Genetics and Epigenetics in the Clinic: Precision Medicine in the Management of Fatty Liver Disease

Author(s): Annalisa Cespiati, Neil A. Youngson, Aikaterini Tourna, Luca Valenti*.

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 10 , 2020

Become EABM
Become Reviewer

Abstract:

This narrative review will discuss the current evidence supporting the possible application of precision or personalized medicine to the management of nonalcoholic or “metabolic” fatty liver disease (NAFLD), based on recent progress in the understanding of the genetics and epigenetics of the disease. The prevalence of NAFLD, which can progress to cirrhosis and hepatocellular carcinoma, is constantly increasing worldwide. Accurate noninvasive predictors of liver disease progression, as well as of cardiovascular complications of NAFLD, are urgently needed. Evidence is now reporting that the genetic and epigenetic factors involved in NAFLD development can be used to develop risk scores for liver-related complications, which may show the possibility to implement programs for targeted screening and surveillance of complications. Moreover, genetic and epigenetic factors identifying specific sub-phenotypes of NAFLD can predict the individual response to pharmacological therapies. Finally, we describe opportunities for gene-targeted therapeutic approaches in NAFLD, where the genetic variants represent therapeutic targets for precision therapy approaches.

Keywords: Biomarker, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, precision medicine, cirrhosis, hepatocellular.

[1]
Nielsen J. Systems biology of metabolism: a driver for developing personalized and precision medicine. Cell Metab 2017; 25(3): 572-9.
[http://dx.doi.org/10.1016/j.cmet.2017.02.002] [PMID: 28273479]
[2]
Smarr L. Quantifying your body: a how-to guide from a systems biology perspective. Biotechnol J 2012; 7(8): 980-91.
[http://dx.doi.org/10.1002/biot.201100495] [PMID: 22887886]
[3]
Hood L, Balling R, Auffray C. Revolutionizing medicine in the 21st century through systems approaches. Biotechnol J 2012; 7(8): 992-1001.
[http://dx.doi.org/10.1002/biot.201100306] [PMID: 22815171]
[4]
Flores M, Glusman G, Brogaard K, Price ND, Hood L. P4 medicine: how systems medicine will transform the healthcare sector and society. Per Med 2013; 10(6): 565-76.
[http://dx.doi.org/10.2217/pme.13.57] [PMID: 25342952]
[5]
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64(1): 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[6]
European Association for the Study of the Liver. Electronic address eee, European Association for the Study of D, European Association for the Study of O. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64: 1388-402.
[http://dx.doi.org/10.1016/j.jhep.2015.11.004]
[7]
Younossi Z, Henry L. Contribution of alcoholic and nonalcoholic fatty liver disease to the burden of liver-related morbidity and mortality. Gastroenterology 2016; 150(8): 1778-85.
[http://dx.doi.org/10.1053/j.gastro.2016.03.005] [PMID: 26980624]
[8]
Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030. J Hepatol 2018; 69(4): 896-904.
[http://dx.doi.org/10.1016/j.jhep.2018.05.036] [PMID: 29886156]
[9]
Goldberg D, Ditah IC, Saeian K, et al. Changes in the prevalence of hepatitis C Virus infection, nonalcoholic steatohepatitis, and alcoholic liver disease among patients with cirrhosis or liver failure on the waitlist for liver transplantation. Gastroenterology 2017; 152: 1090-9.
[10]
Kleiner DE, Brunt EM, Van Natta M, et al. Nonalcoholic Steatohepatitis Clinical Research Network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41(6): 1313-21.
[http://dx.doi.org/10.1002/hep.20701] [PMID: 15915461]
[11]
Bedossa P, Consortium FP. FLIP Pathology Consortium. Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 2014; 60(2): 565-75.
[http://dx.doi.org/10.1002/hep.27173] [PMID: 24753132]
[12]
Kim GA, Lee HC, Choe J, et al. Association between non-alcoholic fatty liver disease and cancer incidence rate. J Hepatol 2017; 68: 140-6.
[http://dx.doi.org/10.1016/j.jhep.2017.09.012] [PMID: 29150142]
[13]
Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15(1): 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[14]
Pelusi S, Cespiati A, Rametta R, et al. Prevalence and risk factors of significant fibrosis in patients with nonalcoholic fatty liver without steatohepatitis. Clin Gastroenterol Hepatol 2019; 17(11): 2310-2319.e6.
[http://dx.doi.org/10.1016/j.cgh.2019.01.027] [PMID: 30708111]
[15]
Kemmer N, Neff GW, Franco E, et al. Nonalcoholic fatty liver disease epidemic and its implications for liver transplantation. Transplantation 2013; 96(10): 860-2.
[http://dx.doi.org/10.1097/01.tp.0000436723.59879.01] [PMID: 24247899]
[16]
Ekstedt M, Franzén LE, Mathiesen UL, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006; 44(4): 865-73.
[http://dx.doi.org/10.1002/hep.21327] [PMID: 17006923]
[17]
Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol 2015; 13(4): 643-54.e1.
[http://dx.doi.org/10.1016/j.cgh.2014.04.014] [PMID: 24768810]
[18]
Piscaglia F, Svegliati-Baroni G, Barchetti A, et al. HCC-NAFLD Italian Study Group. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter prospective study. Hepatology 2016; 63(3): 827-38.
[http://dx.doi.org/10.1002/hep.28368] [PMID: 26599351]
[19]
Valenti L, Bugianesi E, Pajvani U, Targher G. Nonalcoholic fatty liver disease: cause or consequence of type 2 diabetes? Liver Int 2016; 36(11): 1563-79.
[http://dx.doi.org/10.1111/liv.13185] [PMID: 27276701]
[20]
Souza MR, Diniz MdeF, Medeiros-Filho JE, Araújo MS. Metabolic syndrome and risk factors for non-alcoholic fatty liver disease. Arq Gastroenterol 2012; 49(1): 89-96.
[http://dx.doi.org/10.1590/S0004-28032012000100015] [PMID: 22481692]
[21]
Marchesini G, Bugianesi E, Forlani G, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003; 37(4): 917-23.
[http://dx.doi.org/10.1053/jhep.2003.50161] [PMID: 12668987]
[22]
Fracanzani AL, Valenti L, Bugianesi E, et al. Risk of nonalcoholic steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease and low visceral adiposity. J Hepatol 2011; 54(6): 1244-9.
[http://dx.doi.org/10.1016/j.jhep.2010.09.037] [PMID: 21145841]
[23]
Wong RJ, Ahmed A. Obesity and non-alcoholic fatty liver disease: Disparate associations among Asian populations. World J Hepatol 2014; 6(5): 263-73.
[http://dx.doi.org/10.4254/wjh.v6.i5.263] [PMID: 24868320]
[24]
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016; 65(8): 1038-48.
[http://dx.doi.org/10.1016/j.metabol.2015.12.012] [PMID: 26823198]
[25]
Pelusi S, Petta S, Rosso C, et al. Renin-angiotensin system inhibitors, type 2 diabetes and fibrosis progression: an observational study in patients with nonalcoholic fatty liver disease. PLoS One 2016; 11(9): e0163069
[http://dx.doi.org/10.1371/journal.pone.0163069] [PMID: 27649410]
[26]
Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010; 52(5): 1836-46.
[http://dx.doi.org/10.1002/hep.24001] [PMID: 21038418]
[27]
Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol 2015; 62(1)(Suppl.): S47-64.
[http://dx.doi.org/10.1016/j.jhep.2014.12.012] [PMID: 25920090]
[28]
Ahn JS, Sinn DH, Min YW, et al. Non-alcoholic fatty liver diseases and risk of colorectal neoplasia. Aliment Pharmacol Ther 2017; 45(2): 345-53.
[http://dx.doi.org/10.1111/apt.13866] [PMID: 27859470]
[29]
Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 2017; 66(6): 1138-53.
[http://dx.doi.org/10.1136/gutjnl-2017-313884] [PMID: 28314735]
[30]
Son G, Kremer M, Hines IN. Contribution of gut bacteria to liver pathobiology. Gastroenterol Res Pract 2010; 2010 453563,13
[http://dx.doi.org/10.1155/2010/453563]
[31]
Zhu L, Baker RD, Baker SS. Gut microbiome and nonalcoholic fatty liver diseases. Pediatr Res 2015; 77(1-2): 245-51.
[http://dx.doi.org/10.1038/pr.2014.157] [PMID: 25310763]
[32]
He X, Ji G, Jia W, Li H. Gut microbiota and nonalcoholic fatty liver disease: insights on mechanism and application of metabolomics. Int J Mol Sci 2016; 17(3): 300.
[http://dx.doi.org/10.3390/ijms17030300] [PMID: 26999104]
[33]
Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 2013; 57(2): 601-9.
[http://dx.doi.org/10.1002/hep.26093] [PMID: 23055155]
[34]
Mouzaki M, Comelli EM, Arendt BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013; 58(1): 120-7.
[http://dx.doi.org/10.1002/hep.26319] [PMID: 23401313]
[35]
Aragonès G, Colom-Pellicer M, Aguilar C, et al. Circulating microbiota- derived metabolites: a "liquid biopsy? Int J Obes 2019. (Online ahead of print)
[http://dx.doi.org/10.1038/s41366-019-0430-0] [PMID: 31388096]
[36]
Aragonès G, González-García S, Aguilar C, Richart C, Auguet T. Gut microbiota-derived mediators as potential markers in nonalcoholic fatty liver disease. BioMed Res Int 2019; 20198507583
[http://dx.doi.org/10.1155/2019/8507583] [PMID: 30719448]
[37]
Loomba R, Seguritan V, Li W, et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 2017; 25(5): 1054-1062.e5.
[http://dx.doi.org/10.1016/j.cmet.2017.04.001] [PMID: 28467925]
[38]
Caussy C, Tripathi A, Humphrey G, et al. A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nat Commun 2019; 10(1): 1406.
[http://dx.doi.org/10.1038/s41467-019-09455-9] [PMID: 30926798]
[39]
Vilar-Gomez E, Calzadilla-Bertot L, Wai-Sun Wong V, et al. Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-national cohort study. Gastroenterology 2018; 155(2): 443-457.e17.
[http://dx.doi.org/10.1053/j.gastro.2018.04.034] [PMID: 29733831]
[40]
Francque SM, van der Graaff D, Kwanten WJ. Non-alcoholic fatty liver disease and cardiovascular risk: Pathophysiological mechanisms and implications. J Hepatol 2016; 65(2): 425-43.
[http://dx.doi.org/10.1016/j.jhep.2016.04.005] [PMID: 27091791]
[41]
Santos RD, Valenti L, Romeo S. Does nonalcoholic fatty liver disease cause cardiovascular disease? Current knowledge and gaps. Atherosclerosis 2019; 282: 110-20.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.01.029] [PMID: 30731283]
[42]
Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2015; 149(2): 389-97..e10
[http://dx.doi.org/10.1053/j.gastro.2015.04.043] [PMID: 25935633]
[43]
Dulai PS, Singh S, Patel J, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology 2017; 65(5): 1557-65.
[http://dx.doi.org/10.1002/hep.29085] [PMID: 28130788]
[44]
Maida M, Macaluso FS, Salomone F, Petta S. Non-invasive assessment of liver injury in non-alcoholic fatty liver disease: a review of literature. Curr Mol Med 2016; 16(8): 721-37.
[http://dx.doi.org/10.2174/1566524016666161004143613] [PMID: 27719652]
[45]
Caussy C, Soni M, Cui J, et al. Familial NAFLD Cirrhosis Research Consortium. Nonalcoholic fatty liver disease with cirrhosis increases familial risk for advanced fibrosis. J Clin Invest 2017; 127(7): 2697-704.
[http://dx.doi.org/10.1172/JCI93465] [PMID: 28628033]
[46]
Loomba R, Schork N, Chen CH, et al. Genetics of NAFLD in Twins Consortium. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology 2015; 149(7): 1784-93.
[http://dx.doi.org/10.1053/j.gastro.2015.08.011] [PMID: 26299412]
[47]
Guerrero R, Vega GL, Grundy SM, Browning JD. Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology 2009; 49(3): 791-801.
[http://dx.doi.org/10.1002/hep.22726] [PMID: 19105205]
[48]
Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40(12): 1461-5.
[http://dx.doi.org/10.1038/ng.257] [PMID: 18820647]
[49]
Dongiovanni P, Romeo S, Valenti L. Genetic factors in the pathogenesis of nonalcoholic fatty liver and steatohepatitis. BMC Research International 2015; 2015 460190,13
[http://dx.doi.org/10.1155/2015/460190]
[50]
He S, McPhaul C, Li JZ, et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem 2010; 285(9): 6706-15.
[http://dx.doi.org/10.1074/jbc.M109.064501] [PMID: 20034933]
[51]
BasuRay S, Smagris E, Cohen JC, Hobbs HH. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology 2017; 66(4): 1111-24.
[http://dx.doi.org/10.1002/hep.29273] [PMID: 28520213]
[52]
BasuRay S, Wang Y, Smagris E, Cohen JC, Hobbs HH. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc Natl Acad Sci USA 2019; 116(19): 9521-6.
[http://dx.doi.org/10.1073/pnas.1901974116] [PMID: 31019090]
[53]
Smagris E, BasuRay S, Li J, et al. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 2015; 61(1): 108-18.
[http://dx.doi.org/10.1002/hep.27242] [PMID: 24917523]
[54]
Wang Y, Kory N, BasuRay S, et al. PNPLA3, CGI-58, and inhibition of hepatic triglyceride hydrolysis in mice. Hepatology 2019; 69(6): 2427-41.
[PMID: 30802989]
[55]
Pirazzi C, Valenti L, Motta BM, et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet 2014; 23(15): 4077-85.
[http://dx.doi.org/10.1093/hmg/ddu121] [PMID: 24670599]
[56]
Mondul A, Mancina RM, Merlo A, et al. PNPLA3 I148M variant influences circulating retinol in adults with nonalcoholic fatty liver disease or obesity. J Nutr 2015; 145(8): 1687-91.
[http://dx.doi.org/10.3945/jn.115.210633] [PMID: 26136587]
[57]
Sookoian S, Castaño GO, Burgueño AL, Gianotti TF, Rosselli MS, Pirola CJ. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J Lipid Res 2009; 50(10): 2111-6.
[http://dx.doi.org/10.1194/jlr.P900013-JLR200] [PMID: 19738004]
[58]
Valenti L, Al-Serri A, Daly AK, et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 2010; 51(4): 1209-17.
[http://dx.doi.org/10.1002/hep.23622] [PMID: 20373368]
[59]
Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011; 53(6): 1883-94.
[http://dx.doi.org/10.1002/hep.24283] [PMID: 21381068]
[60]
Liu YL, Patman GL, Leathart JB, et al. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol 2014; 61(1): 75-81.
[http://dx.doi.org/10.1016/j.jhep.2014.02.030] [PMID: 24607626]
[61]
Kozlitina J, Smagris E, Stender S, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2014; 46(4): 352-6.
[http://dx.doi.org/10.1038/ng.2901] [PMID: 24531328]
[62]
Holmen OL, Zhang H, Fan Y, et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat Genet 2014; 46(4): 345-51.
[http://dx.doi.org/10.1038/ng.2926] [PMID: 24633158]
[63]
Pirola CJ, Sookoian S. The dual and opposite role of the TM6SF2-rs58542926 variant in protecting against cardiovascular disease and conferring risk for nonalcoholic fatty liver: A meta-analysis. Hepatology 2015; 62(6): 1742-56.
[http://dx.doi.org/10.1002/hep.28142] [PMID: 26331730]
[64]
Chalasani N, Wilson L, Kleiner DE, Cummings OW, Brunt EM, Unalp A. NASH Clinical Research Network. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease. J Hepatol 2008; 48(5): 829-34.
[http://dx.doi.org/10.1016/j.jhep.2008.01.016] [PMID: 18321606]
[65]
Dongiovanni P, Petta S, Maglio C, et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 2015; 61(2): 506-14.
[http://dx.doi.org/10.1002/hep.27490] [PMID: 25251399]
[66]
Buch S, Stickel F, Trépo E, et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet 2015; 47(12): 1443-8.
[http://dx.doi.org/10.1038/ng.3417] [PMID: 26482880]
[67]
Mancina RM, Dongiovanni P, Petta S, et al. The MBOAT7-TMC4 Variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of european descent. Gastroenterology 2016; 150(5): 1219-1230.e6.
[http://dx.doi.org/10.1053/j.gastro.2016.01.032] [PMID: 26850495]
[68]
Lee H-C, Inoue T, Imae R, et al. Caenorhabditis elegans mboa-7, a member of the MBOAT family, is required for selective incorporation of polyunsaturated fatty acids into phosphatidylinositol. Mol Biol Cell 2008; 19(3): 1174-84.
[http://dx.doi.org/10.1091/mbc.e07-09-0893] [PMID: 18094042]
[69]
Beer NL, Tribble ND, McCulloch LJ, et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet 2009; 18(21): 4081-8.
[http://dx.doi.org/10.1093/hmg/ddp357] [PMID: 19643913]
[70]
O’Doherty RM, Lehman DL, Télémaque-Potts S, Newgard CB. Metabolic impact of glucokinase overexpression in liver: lowering of blood glucose in fed rats is accompanied by hyperlipidemia. Diabetes 1999; 48(10): 2022-7.
[http://dx.doi.org/10.2337/diabetes.48.10.2022] [PMID: 10512368]
[71]
Valenti LVC, Baselli GA. Genetics of Nonalcoholic fatty liver disease: a 2018 update. Curr Pharm Des 2018; 24(38): 4566-73.
[http://dx.doi.org/10.2174/1381612825666190119113836] [PMID: 30659533]
[72]
Pelusi S, Baselli G, Pietrelli A, et al. Rare Pathogenic variants predispose to hepatocellular carcinoma in nonalcoholic fatty liver disease. Sci Rep 2019; 9(1): 3682.
[http://dx.doi.org/10.1038/s41598-019-39998-2] [PMID: 30842500]
[73]
Niu C, Luo Z, Yu L, et al. Associations of the APOB rs693 and rs17240441 polymorphisms with plasma APOB and lipid levels: a meta-analysis. Lipids Health Dis 2017; 16(1): 166.
[http://dx.doi.org/10.1186/s12944-017-0558-7] [PMID: 28874158]
[74]
Peloso GM, Nomura A, Khera AV, et al. Rare protein-truncating variants in apob, lower low-density lipoprotein cholesterol, and protection against coronary heart disease. Circ Genom Precis Med 2019; 12(5)e002376
[http://dx.doi.org/10.1161/CIRCGEN.118.002376] [PMID: 30939045]
[75]
Stender S, Smagris E, Lauridsen BK, et al. Relationship between genetic variation at PPP1R3B and levels of liver glycogen and triglyceride. Hepatology 2018; 67(6): 2182-95.
[http://dx.doi.org/10.1002/hep.29751] [PMID: 29266543]
[76]
Dongiovanni P, Meroni M, Mancina RM, et al. Protein phosphatase 1 regulatory subunit 3B gene variation protects against hepatic fat accumulation and fibrosis in individuals at high risk of nonalcoholic fatty liver disease. Hepatol Commun 2018; 2(6): 666-75.
[http://dx.doi.org/10.1002/hep4.1192] [PMID: 29881818]
[77]
Petta S, Valenti L, Tuttolomondo A, et al. Interferon lambda 4 rs368234815 TT>δG variant is associated with liver damage in patients with nonalcoholic fatty liver disease. Hepatology 2017; 66(6): 1885-93.
[http://dx.doi.org/10.1002/hep.29395] [PMID: 28741298]
[78]
Abul-Husn NS, Cheng X, Li AH, et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N Engl J Med 2018; 378(12): 1096-106.
[http://dx.doi.org/10.1056/NEJMoa1712191] [PMID: 29562163]
[79]
Dongiovanni P, Stender S, Pietrelli A, et al. Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. J Intern Med 2018; 283(4): 356-70.
[http://dx.doi.org/10.1111/joim.12719] [PMID: 29280273]
[80]
Donati B, Dongiovanni P, Romeo S, et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci Rep 2017; 7(1): 4492.
[http://dx.doi.org/10.1038/s41598-017-04991-0] [PMID: 28674415]
[81]
Pelusi S, Valenti L. Hepatic fat as clinical outcome and therapeutic target for nonalcoholic fatty liver disease. Liver Int 2019; 39(2): 250-6.
[http://dx.doi.org/10.1111/liv.13972] [PMID: 30248234]
[82]
Neeland IJ, Kozlitina J. Mendelian randomization: using natural genetic variation to assess the causal role of modifiable risk factors in observational studies. Circulation 2017; 135(8): 755-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.026857] [PMID: 28223325]
[83]
Abenavoli L, Falalyeyeva T, Boccuto L, Tsyryuk O, Kobyliak N. Obeticholic acid: a new era in the treatment of nonalcoholic fatty liver disease. Pharmaceuticals (Basel) 2018; 11(4)E104
[http://dx.doi.org/10.3390/ph11040104] [PMID: 30314377]
[84]
Briand F, Brousseau E, Quinsat M, Burcelin R, Sulpice T. Obeticholic acid raises LDL-cholesterol and reduces HDL-cholesterol in the Diet-Induced NASH (DIN) hamster model. Eur J Pharmacol 2018; 818: 449-56.
[http://dx.doi.org/10.1016/j.ejphar.2017.11.021] [PMID: 29155143]
[85]
Grimaudo S, Dongiovanni P, Pipitone R, et al. FXR rs35724 G>C variant modulates cholesterol levels, carotid atherosclerosis and liver damage in non-alcoholic fatty liver. Dig Liver Dis 2019.
[86]
Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2014; 2(11): 901-10.
[http://dx.doi.org/10.1016/S2213-8587(14)70032-4] [PMID: 24731669]
[87]
Lee JH, Friso S, Choi SW. Epigenetic mechanisms underlying the link between non-alcoholic fatty liver diseases and nutrition. Nutrients 2014; 6(8): 3303-25.
[http://dx.doi.org/10.3390/nu6083303] [PMID: 25195642]
[88]
Ferrari A, Longo R, Silva R, et al. Epigenome modifiers and metabolic rewiring: New frontiers in therapeutics. Pharmacol Ther 2019; 193: 178-93.
[http://dx.doi.org/10.1016/j.pharmthera.2018.08.008] [PMID: 30125527]
[89]
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38(1): 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[90]
Li YY. Genetic and epigenetic variants influencing the development of nonalcoholic fatty liver disease. World J Gastroenterol 2012; 18(45): 6546-51.
[http://dx.doi.org/10.3748/wjg.v18.i45.6546] [PMID: 23236228]
[91]
de Mello VD, Matte A, Perfilyev A, et al. Human liver epigenetic alterations in non-alcoholic steatohepatitis are related to insulin action. Epigenetics 2017; 12(4): 287-95.
[http://dx.doi.org/10.1080/15592294.2017.1294305] [PMID: 28277977]
[92]
Murphy SK, Yang H, Moylan CA, et al. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology 2013; 145(5): 1076-87.
[http://dx.doi.org/10.1053/j.gastro.2013.07.047] [PMID: 23916847]
[93]
Gerhard GS, Malenica I, Llaci L, et al. Differentially methylated loci in NAFLD cirrhosis are associated with key signaling pathways. Clin Epigenetics 2018; 10(1): 93.
[http://dx.doi.org/10.1186/s13148-018-0525-9] [PMID: 30005700]
[94]
Hotta K, Kitamoto T, Kitamoto A, et al. Identification of the genomic region under epigenetic regulation during non-alcoholic fatty liver disease progression. Hepatol Res 2018; 48(3): E320-34.
[http://dx.doi.org/10.1111/hepr.12992] [PMID: 29059699]
[95]
Schiöth HB, Boström A, Murphy SK, et al. A targeted analysis reveals relevant shifts in the methylation and transcription of genes responsible for bile acid homeostasis and drug metabolism in non-alcoholic fatty liver disease. BMC Genomics 2016; 17: 462.
[http://dx.doi.org/10.1186/s12864-016-2814-z] [PMID: 27301979]
[96]
Mwinyi J, Boström AE, Pisanu C, et al. NAFLD is associated with methylation shifts with relevance for the expression of genes involved in lipoprotein particle composition. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862(3): 314-23.
[http://dx.doi.org/10.1016/j.bbalip.2016.12.005] [PMID: 27993651]
[97]
da Silva RP, Kelly KB, Al Rajabi A, Jacobs RL. Novel insights on interactions between folate and lipid metabolism. Biofactors 2014; 40(3): 277-83.
[http://dx.doi.org/10.1002/biof.1154] [PMID: 24353111]
[98]
Wang LJ, Zhang HW, Zhou JY, et al. Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet. J Nutr Biochem 2014; 25(3): 329-36.
[http://dx.doi.org/10.1016/j.jnutbio.2013.11.007] [PMID: 24456734]
[99]
Kitamoto T, Kitamoto A, Ogawa Y, et al. Targeted-bisulfite sequence analysis of the methylation of CpG islands in genes encoding PNPLA3, SAMM50, and PARVB of patients with non-alcoholic fatty liver disease. J Hepatol 2015; 63(2): 494-502.
[http://dx.doi.org/10.1016/j.jhep.2015.02.049] [PMID: 25776890]
[100]
Goldsworthy M, Absalom NL, Schröter D, et al. Mutations in Mll2, an H3K4 methyltransferase, result in insulin resistance and impaired glucose tolerance in mice. PLoS One 2013; 8(6)e61870
[http://dx.doi.org/10.1371/journal.pone.0061870] [PMID: 23826075]
[101]
Bricambert J, Alves-Guerra MC, Esteves P, et al. The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity. Nat Commun 2018; 9(1): 2092.
[http://dx.doi.org/10.1038/s41467-018-04361-y] [PMID: 29844386]
[102]
Pogribny IP, Tryndyak VP, Bagnyukova TV, et al. Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet. J Hepatol 2009; 51(1): 176-86.
[http://dx.doi.org/10.1016/j.jhep.2009.03.021] [PMID: 19450891]
[103]
Bricambert J, Miranda J, Benhamed F, Girard J, Postic C, Dentin R. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest 2010; 120(12): 4316-31.
[http://dx.doi.org/10.1172/JCI41624] [PMID: 21084751]
[104]
Feng D, Liu T, Sun Z, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011; 331(6022): 1315-9.
[http://dx.doi.org/10.1126/science.1198125] [PMID: 21393543]
[105]
Li Y, Wong K, Giles A, et al. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology 2014; 146(2): 539-49.e7.
[http://dx.doi.org/10.1053/j.gastro.2013.10.059] [PMID: 24184811]
[106]
Kim HS, Xiao C, Wang RH, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab 2010; 12(3): 224-36.
[http://dx.doi.org/10.1016/j.cmet.2010.06.009] [PMID: 20816089]
[107]
Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 2013; 10(9): 542-52.
[http://dx.doi.org/10.1038/nrgastro.2013.87] [PMID: 23689081]
[108]
Wang Z, Yao H, Lin S, et al. Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett 2013; 331(1): 1-10.
[http://dx.doi.org/10.1016/j.canlet.2012.12.006] [PMID: 23246373]
[109]
Pirola CJ, Fernández Gianotti T, Castaño GO, et al. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut 2015; 64(5): 800-12.
[http://dx.doi.org/10.1136/gutjnl-2014-306996] [PMID: 24973316]
[110]
Song G, Sharma AD, Roll GR, et al. MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology 2010; 51(5): 1735-43.
[http://dx.doi.org/10.1002/hep.23547] [PMID: 20432256]
[111]
Tsai WC, Hsu SD, Hsu CS, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 2012; 122(8): 2884-97.
[http://dx.doi.org/10.1172/JCI63455] [PMID: 22820290]
[112]
Miyaaki H, Ichikawa T, Kamo Y, et al. Significance of serum and hepatic microRNA-122 levels in patients with non-alcoholic fatty liver disease. Liver Int 2014; 34(7): e302-7.
[http://dx.doi.org/10.1111/liv.12429] [PMID: 24313922]
[113]
Liu X, Ren J, Luo N, et al. Comprehensive DNA methylation analysis of tissue of origin of plasma cell-free DNA by methylated CpG tandem amplification and sequencing (MCTA-Seq). Clin Epigenetics 2019; 11(1): 93.
[http://dx.doi.org/10.1186/s13148-019-0689-y] [PMID: 31234922]
[114]
Hyysalo J, Männistö VT, Zhou Y, et al. A population-based study on the prevalence of NASH using scores validated against liver histology. J Hepatol 2014; 60(4): 839-46.
[http://dx.doi.org/10.1016/j.jhep.2013.12.009] [PMID: 24333862]
[115]
Thoma C, Day CP, Trenell MI. Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: a systematic review. J Hepatol 2012; 56(1): 255-66.
[http://dx.doi.org/10.1016/j.jhep.2011.06.010] [PMID: 21723839]
[116]
Yki-Järvinen H. Nutritional Modulation of Non-Alcoholic Fatty Liver Disease and Insulin Resistance. Nutrients 2015; 7(11): 9127-38.
[http://dx.doi.org/10.3390/nu7115454] [PMID: 26556368]
[117]
Sevastianova K, Kotronen A, Gastaldelli A, et al. Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans. Am J Clin Nutr 2011; 94(1): 104-11.
[http://dx.doi.org/10.3945/ajcn.111.012369] [PMID: 21525193]
[118]
Stender S, Kozlitina J, Nordestgaard BG, Tybjærg-Hansen A, Hobbs HH, Cohen JC. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat Genet 2017; 49(6): 842-7.
[http://dx.doi.org/10.1038/ng.3855] [PMID: 28436986]
[119]
Krawczyk M, Jiménez-Agüero R, Alustiza JM, et al. PNPLA3 p.I148M variant is associated with greater reduction of liver fat content after bariatric surgery. Surg Obes Relat Dis 2016; 12(10): 1838-46.
[http://dx.doi.org/10.1016/j.soard.2016.06.004] [PMID: 27576208]
[120]
Nobili V, Bedogni G, Donati B, Alisi A, Valenti L. The I148M variant of PNPLA3 reduces the response to docosahexaenoic acid in children with non-alcoholic fatty liver disease. J Med Food 2013; 16(10): 957-60.
[http://dx.doi.org/10.1089/jmf.2013.0043] [PMID: 24074360]
[121]
Nobili V, Bedogni G, Alisi A, et al. Docosahexaenoic acid supplementation decreases liver fat content in children with non-alcoholic fatty liver disease: double-blind randomised controlled clinical trial. Arch Dis Child 2011; 96(4): 350-3.
[http://dx.doi.org/10.1136/adc.2010.192401] [PMID: 21233083]
[122]
Scorletti E, West AL, Bhatia L, et al. Treating liver fat and serum triglyceride levels in NAFLD, effects of PNPLA3 and TM6SF2 genotypes: Results from the WELCOME trial. J Hepatol 2015; 63(6): 1476-83.
[http://dx.doi.org/10.1016/j.jhep.2015.07.036] [PMID: 26272871]
[123]
Dongiovanni P, Petta S, Mannisto V, et al. Statin use and non-alcoholic steatohepatitis in at risk individuals. J Hepatol 2015; 63(3): 705-12.
[http://dx.doi.org/10.1016/j.jhep.2015.05.006] [PMID: 25980762]
[124]
Pillai S, Duvvuru S, Bhatnagar P, et al. The PNPLA3 I148M variant is associated with transaminase elevations in type 2 diabetes patients treated with basal insulin peglispro. Pharmacogenomics J 2018; 18(3): 487-93.
[http://dx.doi.org/10.1038/tpj.2017.45] [PMID: 29160303]
[125]
Guzman CB, Zhang XM, Liu R, et al. Treatment with LY2409021, a glucagon receptor antagonist, increases liver fat in patients with type 2 diabetes. Diabetes Obes Metab 2017; 19(11): 1521-8.
[http://dx.doi.org/10.1111/dom.12958] [PMID: 28371155]
[126]
Guzman CB, Duvvuru S, Akkari A, et al. Coding variants in PNPLA3 and TM6SF2 are risk factors for hepatic steatosis and elevated serum alanine aminotransferases caused by a glucagon receptor antagonist. Hepatol Commun 2018; 2(5): 561-70.
[http://dx.doi.org/10.1002/hep4.1171] [PMID: 29761171]
[127]
Mouzaki M, Loomba R. Insights into the evolving role of the gut microbiome in nonalcoholic fatty liver disease: rationale and prospects for therapeutic intervention. Therap Adv Gastroenterol 2019; 121756284819858470
[http://dx.doi.org/10.1177/1756284819858470] [PMID: 31258623]
[128]
Khan MY, Mihali AB, Rawala MS, Aslam A, Siddiqui WJ. The promising role of probiotic and synbiotic therapy in aminotransferase levels and inflammatory markers in patients with nonalcoholic fatty liver disease - a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2019; 31(6): 703-15.
[http://dx.doi.org/10.1097/MEG.0000000000001371] [PMID: 31009401]
[129]
Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143(4): 913-6.e7.
[http://dx.doi.org/10.1053/j.gastro.2012.06.031] [PMID: 22728514]
[130]
Chen F, Esmaili S, Rogers G, et al. Lean NAFLD: A Distinct Entity Shaped by Differential Metabolic Adaptation. Hepatology 2019. Epub ahead of print
[http://dx.doi.org/10.1002/hep.30908]
[131]
Kaufmann KB, Büning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med 2013; 5(11): 1642-61.
[http://dx.doi.org/10.1002/emmm.201202287] [PMID: 24106209]
[132]
Vilà L, Elias I, Roca C, et al. AAV8-mediated Sirt1 gene transfer to the liver prevents high carbohydrate diet-induced nonalcoholic fatty liver disease. Mol Ther Methods Clin Dev 2014; 1: 14039.
[http://dx.doi.org/10.1038/mtm.2014.39] [PMID: 26015978]
[133]
Lopez-Pastor AR, Gomez-Hernandez A, Diaz-Castroverde S, et al. Liver-specific insulin receptor isoform A expression enhances hepatic glucose uptake and ameliorates liver steatosis in a mouse model of diet-induced obesity. Dis Model Mech 2019; 12(2): 12.
[http://dx.doi.org/10.1242/dmm.036186] [PMID: 30642871]
[134]
Witztum JL, Gaudet D, Freedman SD, et al. Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome. N Engl J Med 2019; 381(6): 531-42.
[http://dx.doi.org/10.1056/NEJMoa1715944] [PMID: 31390500]
[135]
Lindén D, Ahnmark A, Pingitore P, et al. Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice. Mol Metab 2019; 22: 49-61.
[http://dx.doi.org/10.1016/j.molmet.2019.01.013] [PMID: 30772256]
[136]
Valenti L, Pelusi S, Baselli G. Whole exome sequencing for personalized hepatology: Expanding applications in adults and challenges. J Hepatol 2019; 71(4): 849-50.
[http://dx.doi.org/10.1016/j.jhep.2019.06.008] [PMID: 31362836]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 10
Year: 2020
Page: [998 - 1009]
Pages: 12
DOI: 10.2174/1381612826666200122151251
Price: $65

Article Metrics

PDF: 17
HTML: 1