Ionic Liquid-assisted Preparation of Two-dimensional ZnO/Fe3O4 Nano-composites and their Application in Polysubstituted Pyrroles Synthesis

Author(s): Hossein Karami, Maryam Sabbaghan*, Zinatossadat Hossaini*, Faramarz Rostami-Charati.

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 1 , 2020

Become EABM
Become Reviewer

Abstract:

Aims and Objective: Ionic liquids are a suitable medium for stabilization and preparation of catalytic systems.

Materials and Methods: The two-dimensional (2D) ZnO/Fe3O4 nanocomposites were synthesized using ionic liquid [OMIM]Br as a stabilizer and soft template. The nanocomposites were characterized via FTIR, XRD, VSM and SEM analysis.

Result: The catalytic activity of these composites was evaluated using a multicomponent reaction of primary amines, acetylacetone, and 2-bromoacetophenone.

Conclusion: 2D ZnO/Fe3O4 as a recyclable and green catalyst showed excellent catalytic performance for the preparation of poly-substituted pyrroles.

Keywords: Green chemistry, magnetic nanocatalyst, ionic liquid, nanocomposite, poly-substituted pyrroles, ionic liquid.

[1]
Song, J.; Han, B. Green chemistry: a tool for the sustainable development of the chemical industry. Natl. Sci. Rev., 2015, 2(3), 255-256.
[http://dx.doi.org/10.1093/nsr/nwu076]
[2]
Morrison, D.W.; Forbes, D.C.; Davis, J.H. Base-promoted reactions in ionic liquid solvents. The Knoevenagel and Robinson annulation reactions. Tetrahedron Lett., 2001, 42(35), 6053-6055.
[http://dx.doi.org/10.1016/S0040-4039(01)01228-X]
[3]
Zhou, Y.; Schattka, J.H.; Antonietti, M. Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol−gel nanocasting technique. Nano Lett., 2004, 4(3), 477-481.
[http://dx.doi.org/10.1021/nl025861f]
[4]
Sabbaghan, M.; Mirzaei Behbahani, B. Synthesis and optical properties of CuO nanostructures in imidazolium-based ionic liquids. Mater. Lett., 2014, 117(15), 28-30.
[http://dx.doi.org/10.1016/j.matlet.2013.11.090]
[5]
Sabbaghan, M.; Sofalgar, P. Single-phase γ-Fe2O3 nanoparticles synthesized by green ionothermal method and their magnetic characterization. Ceram. Int., 2016, 42(15), 16813-16816.
[http://dx.doi.org/10.1016/j.ceramint.2016.07.172]
[6]
Bagheri, G.H. A.; Sabbaghan, M.; Mirgani, Z. A comparative study on properties of synthesized MgO with different templates. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 1286-1291.
[http://dx.doi.org/10.1016/j.saa.2014.08.059] [PMID: 25305623]
[7]
Sahay, R.; Sundaramurthy, J.; Suresh Kumar, P.; Thavasi, V.; Mhaisalkar, S.G.; Ramakrishna, S. Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation. J. Solid State Chem., 2012, 186, 261-267.
[http://dx.doi.org/10.1016/j.jssc.2011.12.013]
[8]
Djurišić, A.B.; Chen, X.; Leung, Y.H.; Man, A. ZnO nanostructures: growth, properties and applications. J. Mater. Chem., 2012, 22(14), 6526-6535.
[http://dx.doi.org/10.1039/c2jm15548f]
[9]
Kumar, B.V.; Naik, H.S.B.; Girija, D.; Kumar, B.V. ZnO nanoparticle as catalyst for efficient green one-pot synthesis of coumarins through Knoevenagel condensation. J. Chem. Sci., 2011, 123(5), 615-621.
[http://dx.doi.org/10.1007/s12039-011-0133-0]
[10]
Tekale, S.U.; Kauthale, S.S.; Jadhav, K.M.; Pawar, R.P. Nano-ZnO catalyzed green and efficient one-pot four-component synthesis of pyranopyrazoles. J. Chem., 2013, 8, 1-8.
[http://dx.doi.org/10.1155/2013/840954]
[11]
Matloubi Moghaddam, F.; Mirjafary, Z.; Motamen, S.; Jebeli Javan, M. Efficient synthesis of highly substituted pyrroles via a multi-component reaction using ZnO nanoparticles as a nanocatalyst. Sci. Iran., 2015, 22(3), 948-953.
[12]
Fahey, J.W.; Stephenson, K.K.; Dinkova-Kostova, A.T.; Egner, P.A.; Kensler, T.W.; Talalay, P. Chlorophyll, chlorophyllin and related tetrapyrroles are significant inducers of mammalian phase 2 cytoprotective genes. Carcinogenesis, 2005, 26(7), 1247-1255.
[http://dx.doi.org/10.1093/carcin/bgi068] [PMID: 15774490]
[13]
Chen, Y.; Wang, F.; Dong, L.; Li, Z.; Chen, L.; He, X.; Gong, J.; Zhang, J.; Li, Q. Design and optimization of flexible poly pyrrole/bacterial cellulose conductive nanocomposites using response surface methodology. Polymers (Basel), 2019, 11(6), 960-975.
[http://dx.doi.org/10.3390/polym11060960]
[14]
Ambethkar, S.; Padmini, V.; Bhuvanesh, N. A one-pot sequential five-component domino reaction for the expedient synthesis of polysubstituted pyrroles. New J. Chem., 2016, 40(5), 4705-4709.
[http://dx.doi.org/10.1039/C5NJ03444B]
[15]
Mitaram Meshram, H.; Bangade, V.; Chennakesava Reddy, B.; Gudimella, S.; Thakur, P. DABCO promoted an efficient and convenient synthesis of pyrrole in aqueous medium. Int. J. Org. Chem. (Irvine), 2012, 2(2), 159-165.
[http://dx.doi.org/10.4236/ijoc.2012.22024]
[16]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Three-component access to pyrroles promoted by the CAN-silver nitrate system under high-speed vibration milling conditions: a generalization of the Hantzsch pyrrole synthesis. Chem. Commun. (Camb.), 2013, 49(6), 591-593.
[http://dx.doi.org/10.1039/C2CC38099D] [PMID: 23212352]
[17]
Reddy, G.R.; Reddy, T.R.; Joseph, S.C.; Reddy, K.S.; Meda, C.L.T.; Kandale, A.; Rambabu, D.; Krishna, G.R.; Reddy, C.M.; Parsa, K.V.L.; Kumar, K.S.; Pal, M. Yb(OTf)3 mediated MCR: a new and regioselective approach towards polysubstituted pyrroles of pharmacological interest. RSC Advances, 2012, 2(24), 9142-9150.
[http://dx.doi.org/10.1039/c2ra21343e]
[18]
Rajput, S.; Pittman, C.U., Jr; Mohan, D. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J. Colloid Interface Sci., 2016, 468, 334-346.
[http://dx.doi.org/10.1016/j.jcis.2015.12.008] [PMID: 26859095]
[19]
Sathishkumar, P.; Sweena, R.; Wu, J.J.; Anandan, S. Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution. Chem. Eng. J., 2011, 171(1), 136-140.
[http://dx.doi.org/10.1016/j.cej.2011.03.074]
[20]
Kajbafvala, A.; Shayegh, M.R.; Mazloumi, M.; Zanganeh, S.; Lak, A.; Mohajerani, M.S.; Sadrnezhaad, S.K. Nanostructure sword-like ZnO wires: Rapid synthesis and characterization through a microwave-assisted route. J. Alloys Compd., 2009, 469(1-2), 293-297.
[http://dx.doi.org/10.1016/j.jallcom.2008.01.093]
[21]
Shekofteh-Gohari, M.; Habibi-Yangjeh, A. Fabrication of novel magnetically separable visible-light-driven photocatalysts through photosensitization of Fe3O4/ZnO with CuWO4. J. Ind. Eng. Chem., 2016, 44, 174-184.
[http://dx.doi.org/10.1016/j.jiec.2016.08.028]
[22]
Hasanpour, A.; Niyaifar, M.; Asan, M.; Amighian, J. Synthesis and characterization of Fe3O4 and ZnO nanocomposites by the sol–gel method. J. Magn. Magn. Mater., 2013, 334, 41-44.
[http://dx.doi.org/10.1016/j.jmmm.2013.01.016]
[23]
Sabbaghan, M.; Shahvelayati, A.S.; Bashtani, S.E. Synthesis and optical properties of ZnO nanostructures in imidazolium-based ionic liquids. Solid State Sci., 2012, 14(8), 1191-1195.
[http://dx.doi.org/10.1016/j.solidstatesciences.2012.05.034]
[24]
Sabbaghan, M.; Shahvelayati, A.S.; Madankar, K. CuO nanostructures: optical properties and morphology control by pyridinium-based ionic liquids. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 662-668.
[http://dx.doi.org/10.1016/j.saa.2014.07.097] [PMID: 25128679]
[25]
Molnár, A.; Papp, A. Catalyst recycling-A survey of recent progress and current status. Coord. Chem. Rev., 2017, 349, 1-65.
[http://dx.doi.org/10.1016/j.ccr.2017.08.011]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 23
ISSUE: 1
Year: 2020
Page: [55 - 65]
Pages: 11
DOI: 10.2174/1386207323666200107100148
Price: $65

Article Metrics

PDF: 9