase: virtual screening, molecular docking, dynamics and ADMET approach. J. Biomol. Struct. Dyn., 2015, 33(12), 2541-2553.
[http://dx.doi.org/10.1080/07391102.2015.1085904] [PMID: 26305585]
Parameswaran, S.; Saudagar, P.; Dubey, V.K.; Patra, S. Discovery of novel anti-leishmanial agents targeting LdLip3 lipase. J. Mol. Graph. Model., 2014, 49, 68-79.
[http://dx.doi.org/10.1016/j.jmgm.2014.01.007] [PMID: 24530543]
Scotti, L.; Ishiki, H. Mendonca, F. J. B.; Silva, M. S.; Scotti, M. T.In-silico analyses of natural products on leishmania enzyme targets. Mini Rev. Med. Chem., 2015, 15(3), 253-269.
Agnihotri, P.; Mishra, A.K.; Mishra, S.; Sirohi, V.K.; Sahasrabuddhe, A.A.; Pratap, J.V. Identification of novel inhibitors of leishmania donovani γ-glutamylcysteine synthetase using structure-based virtual screening, docking, molecular dynamics simulation, and in vitro studies. J. Chem. Inf. Model., 2017, 57(4), 815-825.
[http://dx.doi.org/10.1021/acs.jcim.6b00642] [PMID: 28322559]
de Carvalho Gallo, J.C.; de Mattos Oliveira, L.; Araújo, J.S.C.; Santana, I.B.; Dos Santos Junior, M.C. Virtual screening to identify Leishmania braziliensis N-myristoyltransferase inhibitors: pharmacophore models, docking, and molecular dynamics. J. Mol. Model., 2018, 24(9), 260.
[http://dx.doi.org/10.1007/s00894-018-3791-8] [PMID: 30159742]
Ferrari, S.; Morandi, F.; Motiejunas, D.; Nerini, E.; Henrich, S.; Luciani, R.; Venturelli, A.; Lazzari, S.; Calò, S.; Gupta, S.; Hannaert, V.; Michels, P.A.; Wade, R.C.; Costi, M.P. Virtual screening identification of nonfolate compounds, including a CNS drug, as antiparasitic agents inhibiting pteridine reductase. J. Med. Chem., 2011, 54(1), 211-221.
[http://dx.doi.org/10.1021/jm1010572] [PMID: 21126022]
Ochoa, R.; Watowich, S.J.; Flórez, A.; Mesa, C.V.; Robledo, S.M.; Muskus, C. Drug search for leishmaniasis: a virtual screening approach by grid computing. J. Comput. Aided Mol. Des., 2016, 30(7), 541-552.
[http://dx.doi.org/10.1007/s10822-016-9921-4] [PMID: 27438595]
Ogungbe, I.V.; Erwin, W.R.; Setzer, W.N. Antileishmanial phytochemical phenolics: molecular docking to potential protein targets. J. Mol. Graph. Model., 2014, 48, 105-117.
[http://dx.doi.org/10.1016/j.jmgm.2013.12.010] [PMID: 24463105]
Rashid, U.; Sultana, R.; Shaheen, N.; Hassan, S.F.; Yaqoob, F.; Ahmad, M.J.; Iftikhar, F.; Sultana, N.; Asghar, S.; Yasinzai, M.; Ansari, F.L.; Qureshi, N.A. Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents. Eur. J. Med. Chem., 2016, 115, 230-244.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.022] [PMID: 27017551]
Mandlik, V.; Patil, S.; Bopanna, R.; Basu, S.; Singh, S. Biological activity of coumarin derivatives as anti-leishmanial agents. PLoS One, 2016, 11(10) e0164585
[http://dx.doi.org/10.1371/journal.pone.0164585] [PMID: 27768694]
De Luca, L.; Ferro, S.; Buemi, M.R.; Monforte, A.M.; Gitto, R.; Schirmeister, T.; Maes, L.; Rescifina, A.; Micale, N. Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB2.8ΔCTE inhibitors as potential therapeutics for leishmaniasis. Chem. Biol. Drug Des., 2018, 92(3), 1585-1596.
[http://dx.doi.org/10.1111/cbdd.13326] [PMID: 29729080]
Brindisi, M.; Brogi, S.; Relitti, N.; Vallone, A.; Butini, S.; Gemma, S.; Novellino, E.; Colotti, G.; Angiulli, G.; Di Chiaro, F.; Fiorillo, A.; Ilari, A.; Campiani, G. Structure-based discovery of the first non-covalent inhibitors of Leishmania major tryparedoxin peroxidase by high throughput docking. Sci. Rep., 2015, 5, 9705.
[http://dx.doi.org/10.1038/srep09705] [PMID: 25951439]
Armitage, E.G.; Godzien, J.; Peña, I.; López-Gonzálvez, Á.; Angulo, S.; Gradillas, A.; Alonso-Herranz, V.; Martín, J.; Fiandor, J.M.; Barrett, M.P.; Gabarro, R.; Barbas, C. Metabolic clustering analysis as a strategy for compound selection in the drug discovery pipeline for leishmaniasis. ACS Chem. Biol., 2018, 13(5), 1361-1369.
[http://dx.doi.org/10.1021/acschembio.8b00204] [PMID: 29671577]
Peña, I.; Pilar Manzano, M.; Cantizani, J.; Kessler, A.; Alonso-Padilla, J.; Bardera, A.I.; Alvarez, E.; Colmenarejo, G.; Cotillo, I.; Roquero, I.; de Dios-Anton, F.; Barroso, V.; Rodriguez, A.; Gray, D.W.; Navarro, M.; Kumar, V.; Sherstnev, A.; Drewry, D.H.; Brown, J.R.; Fiandor, J.M.; Julio Martin, J. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource. Sci. Rep., 2015, 5, 8771.
[http://dx.doi.org/10.1038/srep08771] [PMID: 25740547]
Kiryakova, S.; Dencheva-Zarkova, M.; Genova, J. Effect of Amphotericin B antibiotic on the properties of model lipid membrane. J. Phys. Conf. Ser., 2014, 558(1) 012027
Logan-Klumpler, F.J.; De Silva, N.; Boehme, U.; Rogers, M.B.; Velarde, G.; McQuillan, J.A.; Carver, T.; Aslett, M.; Olsen, C.; Subramanian, S.; Phan, I.; Farris, C.; Mitra, S.; Ramasamy, G.; Wang, H.; Tivey, A.; Jackson, A.; Houston, R.; Parkhill, J.; Holden, M.; Harb, O.S.; Brunk, B.P.; Myler, P.J.; Roos, D.; Carrington, M.; Smith, D.F.; Hertz-Fowler, C.; Berriman, M. GeneDB--an annotation database for pathogens. Nucleic Acids Res., 2012, 40(Database issue), D98-D108.
[http://dx.doi.org/10.1093/nar/gkr1032] [PMID: 22116062]
Magariños, M.P.; Carmona, S.J.; Crowther, G.J.; Ralph, S.A.; Roos, D.S.; Shanmugam, D.; Van Voorhis, W.C.; Agüero, F. TDR Targets: a chemogenomics resource for neglected diseases. Nucleic Acids Res., 2012, 40(Database issue), D1118-D1127.
[http://dx.doi.org/10.1093/nar/gkr1053] [PMID: 22116064]
Depot, L. RCSB Protein Data Bank. Bioinformatics, 2005, 20, 2153-2155.
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
Torres, F.; Arias-Carrasco, R.; Caris-Maldonado, J. C.; Barral, A.; Maracaja-Coutinho, V.; De Queiroz, A. T. L. LeishDB: a database of coding gene annotation and non-coding RNAs in Leishmania braziliensis. J. Bio. Databases Curation,, 2017.bax047..
Doyle, M.A.; MacRae, J.I.; De Souza, D.P.; Saunders, E.C.; McConville, M.J.; Likić, V.A. LeishCyc: a biochemical pathways database for Leishmania major. BMC Syst. Biol., 2009, 3, 57.
[http://dx.doi.org/10.1186/1752-0509-3-57] [PMID: 19497128]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today, 2018, 23(6), 1241-1250.
[http://dx.doi.org/10.1016/j.drudis.2018.01.039] [PMID: 29366762]
Jamal, S.; Scaria, V. Cheminformatic models based on machine learning for pyruvate kinase inhibitors of Leishmania mexicana. BMC Bioinformatics, 2013, 14(1), 329.
[http://dx.doi.org/10.1186/1471-2105-14-329] [PMID: 24252103]
Castillo-Garit, J.A.; Flores-Balmaseda, N.; Álvarez, O.; Pham-The, H.; Pérez-Doñate, V.; Torrens, F.; Pérez-Giménez, F. Computational identification of chemical compounds with potential activity against leishmania amazonensis using nonlinear machine learning techniques. Curr. Top. Med. Chem., 2018, 18(27), 2347-2354.
[http://dx.doi.org/10.2174/1568026619666181130121558] [PMID: 30499402]
Philip, P. Analyzing small molecule inhibition of enzymes: A preliminary machine learning approach towards drug lead generation., Master Thesis, University of Washington: Washington,. 2017.
Todeschini, R.; Consonni, V. Molecular descriptors for chemoinformatics. Comb. Chem. High Throughput Screen, 2000, 3(5), 363-372.
Roy, K.; Kar, S.; Das, R.N. Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment; Elsevier: Amsterdam, 2015.
Liu, K.; Feng, J.; Young, S.S. PowerMV: a software environment for molecular viewing, descriptor generation, data analysis and hit evaluation. J. Chem. Inf. Model., 2005, 45(2), 515-522.
[http://dx.doi.org/10.1021/ci049847v] [PMID: 15807517]
Mauri, A.; Consonni, V.; Pavan, M.; Todeschini, R. DRAGON software: An easy approach to molecular descriptor calculations. Match (Mulh.), 2006, 56(2), 237-248.
Dunbrack, R.L. SYBYL. MATCH Commun. Math. Comput. Chem., 2004, 56(2006), 237-248.
Pastor, M.; Cruciani, G.; McLay, I.; Pickett, S.; Clementi, S. GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J. Med. Chem., 2000, 43(17), 3233-3243.
[http://dx.doi.org/10.1021/jm000941m] [PMID: 10966742]
Vilar, S.; Cozza, G.; Moro, S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem., 2008, 8(18), 1555-1572.
[http://dx.doi.org/10.2174/156802608786786624] [PMID: 19075767]
Lo, Y.C.; Rensi, S.E.; Torng, W.; Altman, R.B. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today, 2018, 23(8), 1538-1546.
[http://dx.doi.org/10.1016/j.drudis.2018.05.010] [PMID: 29750902]
Kramer, K.A.; Hall, L.O.; Goldgof, D.B.; Remsen, A.; Luo, T. Fast support vector machines for continuous data. IEEE Trans. Syst. Man Cybern. Part B Cybern., 2009, 39(4), 989-1001.
Platt, J. Fast training of support vector machines using sequential minimal optimization. dv. kernel Meth. --- support vector learning,, 1999, 185-208.
Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics, 2000, 16(8), 747-748.
[http://dx.doi.org/10.1093/bioinformatics/16.8.747] [PMID: 11099264]
Jamkhande, P.G.; Pathan, S.K.; Wadher, S.J. In silico PASS analysis and determination of antimycobacterial, antifungal, and antioxidant efficacies of maslinic acid in an extract rich in pentacyclic triterpenoids. Int. J. Mycobacteriol., 2016, 5(4), 417-425.
[http://dx.doi.org/10.1016/j.ijmyco.2016.06.020] [PMID: 27931683]
Melville, J.L.; Burke, E.K.; Hirst, J.D. Machine learning in virtual screening. Comb. Chem. High Throughput Screen., 2009, 12(4), 332-343.
[http://dx.doi.org/10.2174/138620709788167980] [PMID: 19442063]
Gasser, G.; Metzler-Nolte, N. The potential of organometallic complexes in medicinal chemistry. Curr. Opin. Chem. Biol., 2012, 16(1-2), 84-91.
[http://dx.doi.org/10.1016/j.cbpa.2012.01.013] [PMID: 22366385]
Albada, B.; Metzler-Nolte, N. Highly potent antibacterial organometallic peptide conjugates. Acc. Chem. Res., 2017, 50(10), 2510-2518.
[http://dx.doi.org/10.1021/acs.accounts.7b00282] [PMID: 28953347]
Dive, D.; Biot, C. Ferrocene conjugates of chloroquine and other antimalarials: the development of ferroquine, a new antimalarial. ChemMedChem, 2008, 3(3), 383-391.
[http://dx.doi.org/10.1002/cmdc.200700127] [PMID: 17806092]
Miranda, V.M.; Costa, M.S.; Guilardi, S.; Machado, A.E.H.; Ellena, J.A.; Tudini, K.A.G.; Von Poelhsitz, G. In vitro leishmanicidal activity and theoretical insights into biological action of ruthenium(II) organometallic complexes containing anti-inflammatories. Biometals, 2018, 31(6), 1003-1017.
[http://dx.doi.org/10.1007/s10534-018-0145-z] [PMID: 30284643]
Duffin, R.N.; Blair, V.L.; Kedzierski, L.; Andrews, P.C. Comparative stability, cytotoxicity and anti-leishmanial activity of analogous organometallic Sb(V) and Bi(V) acetato complexes: Sb confirms potential while Bi fails the test. J. Inorg. Biochem., 2018, 189, 151-162.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.08.015] [PMID: 30267965]
Ruiz-Santaquiteria, M.; Sánchez-Murcia, P.A.; Toro, M.A.; de Lucio, H.; Gutiérrez, K.J.; de Castro, S.; Carneiro, F.A.C.; Gago, F.; Jiménez-Ruiz, A.; Camarasa, M.J.; Velázquez, S. First example of peptides targeting the dimer interface of Leishmania infantum trypanothione reductase with potent in vitro antileishmanial activity. Eur. J. Med. Chem., 2017, 135, 49-59.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.020] [PMID: 28431354]
Wachsmuth, L.M.; Johnson, M.G.; Gavenonis, J. Essential multimeric enzymes in kinetoplastid parasites: A host of potentially druggable protein-protein interactions. PLoS Negl. Trop. Dis., 2017, 11(6) e0005720
Flórez, A.F.; Park, D.; Bhak, J.; Kim, B.C.; Kuchinsky, A.; Morris, J.H.; Espinosa, J.; Muskus, C. Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection. BMC Bioinformatics, 2010, 11, 484.
[http://dx.doi.org/10.1186/1471-2105-11-484] [PMID: 20875130]
Laraia, L.; McKenzie, G.; Spring, D.R.; Venkitaraman, A.R.; Huggins, D.J. Overcoming chemical, biological, and computational challenges in the development of inhibitors targeting protein-protein interactions. Chem. Biol., 2015, 22(6), 689-703.
[http://dx.doi.org/10.1016/j.chembiol.2015.04.019] [PMID: 26091166]
Mendes, B.; Almeida, J.R.; Vale, N.; Gomes, P.; Gadelha, F.R.; Da Silva, S.L.; Miguel, D.C. Potential use of 13-mer peptides based on phospholipase and oligoarginine as leishmanicidal agents. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2019, 226 108612
[http://dx.doi.org/10.1016/j.cbpc.2019.108612] [PMID: 31454702]
de Souza, A.; Marins, D.S.S.; Mathias, S.L.; Monteiro, L.M.; Yukuyama, M.N.; Scarim, C.B.; Löbenberg, R.; Bou-Chacra, N.A. Promising nanotherapy in treating leishmaniasis. Int. J. Pharm., 2018, 547(1-2), 421-431.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.018] [PMID: 29886097]
Shah, A. Sen Gupta, S. Anti-leishmanial nanotherapeutics: A current perspective. Curr. Drug Metab., 2019, 20(6), 473-482.
[PMID: 30360732]
Manandhar, K.D.; Yadav, T.P.; Prajapati, V.K.; Basukala, O.; Aganja, R.P.; Dude, A.; Shrivastav, O.N.; Sundar, S. Nanonization increases the antileishmanial efficacy of amphotericin B: an ex vivo approach. Adv. Exp. Med. Biol., 2014, 808, 77-91.
[http://dx.doi.org/10.1007/978-81-322-1774-9_7] [PMID: 24595612]
Mehrizi, T.Z.; Ardestani, M.S.; Molla Hoseini, M.H.; Khamesipour, A.; Mosaffa, N.; Ramezani, A. Novel nano-sized chitosan amphotericin B formulation with considerable improvement against Leishmania major. Nanomedicine (Lond.), 2018, 13(24), 3129-3147.
[http://dx.doi.org/10.2217/nnm-2018-0063] [PMID: 30463469]
Eskandari, S.E.; Firooz, A.; Nassiri-Kashani, M.; Jaafari, M.R.; Javadi, A.; Miramin-Mohammadi, A.; Valian-Keshavarz, H.; Khamesipour, A. Safety evaluation of nano-liposomal formulation of amphotericin B (sina ampholeish) in animal model as a candidate for treatment of cutaneous leishmaniasis. J. Arthropod Borne Dis., 2018, 12(3), 269-275.
[PMID: 30584550]
Singh, P.K.; Jaiswal, A.K.; Pawar, V.K.; Raval, K.; Kumar, A.; Bora, H.K.; Dube, A.; Chourasia, M.K. Fabrication of 3-o-sn-phosphatidyl-l-serine anchored plga nanoparticle bearing amphotericin b for macrophage targeting. Pharm. Res., 2018, 35(3), 60.
[http://dx.doi.org/10.1007/s11095-017-2293-1] [PMID: 29427248]
Valle, I.V.; Machado, M.E.; Araújo, C.D.C.B.; da Cunha-Junior, E.F.; da Silva Pacheco, J.; Torres-Santos, E.C.; da Silva, L.C.R.P.; Cabral, L.M.; do Carmo, F.A.; Sathler, P.C. Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: an alternative approach for leishmaniasis treatment. Nanotechnology, 2019, 30(45) 455102
[http://dx.doi.org/10.1088/1361-6528/ab373e] [PMID: 31365912]
Kalangi, S.K.; Dayakar, A.; Gangappa, D.; Sathyavathi, R.; Maurya, R.S.; Narayana Rao, D. Biocompatible silver nanoparticles reduced from Anethum graveolens leaf extract augments the antileishmanial efficacy of miltefosine. Exp. Parasitol., 2016, 170, 184-192.
[http://dx.doi.org/10.1016/j.exppara.2016.09.002] [PMID: 27622989]
Jebali, A.; Kazemi, B. Nano-based antileishmanial agents: a toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol. In Vitro, 2013, 27(6), 1896-1904.
Kumar, R.; Sahoo, G.C.; Pandey, K.; Das, V.N.R.; Topno, R.K.; Ansari, M.Y.; Rana, S.; Das, P. Development of PLGA-PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Mater. Sci. Eng. C, 2016, 59, 748-753.
[http://dx.doi.org/10.1016/j.msec.2015.10.083] [PMID: 26652429]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [349 - 366]
Pages: 18
DOI: 10.2174/1568026620666200128160454
Price: $65

Article Metrics

PDF: 14