Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Design, Synthesis and In vitro Biological Activity of Some New 1,3- thiazolidine-4-one Derivatives as Chemotherapeutic Agents using Virtual Screening Strategies

Author(s): Pragya Nayak* and Monica Kachroo

Volume 16, Issue 6, 2020

Page: [757 - 771] Pages: 15

DOI: 10.2174/1573409916666200116102359

Price: $65

Abstract

Aims: Designing of a new series of derivatives possessing thiazolidine-4-one moiety, their virtual screening using various computational tools, synthesis of prioritized compounds, spectral characterization and biological evaluation along with the comparison of in silico & in vitro results.

Background: WHO has come up with a list of antibiotic-resistant “priority pathogens” i.e. families of bacteria, that pose the greatest threat to human health. Some virulent bacteria are focused in the present study namely Mycobacterium tuberculosis (multi drug resistant), Staphylococcus aureus (methicillin-resistant) Streptococcus pneumoniae, (penicillin-non-susceptible) and Pseudomonas aeruginosa (Carbapenem-resistant) One of the neglected pathogenic disease which needs an urgent attention is Leishmaniasis which has a major burden among the poorest segments of populations in Asia, Africa, and South America.

Objective: 1. To design of a series of new heteroaryl-1,3-thiazolidin-4-one derivatives. 2. To prioritize the molecules for synthesis using virtual screening techniques. 3. To synthesize the virtually predicted molecules via different synthetic schemes. 4. To characterize the synthesized molecules by spectroscopic analysis. 5. To evaluate the synthesized compounds for in vitro biological activity.

Methods: A series of new heteroaryl thiazolidine-4-one derivatives was designed and subjected to in silico prioritization using various virtual screening strategies. The prioritized thiazolidinone derivatives were synthesized and screened for their in vitro antitubercular, anticancer, antileishmanial and antibacterial (Staphylococcus aureus; Streptococcus pneumonia; Escherichia coli; Pseudomonas aeruginosa) activities.

Results: The compounds with electronegative substitutions exhibited positive antitubercular activity, the derivatives possessing a methyl substitution exhibited good inhibitory response against breast cancer cell line MCF-7 while the compounds possessing a hydrogen bond acceptor site like hydroxyl and methoxy substitution in their structures exhibited good in vitro antileishmanial activity. Some compounds exhibited potent activity against gram positive bacteria Pseudomonas aeruginosa as compared to the standards.

Conclusion: The designed compounds exhibited good in vitro anti-infective potential which was in good agreement with the in silico predictions and they can be developed as important lead molecules for anti-infective and chemotherapeutic drug research.

Keywords: In silico drug design, thiazolidinone, antitubercular, antibacterial, antileishmanial, electronegative substitutions.

Graphical Abstract

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy