Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Investigation on the Preparation, Characteristics, and Controlled Release Model of Paeonol-Loaded Liposome in Carbomer Hydrogel

Author(s): Qinqin Liu, Hongmei Xia*, Yinxiang Xu, Yongfeng Cheng and Zhiqing Cheng

Volume 17, Issue 2, 2020

Page: [159 - 173] Pages: 15

DOI: 10.2174/1567201817666200115163506

Price: $65

Abstract

Objective: Paeonol is a phenolic compounce that is volatile. In order to decrease its volatility and achieve controlled release, paeonol-loaded liposome in carbomer hydrogel was prepared by coating with soybean phospholipid via ethanol injection method and then added into the carbomer hydrogel.

Methods: The quality of paeonol-loaded liposome in carbomer hydrogel was evaluated by the degree of roundness, particle size distribution, zeta potential, entrapment efficiency (filtration method and chitosan neutralization method), viscosity, infrared spectrum, etc. Furthermore, the diffusion from paeonolloaded liposome in hydrogel was studied in vitro.

Results: The results showed that the average particle size of paeonol-loaded liposome was about 401 nm, the potential was -17.8 mV, and the entrapment efficiency was above 45%. The viscosity of paeonol- loaded liposome in hydrogel was 23.972×10-3 Pa*s, and the diffusion rate from paeonol-loaded liposome in hydrogel in vitro was obviously slower than that from the other paeonol preparations.

Conclusion: The conclusions could be drawn that paeonol-loaded liposome in hydrogel was a kind of novel preparation, and its diffusion in vitro had obvious controlled-release characteristics, which further proved that it might improve the bioavailability of paeonol.

Keywords: Paeonol-loaded liposome in hydrogel, content determination, entrapment efficiency, infrared spectrum, diffusion in vitro.

Graphical Abstract
[1]
Song, W.; Cai, H.; Du, L.; Zhao, Q.; Chen, H.; Li, G.; Wang, H.; Xu, Y.; Ding, L.; Ren, N. Fast Determination of Paeonol from Cortex Moutan, by microwave-assisted steam extraction followed by HPLC. Chromatographia, 2012, 7513-14, 747-753.
[http://dx.doi.org/10.1007/s10337-012-2252-2]
[2]
Ngan, L.T.M.; Moon, J.K.; Kim, J.H.; Shibamoto, T.; Ahn, Y.J. Growth-inhibiting effects of Paeonia lactiflora root steam distillate constituents and structurally related compounds on human intestinal bacteria. World J. Microbiol. Biotechnol., 2012, 28(4), 1575-1583.
[http://dx.doi.org/10.1007/s11274-011-0961-6] [PMID: 22805939]
[3]
Jin, X.; Wang, J.; Xia, Z.M.; Shang, C.H.; Chao, Q.L.; Liu, Y.R.; Fan, H.Y.; Chen, D.Q.; Qiu, F.; Zhao, F. Anti-inflammatory and anti-oxidative activities of Paeonol and its Metabolites through blocking MAPK/ERK/p38 signaling pathway. Inflammation, 2016, 39(1), 434-446.
[http://dx.doi.org/10.1007/s10753-015-0265-3] [PMID: 26433578]
[4]
Lou, Y.; Wang, C.; Tang, Q.; Zheng, W.; Feng, Z.; Yu, X.; Guo, X.; Wang, J. Paeonol Inhibits IL-1β-Induced Inflammation via PI3K/Akt/NF-κB pathways: In vivo and vitro studies. Inflammation, 2017, 40(5), 1698-1706.
[http://dx.doi.org/10.1007/s10753-017-0611-8] [PMID: 28695367]
[5]
Wu, H.; Song, A.; Hu, W.; Dai, M. The anti-atherosclerotic effect of paeonol against vascular smooth muscle cell proliferation by up-regulation of autophagy via the AMPK/mTOR signaling pathway. Front. Pharmacol., 2018, 8, 948.
[http://dx.doi.org/10.3389/fphar.2017.00948] [PMID: 29354055]
[6]
Lin, X.; Yi, Z.; Diao, J.; Shao, M.; Zhao, L.; Cai, H.; Fan, Q.; Yao, X.; Sun, X. ShaoYao decoction ameliorates colitis-associated colorectal cancer by downregulating proinflammatory cytokines and promoting epithelial-mesenchymal transition. J. Transl. Med., 2014, 12, 105.
[http://dx.doi.org/10.1186/1479-5876-12-105] [PMID: 24766737]
[7]
Lyu, Z.K.; Li, C.L.; Jin, Y.; Liu, Y.Z.; Zhang, X.; Zhang, F.; Ning, L.N.; Liang, E.S.; Ma, M.; Gao, W.; Zhang, M.X.; Liu, D.S. Paeonol exerts potential activities to inhibit the growth, migration and invasion of human gastric cancer BGC823 cells via downregulating MMP-2 and MMP-9. Mol. Med. Rep., 2017, 16(5), 7513-7519.
[http://dx.doi.org/10.3892/mmr.2017.7576] [PMID: 28944890]
[8]
Han, X.M.; Wu, S.X.; Wu, M.F.; Yang, X.F. Antioxidant effect of peony seed oil on aging mice. Food Sci. Biotechnol., 2017, 26(6), 1703-1708.
[http://dx.doi.org/10.1007/s10068-017-0225-9] [PMID: 30263708]
[9]
Xue, P.; Wang, Y.; Zeng, F.; Xiu, R.; Chen, J.; Guo, J.; Yuan, P.; Liu, L.; Xiao, J.; Lu, H.; Wu, D.; Pan, H.; Lu, M.; Zhu, F.; Shi, F.; Duan, Q. Paeonol suppresses solar ultraviolet-induced skin inflammation by targeting T-LAK cell-originated protein kinase. Oncotarget, 2017, 8(16), 27093-27104.
[http://dx.doi.org/10.18632/oncotarget.15636] [PMID: 28404919]
[10]
Lymberopoulos, A.; Demopoulou, C.; Kyriazi, M.; Katsarou, M. S.; Demertzis, N.; Hatziandoniou, S.; Maswadeh, H.; Papaioanou, G.; Demetzos, C.; Maibach, H.; Rallis, M. Liposome percutaneous penetration in vivo 2017.
[http://dx.doi.org/10.1177/2397847317723196]
[11]
Wei, T.T.; Sun, H.Y.; Deng, G.; Gu, J.Y.; Guo, H.Y.; Xu, J.; Wu, R.G. The interaction of paeonol with DPPC liposomes. J. Therm. Anal. Calorim., 2018, 1321, 685-692.
[http://dx.doi.org/10.1007/s10973-017-6894-z]
[12]
Pal, R.; Bhadoria, A.P.S.; Ramteke, S. Preparation and characterization of sodium alginate-carbopol-934P based mucoadhesive microbeads. Der Pharmacia., 2011, 35, 1-11.
[13]
Jin, L.; Lu, P.; You, H.; Chen, Q.; Dong, J. Vitamin B12 diffusion and binding in crosslinked poly(acrylic acid)s and poly(acrylic acid-co-N-vinyl pyrrolidinone)s. Int. J. Pharm., 2009, 371(1-2), 82-88.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.022] [PMID: 19138732]
[14]
Sun, D.; Wang, S. Highly sensitive electrochemical sensor for paeonol using NMP-exfoliated grapheme-modified electrode. Ionics, 2015, 2110, 1-6.
[http://dx.doi.org/10.1007/s11581-015-1460-9]
[15]
Gao, X.; Yu, Z.; Zhao, Y.; Men, L.; Wang, Q.; Wang, Z.; Chen, X.; Xiao, W.; Bi, K. Development of an LC method for simultaneous analysis of cinnamic acid and paeonol in rat plasma, and its application to a pharmacokinetic study after intragastric administration of Guizhi-Fuling capsule. Chromatographia, 2009, 703-4, 597-601.
[http://dx.doi.org/10.1365/s10337-009-1188-7]
[16]
Wang, J.; Lan, Z.; Zhang, L.; Guo, H.; Liu, Z.; Yu, Y. A rapid and sensitive UPLC-MS/MS method for determination of docetaxel in rabbit plasma: pharmacokinetic study of new lung-targeting docetaxel liposome at low dose. Cell Biochem. Biophys., 2015, 73(3), 623-629.
[http://dx.doi.org/10.1007/s12013-015-0639-z] [PMID: 27259303]
[17]
Li, H.; Wang, S.; Yang, Q.; Xie, Y.; Cao, W.; Zhang, B.; Wang, J.; Wang, J.; Wang, M. LC tissue distribution study of Paeonol in rats after oral administration. Chromatographia, 2011, 735-6, 495-500.
[http://dx.doi.org/10.1007/s10337-010-1908-z]
[18]
Wu, R.G.; Wang, Y.R.; Wu, F.G.; Zhou, H.W.; Zhang, X.H.; Hou, J.L. A DSC study of paeonol-encapsulated liposomes, comparison the effect of cholesterol and stigmasterol on the thermotropic phase behavior of liposomes. J. Therm. Anal. Calorim., 2012, 1091, 311-316.
[http://dx.doi.org/10.1007/s10973-012-2331-5]
[19]
Wang, Y.W.; Jou, C.H.; Yang, M.C. Effect of quaternized chitosan on the fusion efficiency and cytocompatibility of liposomes. J. Polym. Res., 2012, 191, 9755.
[http://dx.doi.org/10.1007/s10965-011-9755-7]
[20]
Kang, J.H.; Battogtokh, G.; Ko, Y.T. Folate-targeted liposome encapsulating chitosan/oligonucleotide polyplexes for tumor targeting. AAPS PharmSciTech, 2014, 15(5), 1087-1092.
[http://dx.doi.org/10.1208/s12249-014-0136-5] [PMID: 24848761]
[21]
Heiati, H.; Phillips, N.C.; Tawashi, R. Evidence for phospholipid bilayer formation in solid lipid nanoparticles formulated with phospholipid and triglyceride. Pharm. Res., 1996, 13(9), 1406-1410.
[http://dx.doi.org/10.1023/a:1016090420759] [PMID: 8893283]
[22]
Shibata, H.; Yomota, C.; Okuda, H. Simultaneous determination of polyethylene glycol-conjugated liposome components by using reversed-phase high-performance liquid chromatography with UV and evaporative light scattering detection. AAPS PharmSciTech, 2013, 14(2), 811-817.
[http://dx.doi.org/10.1208/s12249-013-9967-8] [PMID: 23609521]
[23]
Alam, A.; Bhuri, S.R.K.; Mavila, A.K.; Singh, V. Design of liposome to improve encapsulation efficiency of gelonin and its effect on immunoreactivity and ribosome inactivating property. Mol. Cell. Biochem., 1122, 97-109.
[http://dx.doi.org/10.1007/BF00227566]
[24]
Roslan, N.Z.I.; Ghani, S.M.A.; Yusof, N.B.; Aziz, A.A. Liposome as transdermal carrier for labisia pumila and ficus deltoidea water extracts., 2017, 79(7)
[http://dx.doi.org/10.11113/jt.v79.10205]
[25]
Tang, J.; Ge, Y. Development and evaluation of novel eucalyptus essential oil liposomes/chitosan composite sponges for medical use. Fibers Polym., 2017, 183, 424-433.
[http://dx.doi.org/10.1007/s12221-017-6983-4]
[26]
Yu, J.; Guan, H.; Chi, D. An amperometric glucose oxidase biosensor based on liposome microreactor-chitosan nanocomposite-modified electrode for determination of trace mercury. J. Solid State Electrochem., 2017, 214, 1175-1183.
[http://dx.doi.org/10.1007/s10008-016-3468-0]
[27]
Yang, L.; Xing, S.; Wang, K.; Yi, H.; Du, B. Paeonol attenuates aging MRC-5 cells and inhibits epithelial-mesenchymal transition of premalignant HaCaT cells induced by aging MRC-5 cell-conditioned medium. Mol. Cell. Biochem., 2018, 439(1-2), 117-129.
[http://dx.doi.org/10.1007/s11010-017-3141-7] [PMID: 28801702]
[28]
Islam, M.T.; Rodréguez-Hornedo, N.; Ciotti, S.; Ackermann, C. Fourier transform infrared spectroscopy for the analysis of neutralizer-Carbomer and surfactant-Carbomer interactions in aqueous, hydroalcoholic, and anhydrous gel formulations. AAPS J., 2004, 6(4): e35
[http://dx.doi.org/10.1208/aapsj060435] [PMID: 15760100]
[29]
Ricci, M.; Sassi, P.; Nastruzzi, C.; Rossi, C. Liposome-based formulations for the antibiotic nonapeptide Leucinostatin A: Fourier transform infrared spectroscopy characterization and in vivo toxicologic study. AAPS PharmSciTech, 2000, 1(1)E2
[PMID: 14727851]
[30]
Moin, A.; Deb, T.K.; Osmani, R.A.M.; Bhosale, R.R.; Hani, U. Fabrication, characterization, and evaluation of microsponge delivery system for facilitated fungal therapy. J. Basic Clin. Pharm., 2016, 7(2), 39-48.
[http://dx.doi.org/10.4103/0976-0105.177705] [PMID: 27057125]
[31]
Blanco-príeto, M.J.; Leo, E.; Delie, F.; Gulik, A.; Couvreur, P.; Fattal, E. Study of the influence of several stabilizing agents on the entrapment and in vitro release of pBC 264 from poly(lactide-co-glycolide) microspheres prepared by a W/O/W solvent evaporation method. Pharm. Res., 1996, 137, 1127.
[32]
Chen, J.; Chen, Y.; Cheng, Y.; Gao, Y.; Zheng, P.; Li, C.; Tong, Y.; Li, Z.; Luo, W.; Chen, Z. Modifying glycyrrhetinic acid liposomes with liver-targeting ligand of galactosylated derivative: Preparation and evaluations. Oncotarget, 2017, 8(60), 102046-102066.
[http://dx.doi.org/10.18632/oncotarget.22143] [PMID: 29254224]
[33]
Abdul Rahim, R.; Ahmad, N.H.; Al Azzam, K.M.; Mat, I. Determination and quantification of the vinblastine content in purple, red, and white Catharanthus Roseus leaves using RP-HPLC method. Adv. Pharm. Bull., 2018, 8(1), 157-161.
[http://dx.doi.org/10.15171/apb.2018.019] [PMID: 29670851]
[34]
Baek, J.S.; Lim, J.H.; So, J.W.; Kim, J.I.; Lee, T.W.; Hwang, S.J.; Shin, S.C.; Kim, S.J.; Cho, C.W. The feasibility study of transdermal drug delivery systems for antidepressants possessing hydrophilicity or hydrophobicity. J. Pharm. Investig., 2012, 423, 109-114.
[http://dx.doi.org/10.1007/s40005-012-0017-4]
[35]
Zhang, G.S.; Hu, P.Y.; Li, D.X.; He, M.Z.; Rao, X.Y.; Luo, X.J.; Wang, Y.S.; Wang, Y.R. Formulations, hemolytic and pharmacokinetic studies on Saikosaponin A and Saikosaponin D compound liposomes. Molecules, 2015, 20(4), 5889-5907.
[http://dx.doi.org/10.3390/molecules20045889] [PMID: 25854754]
[36]
Islam, M.T.; Rodríguez-Hornedo, N.; Ciotti, S.; Ackermann, C. Rheological characterization of topical carbomer gels neutralized to different pH. Pharm. Res., 2004, 217, 1192-1199.
[37]
Li, H.; Mulay, S.S. 2D simulation of the deformation of pH-sensitive hydrogel by novel strong-form meshless random differential quadrature method. Comput. Mech., 2011, 486, 729-753.
[http://dx.doi.org/10.1007/s00466-011-0622-5]
[38]
Hees, T.V.; Piel, G.; Evrard, B.; Otte, X.; Thunus, L.; Delattre, L. Application of supercritical carbon dioxide for the preparation of a Piroxicam-β-Cyclodextrin inclusion compound. Pharm. Res., 1999, 1612, 1864-1870.
[39]
Manavbasi, Y.; Süleymanoglu, E. Nucleic acid-phospholipid recognition: Fourier transform infrared spectrometric characterization of ternary phospholipid-inorganic cation-DNA complex and its relevance to chemicopharmaceutical design of nanometric liposome based gene delivery formulations. Arch. Pharm. Res., 2007, 30(8), 1027-1040.
[http://dx.doi.org/10.1007/BF02993973] [PMID: 17879758]
[40]
Cortés, M.E.; Sinisterra, R.D.; Avila-Campos, M.J.; Tortamano, N.; Rocha, R.G. The Chlorhexidine: beta; -Cyclodextrin inclusion compound: Preparation, characterization and microbiological evaluation. J. Incl. Phenom. Macro., 2001, 404, 297-302.
[http://dx.doi.org/10.1023/A:1012788432106]
[41]
Lu, Z.; Chen, R.; Fu, R.; Xiong, J.; Hu, Y. Cytotoxicity and inhibition of lipid peroxidation activity of resveratrol/cyclodextrin inclusion complexes. J. Incl. Phenom. Macro., 2012, 731-4, 313-320.
[http://dx.doi.org/10.1007/s10847-011-0058-8]
[42]
Gido, C.; Langguth, P.; Mutschler, E. Predictions of in vivo plasma concentrations from in vitro release kinetics: application to doxepin parenteral (i.m.) suspensions in lipophilic vehicles in dogs. Pharm. Res-dordr., 1994, 116, 800-808.
[43]
Zhu, L.Y.; Yan, X.Q.; Zhang, H.M.; Yao, S.J.; Jiang, L. Novel double-walled microspheres based on chitosan, sodium cellulose sulfate and sodium tripolyphosphate: Preparation, characterization and in vitro, release study. Korean J. Chem. Eng., 2015, 323, 369-372.
[http://dx.doi.org/10.1007/s11814-015-0007-0]
[44]
Ramadass, S.K.; Perumal, S.; Jabaris, S.L.; Madhan, B. Preparation and evaluation of mesalamine collagen in situ rectal gel: A novel therapeutic approach for treating ulcerative colitis. Eur. J. Pharm. Sci., 2013, 48(1-2), 104-110.
[http://dx.doi.org/10.1016/j.ejps.2012.10.015] [PMID: 23137838]
[45]
Zhang, H.; Zhang, F.M.; Yan, S.J. Preparation, in vitro release, and pharmacokinetics in rabbits of lyophilized injection of sorafenib solid lipid nanoparticles. Int. J. Nanomedicine, 2012, 7, 2901-2910.
[http://dx.doi.org/10.2147/IJN.S32415] [PMID: 22787390]
[46]
Meng, H.; Xu, Y. Pirfenidone-loaded liposomes for lung targeting: Preparation and in vitro/in vivo evaluation. Drug Des. Devel. Ther., 2015, 9, 3369-3376.
[PMID: 26185416]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy