In-vitro Release Evaluation of Growth Hormone from an Injectable In-Situ Forming Gel Using PCL-PEG-PCL Thermosensitive Triblock

Author(s): Elham Khodaverdi, Khadijeh Delroba, Fatemeh Mohammadpour*, Bahman Khameneh, Sayyed A. Sajadi Tabassi, Mohsen Tafaghodi, Hossein Kamali, Farzin Hadizadeh*.

Journal Name: Current Drug Delivery

Volume 17 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: An injectable long acting In-Situ Forming Gel (ISFG) of human Growth Hormone (hGH) was prepared by using triblock PCL-PEG-­PCL (Mw 1500-1500-1500). Ring-Opening Polymerization (ROP) of triblock using microwave was applied.

Methods: The BCA protein assay Kit was used to determine the concentration of hGH in the in-vitro release medium. Finally, Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) tests and Circular Dichroism (CD) spectrum were done to approve the stability of released hGH. The result of ROP demonstrated that the proportion of PCL to PEG accorded with the initial molar ratio of the monomers. The cross-section of the Surface Electron Microscopy (SEM) indicated the porous framework of the hydrogel could load the drug into its tridimensional matrixes structure. There is the low initial burst release of hGH from the supramolecular hydrogel.

Results: The maximum in-vitro release of hGH was 71.2 % ± 1.5 that were due to hGH degrading after this time (21 days). The CD spectrum and SDS-PAGE results confirmed the stability of hGH during invitro release evaluation.

Conclusion: The results suggest that the sustained-release formulation using PCL-PEG-PCL can be applied to control the release of hGH.

Keywords: PCL-PEG-PCL, human growth hormone, hydrogel, in-situ forming the gel, sustained release, gastro intestinal.

[1]
Kang, J.; Wu, F.; Cai, Y.; Xu, M.; He, M.; Yuan, W. Development of Recombinant Human Growth Hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method. Eur. J. Pharm. Sci., 2014, 62, 141-147.
[http://dx.doi.org/10.1016/j.ejps.2014.05.027] [PMID: 24907681]
[2]
Schalla, M.A.; Stengel, A. Pharmacological modulation of Ghrelin to induce weight loss: Successes and challenges. Curr. Diab. Rep., 2019, 19(10), 102.
[http://dx.doi.org/10.1007/s11892-019-1211-9] [PMID: 31506846]
[3]
Czepielewski, M.A.; Garret, Q.; Vencio, S.A.C.; Rassi, N.; Felicio, J.S.; Faria, M.S.; Senn, C.C.P.; Bronstein, M.D.; Cerqueira, M.J.A.G.; Neves, A.C.L.; Sgarbi, J.A.; Spinola-Castro, A.M.; Cunha, M.P.R.; Bandeira, F.; Toffoletto, O.; Afiune, J.; Baradelli, R.; Rodrigues, D.G.; Scharf, M. Efficacy and safety of a biosimilar recombinant human growth hormone (r-hGH Cristalia) compared with reference r-hGH in children with growth hormone deficiency (CERES study): A randomized, multicentric, investigator-blind, phase 3 trial. Growth Horm. IGF Res., 2019, 48-49, 29-35.
[http://dx.doi.org/10.1016/j.ghir.2019.07.003] [PMID: 31493626]
[4]
Høybye, C.; Cohen, P.; Hoffman, A.R.; Ross, R.; Biller, B.M.K.; Christiansen, J.S. Growth hormone research society. Status of long-acting-growth hormone preparations--2015. Growth Horm. IGF Res., 2015, 25(5), 201-206.
[http://dx.doi.org/10.1016/j.ghir.2015.07.004] [PMID: 26187188]
[5]
Taipale, R.S.; Gagnon, S.S.; Ahtiainen, J.P.; Häkkinen, K.; Kyröläinen, H.; Nindl, B.C. Active recovery shows favorable IGF-I and IGF binding protein responses following heavy resistance exercise compared to passive recovery. Growth Horm. IGF Res., 2019, 48-49, 45-52.
[http://dx.doi.org/10.1016/j.ghir.2019.09.001] [PMID: 31525624]
[6]
Chen, J.; Zhang, X.; Wu, X.; Li, J. Clinical and genetic characteristics of a young child with combined pituitary hormone deficiency type I caused by POU1F1 gene variation. Zhongguo dang dai er ke za zhi= Chin. J. Contemp. Pediatr., 2019, 21, 685-689.
[7]
Altmäe, S.; Aghajanova, L. Growth hormone and endometrial receptivity. Front. Endocrinol. (Lausanne), 2019, 10, 653.
[http://dx.doi.org/10.3389/fendo.2019.00653] [PMID: 31616379]
[8]
Donlon, J.; Ryan, P. Peptidylglycine monooxygenase activity of monomeric species of growth hormone. Heliyon, 2019, 5(9) e02436
[http://dx.doi.org/10.1016/j.heliyon.2019.e02436] [PMID: 31528749]
[9]
Rohrer, T.R.; Ceplis-Kastner, S.; Jorch, N.; Müller, H.L.; Pfaeffle, R.; Reinehr, T.; Richter-Unruh, A.; Weissenbacher, C.; Holterhus, P-M. Glutamate supply and metabolism in infants. Horm. Res. Paediatr., 2018, 73(Suppl. 5), 393-406.
[http://dx.doi.org/10.1159/000496614] [PMID: 30836359]
[10]
Vaishya, V.K.R.; Patel, S.; Mitra, A.K. Long-term delivery of protein therapeutics. Expert Opin. Drug Deliv., 2015, 12, 415-440.
[http://dx.doi.org/10.1517/17425247.2015.961420]
[11]
Martinez-Moreno, C.G.; Epardo, D.; Balderas-Márquez, J.E.; Fleming, T.; Carranza, M.; Luna, M.; Harvey, S.; Arámburo, C. Regenerative effect of growth hormone (GH) in the retina after kainic acid excitotoxic damage. Int. J. Mol. Sci., 2019, 20(18), 4433.
[http://dx.doi.org/10.3390/ijms20184433] [PMID: 31509934]
[12]
Liu, H-J.; Wang, L-H.; Chen, L. Evaluation of safety and efficacy of growth hormone therapy by IGF-1 Z score in children with short stature. Adv. Ther., 2019, 36(9), 2374-2383.
[http://dx.doi.org/10.1007/s12325-019-01021-5] [PMID: 31301056]
[13]
Foo, J. Somatropin easypod good value in growth-hormone deficiency. Pharm. Economics Outcomes News, 2019, 836, 26-27.
[http://dx.doi.org/10.1007/s40274-019-6199-5]
[14]
Darcy, J.; Bartke, A. From white to brown-adipose tissue is critical to the extended lifespan and healthspan of growth hormone mutant mice. Adv. Exp. Med. Biol., 2019, 1178, 207-225.
[http://dx.doi.org/10.1007/978-3-030-25650-0_11]
[15]
Raha, A.K.; Hoque, M.I.; Al Mahtab, M.; Ahmad, N.; Rahman, S.; Khan, M. Study on insulin like growth factor-1 as a marker of severity of liver dysfunction in patients with liver cirrhosis. Chattagram Maa-O-Shishu Hospital Medical College J., 2019, 18, 3-7.
[http://dx.doi.org/10.3329/cmoshmcj.v18i1.42125]
[16]
Ain, Q.; Noreen, S.W.; Akhtar, H.; Asif, N. Association of sex steroid priming on growth hormone stimulation test in tertiary care hospital settings Rawalpindi. Biochem. Anal. Biochem., 2019, 8, 2161-1009.
[17]
Wang, F.; Han, J.; Wang, Z.; Shang, X.; Li, G. Growth and adult height during human growth hormone treatment in chinese children with multiple pituitary hormone deficiency caused by pituitary stalk interruption syndrome: A single centre study. J. Clin. Res. Pediatr. Endocrinol., 2019.
[http://dx.doi.org/10.4274/jcrpe.galenos.2019.2019.0086] [PMID: 31475508]
[18]
Lalayiannis, A.D.; Crabtree, N.J.; Fewtrell, M.; Biassoni, L.; Milford, D.V.; Ferro, C.J.; Shroff, R. Assessing bone mineralisation in children with chronic kidney disease: What clinical and research tools are available? Pediatr. Nephrol., 2019, 1-21.
[http://dx.doi.org/10.1007/s00467-019-04271-1] [PMID: 31240395]
[19]
Colon, G.; Saccon, T.; Schneider, A.; Cavalcante, M.B.; Huffman, D.M.; Berryman, D.; List, E.; Ikeno, Y.; Musi, N.; Bartke, A.; Kopchick, J.; Kirkland, J.L.; Tchkonia, T.; Masternak, M.M. The enigmatic role of growth hormone in age-related diseases, cognition, and longevity. Geroscience, 2019, 41(6), 759-774.
[http://dx.doi.org/10.1007/s11357-019-00096-w] [PMID: 31485887]
[20]
Sergeeva, K.; Miroshnikov, A.; Smolensky, A. Effect of growth hormone administration on the mass and strength of muscles in healthy young adults: A systematic review and meta-analysis. Hum. Physiol., 2019, 45, 452-460.
[http://dx.doi.org/10.1134/S0362119719030162]
[21]
Wit, J.M.; Kamp, G.A.; Oostdijk, W. On behalf of the dutch working group on triage and diagnosis of growth disorders in children towards a rational and efficient diagnostic approach in children referred for growth failure to the general paediatrician. Horm. Res. Paediatr., 2019, 91(4), 223-240.
[http://dx.doi.org/10.1159/000499915] [PMID: 31195397]
[22]
van Dommelen, P.; Koledova, E.; Wit, J. SUN-258 prediction of height two years after start treatment in children with growth hormone deficiency. J. Endocr. Soc., 2019, 3, 258.
[http://dx.doi.org/10.1210/js.2019-SUN-258]
[23]
Cai, Y.; Xu, M.; Yuan, M.; Liu, Z.; Yuan, W. Developments in human growth hormone preparations: Sustained-release, prolonged half-life, novel injection devices, and alternative delivery routes. Int. J. Nanomedicine, 2014, 9, 3527-3538.
[PMID: 25114523 ]
[24]
Kamali, H.; Khodaverdi, E.; Hadizadeh, F.; Mohajeri, S.A.; Kamali, Y.; Jafarian, A.H. In-vitro, ex-vivo, and in-vivo release evaluation of in situ forming buprenorphine implants using mixture of PLGA copolymers and additives. Int. J. Polym. Mater. Polym. Biomater., 2019, 68, 965-977.
[http://dx.doi.org/10.1080/00914037.2018.1525541] [PMID: ]
[25]
Savendahl, L.; Højby Rasmussen, M.; Horikawa, R.; Khadilkar, V.; Battelino, T.; Saenger, P. SUN-247 once-weekly somapacitan in childhood growth hormone deficiency: Efficacy and safety results of a randomized, open-label, controlled phase 2 trial (REAL 3). J. Endocr. Soc., 2019, 3, 247.
[http://dx.doi.org/10.1210/js.2019-SUN-247]
[26]
Ghasemi, R.; Abdollahi, M.; Emamgholi Zadeh, E.; Khodabakhshi, K.; Badeli, A.; Bagheri, H.; Hosseinkhani, S. Author correction: mPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human growth hormone (rhGH). Sci. Rep., 2019, 9(1), 12867.
[http://dx.doi.org/10.1038/s41598-019-49305-8] [PMID: 31477788]
[27]
Lal, R.A.; Hoffman, A.R. Long-acting growth hormone preparations in the treatment of children. Pediatr. Endocrinol. Rev., 2018, 16(Suppl. 1), 162-167.
[PMID: 30378794]
[28]
Thornton, P.; Hofman, P.; Maniatis, A.; Aghajanova, E.; Chertok, E.; Korpal-Szczyrska, M.; Giorgadze, E.; Kovalenko, T.; Shu, A.; Karpf, D. OR17-4 transcon growth hormone in the treatment of pediatric growth hormone deficiency: Results of the phase 3 height trial. J. Endocr. Soc., 2019, 3, OR17-OR4.
[http://dx.doi.org/10.1210/js.2019-OR17-4]
[29]
Khodaverdi, E.; Javan, M.; Tabassi, S.A.S.; Khameneh, B.; Kamali, H.; Hadizadeh, F. Sustained drug delivery system for insulin using supramolecular hydrogels composed of tri-block copolymers. J. Pharm. Investig., 2017, 47, 263-273.
[http://dx.doi.org/10.1007/s40005-016-0290-8]
[30]
Malik, K.; Singh, I.; Nagpal, M.; Arora, S. Atrigel: A potential parenteral controlled drug delivery system. Pharm. Sin., 2010, 1, 74-81.
[31]
Kamali, H.; Khodaverdi, E.; Hadizadeh, F.; Mohajeri, S.A.; Nazari, A.; Jafarian, A.H. Comparison of in-situ forming composite using PLGA-PEG-PLGA with in-situ forming implant using PLGA: In-vitro, ex-vivo, and in-vivo evaluation of naltrexone release. J. Drug Deliv. Sci. Technol., 2019, 50, 188-200.
[http://dx.doi.org/10.1016/j.jddst.2019.01.011]
[32]
Kamali, H.; Khodaverdi, E.; Hadizadeh, F.; Mohajeri, S.A. In-vitro, ex-vivo, and in-vivo evaluation of buprenorphine HCl release from an in situ forming gel of PLGA-PEG-PLGA using N-methyl-2-pyrrolidone as solvent. Mater. Sci. Eng. C, 2019, 96, 561-575.
[http://dx.doi.org/10.1016/j.msec.2018.11.058] [PMID: 30606566]
[33]
Khodaverdi, E.; Tayarani-Najaran, Z.; Minbashi, E.; Alibolandi, M.; Hosseini, J.; Sepahi, S.; Kamali, H.; Hadizadeh, F. Docetaxel-loaded mixed micelles and polymersomes composed of poly (caprolactone)-poly (ethylene glycol) (PEG-PCL) and poly (lactic acid)-poly (ethylene glycol) (PEG-PLA): Preparation and in-vitro characterization. Iran. J. Pharm. Res., 2019, 18(1), 142-155.
[PMID: 31089351]
[34]
Mohajeri, S.A.; Yaghoubi, S.; Abdollahi, E.; Tekie, F.S.M.; Kamali, H.; Khodaverdi, E.; Hadizadeh, F. In-vivo study of naltrexone hydrochloride release from an in-situ forming PLGA-PEG-PLGA system in the rabbit. J. Drug Deliv. Sci. Technol., 2016, 36, 156-160.
[http://dx.doi.org/10.1016/j.jddst.2016.10.006]
[35]
Ghasemi Tahrir, F.; Ganji, F.; Mani, A.R.; Khodaverdi, E. In vitro and in vivo evaluation of thermosensitive chitosan hydrogel for sustained release of insulin. Drug Deliv., 2016, 23(3), 1038-1046.
[http://dx.doi.org/10.3109/10717544.2014.932861] [PMID: 25005583]
[36]
Kamali, H.; Khodaverdi, E.; Hadizadeh, F.; Yazdian-Robati, R.; Haghbin, A.; Zohuri, G. An in-situ forming implant formulation of naltrexone with minimum initial burst release using mixture of PLGA copolymers and ethyl heptanoate as an additive: In-vitro, ex-vivo, and in-vivo release evaluation. J. Drug Deliv. Sci. Technol., 2018, 47, 95-105.
[http://dx.doi.org/10.1016/j.jddst.2018.06.027]
[37]
Khodaverdi, E.; Maftouhian, S.; Aliabadi, A.; Hassanzadeh-Khayyat, M.; Mohammadpour, F.; Khameneh, B.; Hadizadeh, F. Casein-based hydrogel carrying insulin: preparation, in vitro evaluation and in vivo assessment. J. Pharm. Investig., 2018, 1-7.
[38]
Khodaverdi, E.; Heidari, Z.; Tabassi, S.A.S.; Tafaghodi, M.; Alibolandi, M.; Tekie, F.S.M.; Khameneh, B.; Hadizadeh, F. Injectable supramolecular hydrogel from insulin-loaded triblock PCL-PEG-PCL copolymer and γ-cyclodextrin with sustained-release property. AAPS PharmSciTech, 2015, 16(1), 140-149.
[http://dx.doi.org/10.1208/s12249-014-0198-4] [PMID: 25224297]
[39]
Gong, C.Y.; Shi, S.; Dong, P.W.; Yang, B.; Qi, X.R.; Guo, G.; Gu, Y.C.; Zhao, X.; Wei, Y.Q.; Qian, Z.Y. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel: Part 1-Synthesis, characterization, and acute toxicity evaluation. J. Pharm. Sci., 2009, 98(12), 4684-4694.
[http://dx.doi.org/10.1002/jps.21780] [PMID: 19367619]
[40]
Gong, C.; Shi, S.; Wu, L.; Gou, M.; Yin, Q.; Guo, Q.; Dong, P.; Zhang, F.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: Sol-gel-sol transition and drug delivery behavior. Acta Biomater., 2009, 5(9), 3358-3370.
[http://dx.doi.org/10.1016/j.actbio.2009.05.025] [PMID: 19470411]
[41]
Liu, C.B.; Gong, C.Y.; Huang, M.J.; Wang, J.W.; Pan, Y.F.; Zhang, Y.D.; Li, G.Z.; Gou, M.L.; Wang, K.; Tu, M.J.; Wei, Y.Q.; Qian, Z.Y. Thermoreversible gel-sol behavior of biodegradable PCL-PEG-PCL triblock copolymer in aqueous solutions. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 84(1), 165-175.
[http://dx.doi.org/10.1002/jbm.b.30858] [PMID: 17455282]
[42]
Khodaverdi, E.; Gharechahi, M.; Alibolandi, M.; Tekie, F.S.M.; Khashyarmanesh, B.Z.; Hadizadeh, F. Self-assembled supramolecular hydrogel based on PCL-PEG-PCL triblock copolymer and γ-cyclodextrin inclusion complex for sustained delivery of dexamethasone. Int. J. Pharm. Investig., 2016, 6(2), 78-85.
[http://dx.doi.org/10.4103/2230-973X.177809] [PMID: 27051627]
[43]
Ma, G.; Miao, B.; Song, C. Thermosensitive PCL‐PEG‐PCL hydrogels: Synthesis, characterization, and delivery of proteins. J. Appl. Polym. Sci., 2010, 116, 1985-1993.
[http://dx.doi.org/10.1002/app.31654]
[44]
Tabassi, S.A.S.; Tekie, F.S.M.; Hadizadeh, F.; Rashid, R.; Khodaverdi, E.; Mohajeri, S.A. Sustained release drug delivery using supramolecular hydrogels of the triblock copolymer PCL-PEG-PCL and α-cyclodextrin. J. Sol-Gel Sci. Technol., 2014, 69, 166-171.
[http://dx.doi.org/10.1007/s10971-013-3200-9]
[45]
Lu, F.; Lei, L.; Shen, Y-Y.; Hou, J-W.; Chen, W-L.; Li, Y-G.; Guo, S-R. Effects of amphiphilic PCL-PEG-PCL copolymer addition on 5-fluorouracil release from biodegradable PCL films for stent application. Int. J. Pharm., 2011, 419(1-2), 77-84.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.020] [PMID: 21803141]
[46]
Wu, Q.; Gong, C.; Shi, S.; Wang, Y.; Huang, M.; Yang, L.; Zhao, X.; Wei, Y.; Qian, Z. Mannan loaded biodegradable and injectable thermosensitive PCL-PEG-PCL hydrogel for vaccine delivery. Soft Mater., 2012, 10, 472-486.
[http://dx.doi.org/10.1080/1539445X.2010.537422]
[47]
Sun, T.; Shuai, X.; Ren, K.; Jiang, X.; Chen, Y.; Zhao, X.; Song, Q.; Hu, S.; Cai, Z. Amphiphilic block copolymer PCL-PEG-PCL as stationary phase for capillary gas chromatographic separations. Molecules, 2019, 24(17), 3158.
[http://dx.doi.org/10.3390/molecules24173158] [PMID: 31480234]
[48]
Khodaverdi, E.; Aboumaashzadeh, M.; Tekie, F.S.M.; Hadizadeh, F.; Tabassi, S.A.S.; Mohajeri, S.A.; Khashyarmanesh, Z.; Haghighi, H.M. Sustained drug release using supramolecular hydrogels composed of cyclodextrin inclusion complexes with PCL/PEG multiple block copolymers. Iran. Polym. J., 2014, 23, 707-716.
[http://dx.doi.org/10.1007/s13726-014-0265-4]
[49]
Ge, H.; Hu, Y.; Jiang, X.; Cheng, D.; Yuan, Y.; Bi, H.; Yang, C. Preparation, characterization, and drug release behaviors of drug nimodipine-loaded poly(ε-caprolactone)-poly(ethylene oxide)-poly(ε-caprolactone) amphiphilic triblock copolymer micelles. J. Pharm. Sci., 2002, 91(6), 1463-1473.
[http://dx.doi.org/10.1002/jps.10143] [PMID: 12115846]
[50]
Huang, M.H.; Li, S.; Hutmacher, D.W.; Schantz, J.T.; Vacanti, C.A.; Braud, C.; Vert, M. Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of ϵ-caprolactone in the presence of poly(ethylene glycol). J. Biomed. Mater. Res. A, 2004, 69(3), 417-427.
[http://dx.doi.org/10.1002/jbm.a.30008] [PMID: 15127388]
[51]
Khodaverdi, E; Golmohammadian, A; Mohajeri, SA; Zohuri, G; Mirzazadeh Tekie, FS Hadizadeh, F Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive poly (- caprolactone)-poly (ethylene glycol)-poly (-caprolactone) hydrogel ISRN pharmaceutics, 2012, 2012
[52]
Hosayni, L.; Ganji, F.; Khodaverdi, E. Effects of reaction condition and feed composition on thermo-gelling behavior of PLGA-PEG-PLGA. In: ed.^eds 2012 19th Iranian Conference of Biomedical Engineering, ICBME; , 2012; 2012, pp. 118-120.
[http://dx.doi.org/10.1109/ICBME.2012.6519669]
[53]
Khodaverdi, E.; Farhadi, F.; Jalali, A.; Mirzazadeh Tekie, F.S. Preparation and investigation of poly (N-isopropylacrylamide-acrylamide) membranes in temperature responsive drug delivery. Iran. J. Basic Med. Sci., 2010, 13, 102-110.
[54]
Dinarvand, R.; Khodaverdi, E.; Atyabi, F. Temperature-sensitive permeation of methimazole through cyano-biphenyl liquid crystals embedded in cellulose nitrate membranes. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2005, 442, 19-30.
[http://dx.doi.org/10.1080/154214090964870]
[55]
Kamali, H.; Mollaee, R.; Khodaverdi, E.; Hadizadeh, F.; Zohuri, G.H. Ring-opening polymerization of poly (D, L-lactide-co-glycolide)-poly (ethylene glycol) Diblock copolymer using supercritical CO2. J. Supercrit. Fluids, 2018.
[56]
Khodaverdi, E.; Hadizade, F.; Mohajeri, S.; Ganji, F. Preparation of smart in situ gel forming polymeric nanomicelles for prolonged release of naltrexone hydrochloride. Res. Pharm. Sci., 2012, 7, 380.
[57]
Khodaverdi, E.; Ganji, F.; Tafaghodi, M.; Sadoogh, M. Effects of formulation properties on sol-gel behavior of chitosan/glycerolphosphate hydrogel. Iran. Polym. J., 2013, 22, 785-790.
[http://dx.doi.org/10.1007/s13726-013-0177-8]
[58]
Khodaverdi, E; Akbari, A; Tekie, FSM Sustained Delivery of Amphotericin B and Vancomycin., 2013.
[59]
Zentner, G.M.; Rathi, R.; Shih, C.; McRea, J.C.; Seo, M-H.; Oh, H.; Rhee, B.G.; Mestecky, J.; Moldoveanu, Z.; Morgan, M.; Weitman, S. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J. Control. Release, 2001, 72(1-3), 203-215.
[http://dx.doi.org/10.1016/S0168-3659(01)00276-0] [PMID: 11389999]
[60]
Khodaverdi, E.; Tekie, F.S.M.; Amoli, S.S.; Sadeghi, F. Comparison of plasticizer effect on thermo-responsive properties of Eudragit RS films. AAPS PharmSciTech, 2012, 13(3), 1024-1030.
[http://dx.doi.org/10.1208/s12249-012-9827-y] [PMID: 22843079]
[61]
Khodaverdi, E.; Hadizadeh, F.; Tekie, F.S.M.; Jalali, A.; Mohajeri, S.A.; Ganji, F. Preparation and analysis of a sustained drug delivery system by PLGA-PEG-PLGA triblock copolymers. Polym. Bull., 2012, 69, 429-438.
[http://dx.doi.org/10.1007/s00289-012-0747-5]
[62]
Dinarvand, R.; Khodaverdi, E.; Atyabi, F.; Erfan, M. Thermoresponsive drug delivery using liquid crystal-embedded cellulose nitrate membranes. Drug Deliv., 2006, 13(5), 345-350.
[http://dx.doi.org/10.1080/10717540500394729] [PMID: 16877309]
[63]
Chen, S.; Singh, J. Controlled release of growth hormone from thermosensitive triblock copolymer systems: In vitro and in vivo evaluation. Int. J. Pharm., 2008, 352(1-2), 58-65.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.016] [PMID: 18036752]
[64]
Khameneh, B.; Jaafari, M.R.; Hassanzadeh-Khayyat, M.; Varasteh, A.; Chamani, J.; Iranshahi, M.; Mohammadpanah, H.; Abnous, K.; Saberi, M.R. Preparation, characterization and molecular modeling of PEGylated human growth hormone with agonist activity. Int. J. Biol. Macromol., 2015, 80, 400-409.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.06.037] [PMID: 26116386]
[65]
Khodaverdi, E.; Tafaghodi, M.; Ganji, F.; Abnoos, K.; Naghizadeh, H. In vitro insulin release from thermosensitive chitosan hydrogel. AAPS PharmSciTech, 2012, 13(2), 460-466.
[http://dx.doi.org/10.1208/s12249-012-9764-9] [PMID: 22391886]
[66]
Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc., 2006, 1(6), 2876-2890.
[http://dx.doi.org/10.1038/nprot.2006.202] [PMID: 17406547]
[67]
Manns, J.M. SDS-polyacrylamide gel electrophoresis (SDS‐PAGE) of Proteins. Curr. Protoc. Microbiol., 2011, 22(1), A-3M.
[68]
Kamali, H.; Khodaverdi, E.; Hadizadeh, F. Ring-opening polymerization of PLGA-PEG-PLGA triblock copolymer in supercritical carbon dioxide. J. Supercrit. Fluids, 2018, 137, 9-15.
[http://dx.doi.org/10.1016/j.supflu.2018.03.001]
[69]
Li, J.; Li, X.; Ni, X.; Wang, X.; Li, H.; Leong, K.W. Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and α-cyclodextrin for controlled drug delivery. Biomaterials, 2006, 27(22), 4132-4140.
[http://dx.doi.org/10.1016/j.biomaterials.2006.03.025] [PMID: 16584769]
[70]
Singh, J.; Gupta, S.; Kaur, H. Prediction of in vitro drug release mechanisms from extended release matrix tablets using SSR/R2 technique. Trends Appl. Sci. Res., 2011, 6, 400-409.
[http://dx.doi.org/10.3923/tasr.2011.400.409]
[71]
Khodaverdi, E.; Rajabi, O.; Abdekhodai, M.; Yu , Wu. X. A Novel composite membrane for PH responsive permeation. Iran. J. Basic Med. Sci., 2008, 11, 70-79.
[72]
Chime, S.A.; Attama, A.A.; Builders, P.F.; Onunkwo, G.C. Sustained-release diclofenac potassium-loaded solid lipid microparticle based on solidified reverse micellar solution: In vitro and in vivo evaluation. J. Microencapsul., 2013, 30(4), 335-345.
[http://dx.doi.org/10.3109/02652048.2012.726284] [PMID: 23057661]
[73]
Atyabi, F.; Khodaverdi, E.; Dinarvand, R. Temperature modulated drug permeation through liquid crystal embedded cellulose membranes. Int. J. Pharm., 2007, 339(1-2), 213-221.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.004] [PMID: 17448615]
[74]
Alibolandi, M.; Ramezani, M.; Sadeghi, F.; Abnous, K.; Hadizadeh, F. Epithelial cell adhesion molecule aptamer conjugated PEG-PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. Int. J. Pharm., 2015, 479(1), 241-251.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.035] [PMID: 25529433]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 17
ISSUE: 2
Year: 2020
Page: [174 - 183]
Pages: 10
DOI: 10.2174/1567201817666200120120105
Price: $65

Article Metrics

PDF: 8