Metabolism and Pharmacokinetics of Phytochemicals in the Human Body

Author(s): Pooja Rathaur, Kaid Johar SR*.

Journal Name: Current Drug Metabolism

Volume 20 , Issue 14 , 2019


Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Phytochemicals are obtained from various plants and used for the treatment of diseases as both traditional and modern medicines. Poor bioavailability of phytochemicals is a major concern in applying phytochemicals as a therapeutic agent. It is, therefore, necessary to understand the metabolism and pharmacokinetics of phytochemicals for its implication as a therapeutic agent.

Methods: Articles on the metabolism of phytochemicals from the PubMed database. The articles were classified into the digestion, absorption, metabolism, excretion, toxicity, and bioavailability of phytochemicals and the effect of gut microbiota on the metabolism of phytochemicals.

Results: The metabolism of each phytochemical is largely dependent on the individual's digestive ability, membrane transporters, metabolizing enzymes and gut microbiota. Further, the form of the phytochemical and genetic make-up of the individual greatly influences the metabolism of phytochemicals.

Conclusion: The metabolism of phytochemicals is mostly depended on the form of phytochemicals and individualspecific variations in the metabolism of phytochemicals. Understanding the metabolism and pharmacokinetics of phytochemicals might help in applying plant-based medicines for the treatment of various diseases.

Keywords: Phytochemicals, drug metabolism, drug metabolizing enzymes, bioavailability, gut microbiota, computer models.

[1]
Sharma, H. Ayurveda: Science of life, genetics, and epigenetics. Ayu, 2016, 37(2), 87-91.
[http://dx.doi.org/10.4103/ayu.AYU_220_16] [PMID: 29200745]
[2]
Pandey, M.M.; Rastogi, S.; Rawat, A.K.S. Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid. Based Complement. Alternat. Med., 2013, 2013376327
[http://dx.doi.org/10.1155/2013/376327] [PMID: 23864888]
[3]
Ravishankar, B.; Shukla, V.J. Indian systems of medicine: a brief profile. Afr. J. Tradit. Complement. Altern. Med., 2007, 4(3), 319-337.
[http://dx.doi.org/10.4314/ajtcam.v4i3.31226] [PMID: 20161896]
[4]
Veeresham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res., 2012, 3(4), 200-201.
[http://dx.doi.org/10.4103/2231-4040.104709] [PMID: 23378939]
[5]
Karunamoorthi, K.; Jegajeevanram, K.; Vijayalakshmi, J.; Mengistie, E. Traditional medicinal plants: a source of phytotherapeutic modality in resource-constrained health care settings. J. Evid. Based Complementary Altern. Med., 2013, 18(1), 67-74.
[http://dx.doi.org/10.1177/2156587212460241]
[6]
Beyene, B.; Beyene, B.; Deribe, H. Review on application and management of medicinal plants for the livelihood of the local community. J. Resour. Dev. Manag, 2016, 22, 33-39.
[7]
Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[8]
Pan, S.Y.; Zhou, S.F.; Gao, S.H.; Yu, Z.L.; Zhang, S.F.; Tang, M.K.; Sun, J.N.; Ma, D.L.; Han, Y.F.; Fong, W.F.; Ko, K.M. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid. Based Complement. Alternat. Med., 2013, 2013627375
[http://dx.doi.org/10.1155/2013/627375] [PMID: 23634172]
[9]
Liu, R.H. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J. Nutr., 2004, 134(12)(Suppl.), 3479S-3485S.
[http://dx.doi.org/10.1093/jn/134.12.3479S] [PMID: 15570057]
[10]
Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel), 2017, 6(4), 42.
[http://dx.doi.org/10.3390/plants6040042] [PMID: 28937585]
[11]
Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Punia, S.; Mukherjee, T.K. Kaempferol- a dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J. Funct. Foods, 2017, 30, 203-219.
[http://dx.doi.org/10.1016/j.jff.2017.01.022]
[12]
Kashyap, D.; Mittal, S.; Sak, K.; Singhal, P.; Tuli, H.S. Molecular mechanisms of action of quercetin in cancer: recent advances. Tumour Biol., 2016, 37(10), 12927-12939.
[http://dx.doi.org/10.1007/s13277-016-5184-x] [PMID: 27448306]
[13]
Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., 2004, 59(3), 113-122.
[http://dx.doi.org/10.1007/s11130-004-0049-7] [PMID: 15678717]
[14]
Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res., 2004, 24(10), 851-874.
[http://dx.doi.org/10.1016/j.nutres.2004.07.005]
[15]
Lee, H.N.; Shin, S.A.; Choo, G.S.; Kim, H.J.; Park, Y.S.; Kim, B.S.; Kim, S.K.; Cho, S.D.; Nam, J.S.; Choi, C.S.; Che, J.H.; Park, B.K.; Jung, J.Y. Anti-inflammatory effect of quercetin and galangin in LPS-stimulated RAW264.7 macrophages and DNCB-induced atopic dermatitis animal models. Int. J. Mol. Med., 2018, 41(2), 888-898.
[PMID: 29207037]
[16]
Kleemann, R.; Verschuren, L.; Morrison, M.; Zadelaar, S.; van Erk, M.J.; Wielinga, P.Y.; Kooistra, T. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis, 2011, 218(1), 44-52.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.04.023] [PMID: 21601209]
[17]
Khan, A.; Ali, T.; Rehman, S.U.; Khan, M.S.; Alam, S.I.; Ikram, M.; Muhammad, T.; Saeed, K.; Badshah, H.; Kim, M.O. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front. Pharmacol., 2018, 9, 1383.
[http://dx.doi.org/10.3389/fphar.2018.01383] [PMID: 30618732]
[18]
Barreca, D.; Bellocco, E.; D’Onofrio, G.; Nabavi, S.F.; Daglia, M.; Rastrelli, L.; Nabavi, S.M. Neuroprotective effects of quercetin: from chemistry to medicine. CNS Neurol. Disord. Drug Targets, 2016, 15(8), 964-975.
[http://dx.doi.org/10.2174/1871527315666160813175406] [PMID: 27528470]
[19]
Shukla, S.; Gupta, S. Apigenin: a promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-978.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[20]
Romanová, D.; Vachálková, A.; Cipák, L.; Ovesná, Z.; Rauko, P. Study of antioxidant effect of apigenin, luteolin and quercetin by DNA protective method. Neoplasma, 2001, 48(2), 104-107.
[PMID: 11478688]
[21]
Nayaka, H.B.; Londonkar, R.L.; Umesh, M.K.; Tukappa, A. Antibacterial attributes of apigenin, isolated from Portulaca oleracea L. Int. J. Bacteriol., 2014, 2014175851
[http://dx.doi.org/10.1155/2014/175851] [PMID: 26904730]
[22]
Sadraei, H.; Asghari, G.; Khanabadi, M.; Minaiyan, M. Anti-inflammatory effect of apigenin and hydroalcoholic extract of Dracocephalum kotschyi on acetic acid-induced colitis in rats. Res. Pharm. Sci., 2017, 12(4), 322-329.
[http://dx.doi.org/10.4103/1735-5362.212050] [PMID: 28855944]
[23]
Lee, J.H.; Zhou, H.Y.; Cho, S.Y.; Kim, Y.S.; Lee, Y.S.; Jeong, C.S. Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Arch. Pharm. Res., 2007, 30(10), 1318-1327.
[http://dx.doi.org/10.1007/BF02980273] [PMID: 18038911]
[24]
Barlas, N.; Özer, S.; Karabulut, G. The estrogenic effects of apigenin, phloretin and myricetin based on uterotrophic assay in immature Wistar albino rats. Toxicol. Lett., 2014, 226(1), 35-42.
[http://dx.doi.org/10.1016/j.toxlet.2014.01.030] [PMID: 24487097]
[25]
Lung, H.L.; Ip, W.K.; Wong, C.K.; Mak, N.K.; Chen, Z.Y.; Leung, K.N. Anti-proliferative and differentiation-inducing activities of the green tea catechin epigallocatechin-3-gallate (EGCG) on the human eosinophilic leukemia EoL-1 cell line. Life Sci., 2002, 72(3), 257-268.
[http://dx.doi.org/10.1016/S0024-3205(02)02236-1] [PMID: 12427485]
[26]
Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant properties of catechins: comparison with other antioxidants. Food Chem., 2018, 241, 480-492.
[http://dx.doi.org/10.1016/j.foodchem.2017.08.117] [PMID: 28958556]
[27]
Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Catechin treatment ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Dose Response, 2017, 15(1)1559325817691158
[http://dx.doi.org/10.1177/1559325817691158] [PMID: 28228702]
[28]
Wolfram, S. Effects of green tea and EGCG on cardiovascular and metabolic health. J. Am. Coll. Nutr., 2007, 26(4), 373S-388S.
[http://dx.doi.org/10.1080/07315724.2007.10719626] [PMID: 17906191]
[29]
Yu, Y.; Deng, Y.; Lu, B.M.; Liu, Y.X.; Li, J.; Bao, J.K. Green tea catechins: a fresh flavor to anticancer therapy. Apoptosis, 2014, 19(1), 1-18.
[http://dx.doi.org/10.1007/s10495-013-0908-5] [PMID: 24081390]
[30]
Cavia-Saiz, M.; Busto, M.D.; Pilar-Izquierdo, M.C.; Ortega, N.; Perez-Mateos, M.; Muñiz, P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J. Sci. Food Agric., 2010, 90(7), 1238-1244.
[http://dx.doi.org/10.1002/jsfa.3959] [PMID: 20394007]
[31]
Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother. Res., 2015, 29(3), 323-331.
[http://dx.doi.org/10.1002/ptr.5256] [PMID: 25394264]
[32]
Yamamoto, T.; Yoshimura, M.; Yamaguchi, F.; Kouchi, T.; Tsuji, R.; Saito, M.; Obata, A.; Kikuchi, M. Anti-allergic activity of naringenin chalcone from a tomato skin extract. Biosci. Biotechnol. Biochem., 2004, 68(8), 1706-1711.
[http://dx.doi.org/10.1271/bbb.68.1706] [PMID: 15322354]
[33]
Shirzad, M.; Beshkar, P.; Heidarian, E. The effects of hesperetin on apoptosis induction andinhibition of cell proliferation in the prostate cancer PC3 cells. J. Herbmed Pharmacol., 2015, 4, 121-124.
[34]
Ahmadi, A.; Hassandarvish, P.; Lani, R.; Yadollahi, P.; Jokar, A.; Bakar, S.A.; Zandi, K. Inhibition of chikungunya virus replication by hesperetin and naringenin. RSC Advances, 2016, 6(73), 69421-69430.
[http://dx.doi.org/10.1039/C6RA16640G]
[35]
Shim, S.H.; Kim, J.M.; Choi, C.Y.; Kim, C.Y.; Park, K.H. Ginkgo biloba extract and bilberry anthocyanins improve visual function in patients with normal tension glaucoma. J. Med. Food, 2012, 15(9), 818-823.
[http://dx.doi.org/10.1089/jmf.2012.2241] [PMID: 22870951]
[36]
Miguel, M.G. Anthocyanins: antioxidant and/or anti-inflammatory activities. J. Appl. Pharm. Sci., 2011, 1(6), 7-15.
[37]
Verdrengh, M.; Jonsson, I.M.; Holmdahl, R.; Tarkowski, A. Genistein as an anti-inflammatory agent. Inflamm. Res., 2003, 52(8), 341-346.
[http://dx.doi.org/10.1007/s00011-003-1182-8] [PMID: 14504672]
[38]
Lee, J.Y.; Kim, H.S.; Song, Y.S. Genistein as a potential anticancer agent against ovarian cancer. J. Tradit. Complement. Med., 2012, 2(2), 96-104.
[http://dx.doi.org/10.1016/S2225-4110(16)30082-7] [PMID: 24716121]
[39]
Spilioti, E.; Jaakkola, M.; Tolonen, T.; Lipponen, M.; Virtanen, V.; Chinou, I.; Kassi, E.; Karabournioti, S.; Moutsatsou, P. Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece. PLoS One, 2014, 9(4)e94860
[http://dx.doi.org/10.1371/journal.pone.0094860] [PMID: 24752205]
[40]
Almeida, I.V.; Cavalcante, F.M.; Vicentini, V.E. Different responses of vanillic acid, a phenolic compound, in HTC cells: cytotoxicity, antiproliferative activity, and protection from DNA-induced damage. Genet. Mol. Res., 2016, 15(4), 15.
[http://dx.doi.org/10.4238/gmr15049388] [PMID: 28002613]
[41]
Tai, A.; Sawano, T.; Ito, H. Antioxidative properties of vanillic acid esters in multiple antioxidant assays. Biosci. Biotechnol. Biochem., 2012, 76(2), 314-318.
[http://dx.doi.org/10.1271/bbb.110700] [PMID: 22313772]
[42]
Zhu, H.; Liang, Q.H.; Xiong, X.G.; Chen, J.; Wu, D.; Wang, Y.; Yang, B.; Zhang, Y.; Zhang, Y.; Huang, X. Anti-inflammatory effects of the bioactive compound ferulic acid contained in oldenlandia diffusa on collagen-induced arthritis in rats. Evid. Based Complement. Alternat. Med., 2014, 2014573801
[http://dx.doi.org/10.1155/2014/573801] [PMID: 24883069]
[43]
Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol., 2018, 31(6), 332-336.
[http://dx.doi.org/10.1159/000491755] [PMID: 30235459]
[44]
Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem., 2002, 50(7), 2161-2168.
[http://dx.doi.org/10.1021/jf011348w] [PMID: 11902973]
[45]
Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer molecular mechanisms of resveratrol. Front. Nutr., 2016, 3, 8.
[http://dx.doi.org/10.3389/fnut.2016.00008] [PMID: 27148534]
[46]
Udenigwe, C.C.; Ramprasath, V.R.; Aluko, R.E.; Jones, P.J. Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr. Rev., 2008, 66(8), 445-454.
[http://dx.doi.org/10.1111/j.1753-4887.2008.00076.x] [PMID: 18667005]
[47]
de Sá Coutinho, D.; Pacheco, M.T.; Frozza, R.L.; Bernardi, A. Anti-inflammatory effects of resveratrol: mechanistic insights. Int. J. Mol. Sci., 2018, 19(6), 1812.
[http://dx.doi.org/10.3390/ijms19061812] [PMID: 29925765]
[48]
Das, S.; Das, D.K. Anti-inflammatory responses of resveratrol. Inflamm. Allergy Drug Targets, 2007, 6(3), 168-173.
[http://dx.doi.org/10.2174/187152807781696464] [PMID: 17897053]
[49]
Gerszon, J.; Rodacka, A.; Puchała, M. Antioxidant properties of resveratrol and its protective effects in neurodegenerative diseases. Adv. Cell Biol., 2014, 4(2), 97-117.
[http://dx.doi.org/10.2478/acb-2014-0006]
[50]
Prasad, K. Antioxidant activity of secoisolariciresinol diglucoside-derived metabolites, secoisolariciresinol, enterodiol, and enterolactone. Int. J. Angiol., 2000, 9(4), 220-225.
[http://dx.doi.org/10.1007/BF01623898] [PMID: 11062311]
[51]
Rajesha, J.; Rao, A.R.; Madhusudhan, B.; Karunakumar, M. Antibacterial properties of secoisolariciresinol diglucoside isolated from Indian flaxseed cultivars. Curr. Trends Biotechnol. Pharm., 2010, 4(1), 551-560.
[52]
Céspedes, C.L.; Avila, J.G.; García, A.M.; Becerra, J.; Flores, C.; Aqueveque, P.; Bittner, M.; Hoeneisen, M.; Martinez, M.; Silva, M. Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Z. Natforsch. C J. Biosci., 2006, 61(1-2), 35-43.
[http://dx.doi.org/10.1515/znc-2006-1-207] [PMID: 16610214]
[53]
Yaping, Z.; Suping, Q.; Wenli, Y.; Zheng, X.; Hong, S.; Side, Y.; Dapu, W. Antioxidant activity of lycopene extracted from tomato paste towards trichloromethyl peroxyl radical CCl3O2·. Food Chem., 2002, 77(2), 209-212.
[http://dx.doi.org/10.1016/S0308-8146(01)00339-9]
[54]
Yamamoto, J.; Ohno, H.; Hyodo, K.; Onishi, M.; Giddings, J.C. The antithrombotic activity of mini-type tomatoes is dependent on the particular variety and the stage of harvest. Lycopene content does not contribute to antithrombotic activity. Health, 2013, 5(4), 681.
[http://dx.doi.org/10.4236/health.2013.54090]
[55]
Kayastha, F.; Johar, K.; Gajjar, D.; Arora, A.; Madhu, H.; Ganatra, D.; Vasavada, A. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells. J. Biosci., 2015, 40(2), 313-324.
[http://dx.doi.org/10.1007/s12038-015-9513-9] [PMID: 25963259]
[56]
Kayastha, F.; Madhu, H.; Vasavada, A.; Johar, K. Andrographolide reduces proliferation and migration of lens epithelial cells by modulating PI3K/Akt pathway. Exp. Eye Res., 2014, 128, 23-26.
[http://dx.doi.org/10.1016/j.exer.2014.09.002] [PMID: 25220506]
[57]
Ono, M.; Takeshima, M.; Nakano, S. Mechanism of the anticancer effect of lycopene (tetraterpenoids). Enzymes, 2015, 37, 139-166.
[http://dx.doi.org/10.1016/bs.enz.2015.06.002] [PMID: 26298459]
[58]
Murphy, G.S.; Szokol, J.W.; Marymont, J.H.; Avram, M.J.; Vender, J.S. The effects of morphine and fentanyl on the inflammatory response to cardiopulmonary bypass in patients undergoing elective coronary artery bypass graft surgery. Anesth. Analg., 2007, 104(6), 1334-1342.
[http://dx.doi.org/10.1213/01.ane.0000264108.47280.f5] [PMID: 17513621]
[59]
Borges, R.S.; Vale, J.K.; Pereira, G.A.; Veiga, A.A.; Junior, J.B.; da Silva, A.B. An antioxidant mechanism of morphine and related derivatives. Med. Chem. Res., 2016, 25(5), 852-857.
[http://dx.doi.org/10.1007/s00044-016-1532-z]
[60]
Yahia, M.; Benhouda, A.; Haba, H. New biological anticancer activities of atropine isolated from Algerian hyoscyamus albus’s leaves. Pharmacologyonline, 2018, 3, 286-296.
[61]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[62]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5e47
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[63]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. Sci. World J., 2013, 2013162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[64]
Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci., 2007, 30(18), 3268-3295.
[http://dx.doi.org/10.1002/jssc.200700261] [PMID: 18069740]
[65]
Saibabu, V.; Fatima, Z.; Khan, L.A.; Hameed, S. Therapeutic potential of dietary phenolic acids. Adv. Pharmacol. Sci., 2015, 2015823539
[http://dx.doi.org/10.1155/2015/823539] [PMID: 26442119]
[66]
Crozier, A.; Jaganath, I.B.; Clifford, M.N. Plant secondary metabolites: Occurrence, structure and role in the human diet; Blackwell Publishing: Oxford, 2006.
[http://dx.doi.org/10.1002/9780470988558]
[67]
Achilonu, M.C.; Umesiobi, D.O. Bioactive phytochemicals: bioactivity, sources, preparations, and/or modifications via silver tetrafluoroborate mediation. J. Chem., 2015, 2015629085
[68]
Priya, P.; Yadav, A.; Chand, J.; Yadav, G. Terzyme: a tool for identification and analysis of the plant terpenome. Plant Methods, 2018, 14(1), 4.
[http://dx.doi.org/10.1186/s13007-017-0269-0] [PMID: 29339971]
[69]
Perveen, S.; Al-Taweel, A. Introductory Chapter: Terpenes and Terpenoids.In: Terpenes and Terpenoids; Perveen, S., Ed.; IntechOpen: London, 2018, pp. 1-12.
[70]
Naoi, K.; Kawase, K.I.; Inoue, Y. A New energy storage material: organosulfur compounds based on multiple sulfur‐sulfur bonds. J. Electrochem. Soc., 1997, 144(6), L170-L172.
[http://dx.doi.org/10.1149/1.1837714]
[71]
Mezzomo, N.; Ferreira, S.R. Carotenoids functionality, sources, and processing by supercritical technology: a review. J. Chem., 2016, 20163164312
[http://dx.doi.org/10.1155/2016/3164312]
[72]
Epriliati, I.; Ginjom, I.R. Bioavailability of phytochemicals.In: Phytochemicals-A Global Perspective of their Role in Nutrition and Health; Rao, V., Ed.; IntechOpen: London, 2008, pp. 401-428.
[73]
Sousa, T.; Paterson, R.; Moore, V.; Carlsson, A.; Abrahamsson, B.; Basit, A.W. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int. J. Pharm., 2008, 363(1-2), 1-25.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.009] [PMID: 18682282]
[74]
Day, A.J.; DuPont, M.S.; Ridley, S.; Rhodes, M.; Rhodes, M.J.; Morgan, M.R.; Williamson, G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett., 1998, 436(1), 71-75.
[http://dx.doi.org/10.1016/S0014-5793(98)01101-6] [PMID: 9771896]
[75]
Williamson, G.; Kay, C.D.; Crozier, A. The bioavailability, transport, and bioactivity of dietary flavonoids: a review from a historical perspective. Compr. Rev. Food Sci. Food Saf., 2018, 17(5), 1054-1112.
[http://dx.doi.org/10.1111/1541-4337.12351]
[76]
Németh, K.; Plumb, G.W.; Berrin, J.G.; Juge, N.; Jacob, R.; Naim, H.Y.; Williamson, G.; Swallow, D.M.; Kroon, P.A. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr., 2003, 42(1), 29-42.
[http://dx.doi.org/10.1007/s00394-003-0397-3] [PMID: 12594539]
[77]
Trapero, A.; Llebaria, A. Glucocerebrosidase inhibitors for the treatment of Gaucher disease. Future Med. Chem., 2013, 5(5), 573-590.
[http://dx.doi.org/10.4155/fmc.13.14] [PMID: 23573974]
[78]
Stirnemann, J.; Belmatoug, N.; Camou, F.; Serratrice, C.; Froissart, R.; Caillaud, C.; Levade, T.; Astudillo, L.; Serratrice, J.; Brassier, A.; Rose, C.; Billette de Villemeur, T.; Berger, M.G. A review of gaucher disease pathophysiology, clinical presentation and treatments. Int. J. Mol. Sci., 2017, 18(2), 441.
[http://dx.doi.org/10.3390/ijms18020441] [PMID: 28218669]
[79]
Hermida, C.; Corrales, G.; Martínez-Costa, O.H.; Fernández-Mayoralas, A.; Aragón, J.J. Noninvasive evaluation of intestinal lactase with 4-galactosylxylose: comparison with 3- and 2-galactosylxylose and optimization of the method in rats. Clin. Chem., 2006, 52(2), 270-277.
[http://dx.doi.org/10.1373/clinchem.2005.058446] [PMID: 16384892]
[80]
Leese, H.J.; Semenza, G. On the identity between the small intestinal enzymes phlorizin hydrolase and glycosylceramidase. J. Biol. Chem., 1973, 248(23), 8170-8173.
[PMID: 4752949]
[81]
Singh, G.; Verma, A.K.; Kumar, V. Catalytic properties, functional attributes and industrial applications of β-glucosidases. Biotech, 2016, 6(1), 3.
[82]
Viskupičová, J.; Ondrejovič, M.; Šturdík, E. Bioavailability and metabolism of flavonoids. J. Food Nutr. Res., 2008, 47(4), 151-162.
[83]
Li, Y.; Lu, J.; Paxton, J.W. The role of ABC and SLC transporters in the pharmacokinetics of dietary and herbal phytochemicals and their interactions with xenobiotics. Curr. Drug Metab., 2012, 13(5), 624-639.
[http://dx.doi.org/10.2174/1389200211209050624] [PMID: 22475331]
[84]
Sayem, A.S.M.; Arya, A.; Karimian, H.; Krishnasamy, N.; Ashok Hasamnis, A.; Hossain, C.F. Action of phytochemicals on insulin signaling pathways accelerating glucose transporter (GLUT4) protein translocation. Molecules, 2018, 23(2), 258.
[http://dx.doi.org/10.3390/molecules23020258] [PMID: 29382104]
[85]
Kawabata, K.; Yoshioka, Y.; Terao, J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules, 2019, 24(2), 370.
[http://dx.doi.org/10.3390/molecules24020370] [PMID: 30669635]
[86]
Cires, M.J.; Wong, X.; Carrasco-Pozo, C.; Gotteland, M. The gastrointestinal tract as a key target organ for the health-promoting effects of dietary proanthocyanidins. Front. Nutr., 2017, 3, 57.
[http://dx.doi.org/10.3389/fnut.2016.00057] [PMID: 28097121]
[87]
Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed Res. Int., 2015, 2015905215
[http://dx.doi.org/10.1155/2015/905215] [PMID: 25802870]
[88]
Espín, J.C.; González-Sarrías, A.; Tomás-Barberán, F.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol., 2017, 139, 82-93.
[http://dx.doi.org/10.1016/j.bcp.2017.04.033] [PMID: 28483461]
[89]
König, J.; Müller, F.; Fromm, M.F. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol. Rev., 2013, 65(3), 944-966.
[http://dx.doi.org/10.1124/pr.113.007518] [PMID: 23686349]
[90]
Movileanu, L.; Neagoe, I.; Flonta, M.L. Interaction of the antioxidant flavonoid quercetin with planar lipid bilayers. Int. J. Pharm., 2000, 205(1-2), 135-146.
[http://dx.doi.org/10.1016/S0378-5173(00)00503-2] [PMID: 11000550]
[91]
Walgren, R.A.; Lin, J.T.; Kinne, R.K.H.; Walle, T. Cellular uptake of dietary flavonoid quercetin 4′-β-glucoside by sodium-dependent glucose transporter SGLT1. J. Pharmacol. Exp. Ther., 2000, 294(3), 837-843.
[PMID: 10945831]
[92]
Patton, J.S.; Fishburn, C.S.; Weers, J.G. The lungs as a portal of entry for systemic drug delivery. Proc. Am. Thorac. Soc., 2004, 1(4), 338-344.
[http://dx.doi.org/10.1513/pats.200409-049TA] [PMID: 16113455]
[93]
Selby-Pham, S.N.B.; Miller, R.B.; Howell, K.; Dunshea, F.; Bennett, L.E. Physicochemical properties of dietary phytochemicals can predict their passive absorption in the human small intestine. Sci. Rep., 2017, 7(1), 1931.
[http://dx.doi.org/10.1038/s41598-017-01888-w] [PMID: 28512322]
[94]
Sathya, V.; Gopalakrishnan, V.K. In silico admet prediction of phytochemicals in Camellia sinensis and Citrus sinensis. Int. J. Pharm. Sci. Res., 2013, 4(4), 1635-1637.
[95]
Sjögren, E.; Thörn, H.; Tannergren, C. In silico modeling of gastrointestinal drug absorption: predictive performance of three physiologically based absorption models. Mol. Pharm., 2016, 13(6), 1763-1778.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00861] [PMID: 26926043]
[96]
Huang, W.; Lee, S.L.; Yu, L.X. Mechanistic approaches to predicting oral drug absorption. AAPS J., 2009, 11(2), 217-224.
[http://dx.doi.org/10.1208/s12248-009-9098-z] [PMID: 19381841]
[97]
Li, C.; Yan, K. DeepSVM-fold: Protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks. Brief. Bioinform.,
[98]
Liu, B.; Zhu, Y. ProtDec-LTR3.0: protein remote homology detection by incorporating profile-based features into learning to rank. IEEE Access, 2019, 7, 102499-102507.
[http://dx.doi.org/10.1109/ACCESS.2019.2929363]
[99]
Liu, B.; Li, S. ProtDet-CCH: Protein remote homology detection by combining long short-term memory and ranking methods. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2019, 16(4), 1203-1210.
[http://dx.doi.org/10.1109/TCBB.2018.2789880] [PMID: 29993950]
[100]
Kumar, A.; Bora, U. In silico inhibition studies of jun-fos-dna complex formation by curcumin derivatives. Int. J. Med. Chem., 2012, 2012316972
[http://dx.doi.org/10.1155/2012/316972] [PMID: 25374685]
[101]
Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K.C. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res., 2015, 43(W1)W65-71
[http://dx.doi.org/10.1093/nar/gkv458] [PMID: 25958395]
[102]
Liu, B. BioSeq-Analysis: a platform for DNA, RNA, and protein sequence analysis based on machine learning approaches. Brief. Bioinform., 2017, 20(4), 1280-1294.
[PMID: 29272359]
[103]
Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: chemistry, bioavailability and effects on health. Nat. Prod. Rep., 2009, 26(8), 1001-1043.
[http://dx.doi.org/10.1039/b802662a] [PMID: 19636448]
[104]
Liu, Z.; Hu, M. Natural polyphenol disposition via coupled metabolic pathways. Expert Opin. Drug Metab. Toxicol., 2007, 3(3), 389-406.
[http://dx.doi.org/10.1517/17425255.3.3.389] [PMID: 17539746]
[105]
Rowland, A.; Miners, J.O.; Mackenzie, P.I. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int. J. Biochem. Cell Biol., 2013, 45(6), 1121-1132.
[http://dx.doi.org/10.1016/j.biocel.2013.02.019] [PMID: 23500526]
[106]
Lehmann, L.; Jiang, L.; Wagner, J. Soy isoflavones decrease the catechol-O-methyltransferase-mediated inactivation of 4-hydroxyestradiol in cultured MCF-7 cells. Carcinogenesis, 2008, 29(2), 363-370.
[http://dx.doi.org/10.1093/carcin/bgm235] [PMID: 18192686]
[107]
Li, C.; Meng, X.; Winnik, B.; Lee, M.J.; Lu, H.; Sheng, S.; Buckley, B.; Yang, C.S. Analysis of urinary metabolites of tea catechins by liquid chromatography/electrospray ionization mass spectrometry. Chem. Res. Toxicol., 2001, 14(6), 702-707.
[http://dx.doi.org/10.1021/tx0002536] [PMID: 11409941]
[108]
García-Villalba, R.; Tomás-Barberán, F.A.; Fança-Berthon, P.; Roller, M.; Zafrilla, P.; Issaly, N.; García-Conesa, M.T. Targeted and untargeted metabolomics to explore the bioavailability of the secoiridoids from a seed/fruit extract (Fraxinus angustifolia Vahl) in human healthy volunteers: a preliminary study. Molecules, 2015, 20(12), 22202-22219.
[http://dx.doi.org/10.3390/molecules201219845] [PMID: 26690403]
[109]
Natsume, M.; Osakabe, N.; Oyama, M.; Sasaki, M.; Baba, S.; Nakamura, Y.; Osawa, T.; Terao, J. Structures of (-)-epicatechin glucuronide identified from plasma and urine after oral ingestion of (-)-epicatechin: differences between human and rat. Free Radic. Biol. Med., 2003, 34(7), 840-849.
[http://dx.doi.org/10.1016/S0891-5849(02)01434-X] [PMID: 12654472]
[110]
Kitanaka, N.; Kitanaka, J.; Hall, F.S.; Tatsuta, T.; Morita, Y.; Takemura, M.; Wang, X.B.; Uhl, G.R. Alterations in the levels of heterotrimeric G protein subunits induced by psychostimulants, opiates, barbiturates, and ethanol: implications for drug dependence, tolerance, and withdrawal. Synapse, 2008, 62(9), 689-699.
[http://dx.doi.org/10.1002/syn.20543] [PMID: 18566973]
[111]
Stevenson, D.E.; Cooney, J.M.; Jensen, D.J.; Wibisono, R.; Adaim, A.; Skinner, M.A.; Zhang, J. Comparison of enzymically glucuronidated flavonoids with flavonoid aglycones in an in vitro cellular model of oxidative stress protection. In Vitro Cell. Dev. Biol. Anim., 2008, 44(3-4), 73-80.
[http://dx.doi.org/10.1007/s11626-007-9072-y] [PMID: 18219540]
[112]
Guo, X.D.; Zhang, D.Y.; Gao, X.J.; Parry, J.; Liu, K.; Liu, B.L.; Wang, M. Quercetin and quercetin-3-O-glucuronide are equally effective in ameliorating endothelial insulin resistance through inhibition of reactive oxygen species-associated inflammation. Mol. Nutr. Food Res., 2013, 57(6), 1037-1045.
[http://dx.doi.org/10.1002/mnfr.201200569] [PMID: 23504962]
[113]
Guan, Y.S.; He, Q. Plants consumption and liver health. Evid. Based Complement. Alternat. Med., 2015, 2015824185
[http://dx.doi.org/10.1155/2015/824185] [PMID: 26221179]
[114]
Spencer, J.P. Metabolism of tea flavonoids in the gastrointestinal tract. J. Nutr., 2003, 133(10), 3255S-3261S.
[http://dx.doi.org/10.1093/jn/133.10.3255S] [PMID: 14519823]
[115]
Guo, Y.; Li, F.; Ma, X.; Cheng, X.; Zhou, H.; Klaassen, C.D. CYP2D plays a major role in berberine metabolism in liver of mice and humans. Xenobiotica, 2011, 41(11), 996-1005.
[http://dx.doi.org/10.3109/00498254.2011.597456] [PMID: 21787170]
[116]
Erlund, I.; Kosonen, T.; Alfthan, G.; Mäenpää, J.; Perttunen, K.; Kenraali, J.; Parantainen, J.; Aro, A. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur. J. Clin. Pharmacol., 2000, 56(8), 545-553.
[http://dx.doi.org/10.1007/s002280000197] [PMID: 11151743]
[117]
van der Woude, H.; Boersma, M.G.; Vervoort, J.; Rietjens, I.M. Identification of 14 quercetin phase II mono- and mixed conjugates and their formation by rat and human phase II in vitro model systems. Chem. Res. Toxicol., 2004, 17(11), 1520-1530.
[http://dx.doi.org/10.1021/tx049826v] [PMID: 15540950]
[118]
Hong, Y.J.; Mitchell, A.E. Identification of glutathione-related quercetin metabolites in humans. Chem. Res. Toxicol., 2006, 19(11), 1525-1532.
[http://dx.doi.org/10.1021/tx0601758] [PMID: 17112241]
[119]
Murota, K.; Nakamura, Y.; Uehara, M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci. Biotechnol. Biochem., 2018, 82(4), 600-610.
[http://dx.doi.org/10.1080/09168451.2018.1444467] [PMID: 29504827]
[120]
O’Leary, K.A.; Day, A.J.; Needs, P.W.; Mellon, F.A.; O’Brien, N.M.; Williamson, G. Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem. Pharmacol., 2003, 65(3), 479-491.
[http://dx.doi.org/10.1016/S0006-2952(02)01510-1] [PMID: 12527341]
[121]
Xiao, J.; Högger, P. Metabolism of dietary flavonoids in liver microsomes. Curr. Drug Metab., 2013, 14(4), 381-391.
[http://dx.doi.org/10.2174/1389200211314040003] [PMID: 23330926]
[122]
Wind, N.S.; Holen, I. Multidrug resistance in breast cancer: from in vitro models to clinical studies. Int. J. Breast Cancer, 2011, 2011967419
[http://dx.doi.org/10.4061/2011/967419] [PMID: 22332018]
[123]
Kalliokoski, A.; Niemi, M. Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol., 2009, 158(3), 693-705.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00430.x] [PMID: 19785645]
[124]
Köck, K.; Brouwer, K.L. A perspective on efflux transport proteins in the liver. Clin. Pharmacol. Ther., 2012, 92(5), 599-612.
[http://dx.doi.org/10.1038/clpt.2012.79] [PMID: 22948894]
[125]
Hodges, R.E.; Minich, D.M. Modulation of metabolic detoxification pathways using foods and food-derived components: a scientific review with clinical application. J. Nutr. Metab., 2015, 2015760689
[http://dx.doi.org/10.1155/2015/760689] [PMID: 26167297]
[126]
O’Dwyer, P.J.; Catalano, R.B. Uridine diphosphate glucuronosyltransferase (UGT) 1A1 and irinotecan: practical pharmacogenomics arrives in cancer therapy. J. Clin. Oncol., 2006, 24(28), 4534-4538.
[http://dx.doi.org/10.1200/JCO.2006.07.3031] [PMID: 17008691]
[127]
Chen, C.; Wu, Z.T.; Ma, L.L.; Ni, X.; Lin, Y.F.; Wang, L.; Chen, K.P.; Huang, C.G.; Pan, G. Organic anion-transporting polypeptides contribute to the hepatic uptake of berberine. Xenobiotica, 2015, 45(12), 1138-1146.
[http://dx.doi.org/10.3109/00498254.2015.1042537] [PMID: 26068524]
[128]
Dawson, P.A.; Karpen, S.J. Intestinal transport and metabolism of bile acids. J. Lipid Res., 2015, 56(6), 1085-1099.
[http://dx.doi.org/10.1194/jlr.R054114] [PMID: 25210150]
[129]
Gundala, S.R.; Mukkavilli, R.; Yang, C.; Yadav, P.; Tandon, V.; Vangala, S.; Prakash, S.; Aneja, R. Enterohepatic recirculation of bioactive ginger phytochemicals is associated with enhanced tumor growth-inhibitory activity of ginger extract. Carcinogenesis, 2014, 35(6), 1320-1329.
[http://dx.doi.org/10.1093/carcin/bgu011] [PMID: 24431413]
[130]
Roberts, M.S.; Magnusson, B.M.; Burczynski, F.J.; Weiss, M. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin. Pharmacokinet., 2002, 41(10), 751-790.
[http://dx.doi.org/10.2165/00003088-200241100-00005] [PMID: 12162761]
[131]
Fu, Z.; Di, Y.; Gao, L.; Wu, J.; Shi, M.; Zheng, F. The drug metabolism and pharmacokinetics investigation about baicalin effect and baicalein on mice U14 cervical cancer. J. Spectro; , 2015, 2015, . Article ID 632062.
[132]
Naumovski, N.; Blades, B.L.; Roach, P.D. Food inhibits the oral bioavailability of the major green tea antioxidant epigallocatechin gallate in humans. Antioxidants, 2015, 4(2), 373-393.
[http://dx.doi.org/10.3390/antiox4020373] [PMID: 26783711]
[133]
Thilakarathna, S.H.; Rupasinghe, H.P. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 2013, 5(9), 3367-3387.
[http://dx.doi.org/10.3390/nu5093367] [PMID: 23989753]
[134]
Carbonaro, M.; Grant, G.; Pusztai, A. Evaluation of polyphenol bioavailability in rat small intestine. Eur. J. Nutr., 2001, 40(2), 84-90.
[http://dx.doi.org/10.1007/s003940170020] [PMID: 11518204]
[135]
Sesink, A.L.; Arts, I.C.; de Boer, V.C.; Breedveld, P.; Schellens, J.H.; Hollman, P.C.; Russel, F.G. Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides. Mol. Pharmacol., 2005, 67(6), 1999-2006.
[http://dx.doi.org/10.1124/mol.104.009753] [PMID: 15749994]
[136]
Walle, T.; Otake, Y.; Brubaker, J.A.; Walle, U.K.; Halushka, P.V. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br. J. Clin. Pharmacol., 2001, 51(2), 143-146.
[http://dx.doi.org/10.1111/j.1365-2125.2001.01317.x] [PMID: 11259985]
[137]
Matsson, P.; Yee, S.W.; Markova, S.; Morrissey, K.; Jenkins, G.; Xuan, J.; Jorgenson, E.; Kroetz, D.L.; Giacomini, K.M. Discovery of regulatory elements in human ATP-binding cassette transporters through expression quantitative trait mapping. Pharmacogenomics J., 2012, 12(3), 214-226.
[http://dx.doi.org/10.1038/tpj.2011.8] [PMID: 21383772]
[138]
Liu, R.H. Dietary bioactive compounds and their health implications. J. Food Sci., 2013, 78(Suppl. 1), A18-A25.
[http://dx.doi.org/10.1111/1750-3841.12101] [PMID: 23789932]
[139]
Chandra, S.; Sah, K.; Bagewadi, A.; Keluskar, V.; Shetty, A.; Ammanagi, R.; Naik, Z. Additive and synergistic effect of phytochemicals in prevention of oral cancer. Eur. J. Gen. Dent., 2012, 1(3), 142.
[http://dx.doi.org/10.4103/2278-9626.105354]
[140]
Moran, N.E.; Clinton, S.K.; Erdman, J.W. Jr Differential bioavailability, clearance, and tissue distribution of the acyclic tomato carotenoids lycopene and phytoene in mongolian gerbils. J. Nutr., 2013, 143(12), 1920-1926.
[http://dx.doi.org/10.3945/jn.113.181461] [PMID: 24108134]
[141]
Upadhyay, R.K. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int., 2014, 2014869269
[http://dx.doi.org/10.1155/2014/869269] [PMID: 25136634]
[142]
Cheng, C.Y.; Mruk, D.D. The blood-testis barrier and its implications for male contraception. Pharmacol. Rev., 2012, 64(1), 16-64.
[http://dx.doi.org/10.1124/pr.110.002790] [PMID: 22039149]
[143]
Evseenko, D.A.; Paxton, J.W.; Keelan, J.A. ABC drug transporter expression and functional activity in trophoblast-like cell lines and differentiating primary trophoblast. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, 290(5), R1357-R1365.
[http://dx.doi.org/10.1152/ajpregu.00630.2005] [PMID: 16322349]
[144]
Balakrishnan, B.; Thorstensen, E.B.; Ponnampalam, A.P.; Mitchell, M.D. Transplacental transfer and biotransformation of genistein in human placenta. Placenta, 2010, 31(6), 506-511.
[http://dx.doi.org/10.1016/j.placenta.2010.03.007] [PMID: 20413155]
[145]
Dandawate, P.R.; Subramaniam, D.; Jensen, R.A.; Anant, S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin. Cancer Biol., 2016, 40-41, 192-208.
[http://dx.doi.org/10.1016/j.semcancer.2016.09.001] [PMID: 27609747]
[146]
Horwitz, S.B.; Cohen, D.; Rao, S.; Ringel, I.; Shen, H.J.; Yang, C.P. Taxol: mechanisms of action and resistance. J. Natl. Cancer Inst. Monogr., 1993, 15, 55-61.
[PMID: 7912530]
[147]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1)a020412
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[148]
Upadhyay, R.K. Transendothelial transport and its role in therapeutics. Int. Scholar. Res. Noti; , 2014, 2014, . Article ID 309404.
[149]
Sanchez-Covarrubias, L.; Slosky, L.M.; Thompson, B.J.; Davis, T.P.; Ronaldson, P.T. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr. Pharm. Des., 2014, 20(10), 1422-1449.
[http://dx.doi.org/10.2174/13816128113199990463] [PMID: 23789948]
[150]
Carl, S.M.; Lindley, D.J.; Das, D.; Couraud, P.O.; Weksler, B.B.; Romero, I.; Mowery, S.A.; Knipp, G.T. ABC and SLC transporter expression and proton oligopeptide transporter (POT) mediated permeation across the human blood-brain barrier cell line, hCMEC/D3. Mol. Pharm., 2010, 7(4), 1057-1068.
[http://dx.doi.org/10.1021/mp900178j] [PMID: 20524699]
[151]
Li, Y.; Paxton, J.W. Oral bioavailability and disposition of phytochemicals.In: Phytochemicals-Bioactivities and Impact on Health; Rasooli, I., Ed.; IntechOpen: London, 2011, pp. 117-138.
[http://dx.doi.org/10.5772/26583 ]
[152]
Scheepens, A.; Tan, K.; Paxton, J.W. Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes Nutr., 2010, 5(1), 75-87.
[http://dx.doi.org/10.1007/s12263-009-0148-z] [PMID: 19841960]
[153]
Cunningham, P.; Afzal-Ahmed, I.; Naftalin, R.J. Docking studies show that D-glucose and quercetin slide through the transporter GLUT1. J. Biol. Chem., 2006, 281(9), 5797-5803.
[http://dx.doi.org/10.1074/jbc.M509422200] [PMID: 16407180]
[154]
Zaïr, Z.M.; Eloranta, J.J.; Stieger, B.; Kullak-Ublick, G.A. Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney. Pharmacogenomics, 2008, 9(5), 597-624.
[http://dx.doi.org/10.2217/14622416.9.5.597] [PMID: 18466105]
[155]
Roth, M.; Timmermann, B.N.; Hagenbuch, B. Interactions of green tea catechins with organic anion-transporting polypeptides. Drug Metab. Dispos., 2011, 39(5), 920-926.
[http://dx.doi.org/10.1124/dmd.110.036640] [PMID: 21278283]
[156]
Mahringer, A.; Karamustafa, S.; Klotz, D.; Kahl, S.; Konkimalla, V.B.; Wang, Y.; Wang, J.; Liu, H.Y.; Boechzelt, H.; Hao, X.; Bauer, R.; Fricker, G.; Efferth, T. Inhibition of P-glycoprotein at the blood-brain barrier by phytochemicals derived from traditional Chinese medicine. Cancer Genomics Proteomics, 2010, 7(4), 191-205.
[PMID: 20656985]
[157]
Marchetti, S.; Pluim, D.; Beijnen, J.H.; Mazzanti, R.; van Tellingen, O.; Schellens, J.H. Effect of the drug transporters ABCB1, ABCC2, and ABCG2 on the disposition and brain accumulation of the taxane analog BMS-275,183. Invest. New Drugs, 2014, 32(6), 1083-1095.
[http://dx.doi.org/10.1007/s10637-014-0143-0] [PMID: 25078948]
[158]
Chen, C.J.; Clark, D.; Ueda, K.; Pastan, I.; Gottesman, M.M.; Roninson, I.B. Genomic organization of the human multidrug resistance (MDR1) gene and origin of P-glycoproteins. J. Biol. Chem., 1990, 265(1), 506-514.
[PMID: 1967175]
[159]
Cao, J.; Chen, X.; Liang, J.; Yu, X.Q.; Xu, A.L.; Chan, E.; Wei, D.; Huang, M.; Wen, J.Y.; Yu, X.Y.; Li, X.T.; Sheu, F.S.; Zhou, S.F.; Zhou, S.F. Role of P-glycoprotein in the intestinal absorption of glabridin, an active flavonoid from the root of Glycyrrhiza glabra. Drug Metab. Dispos., 2007, 35(4), 539-553.
[http://dx.doi.org/10.1124/dmd.106.010801] [PMID: 17220245]
[160]
Kaur, M.; Badhan, R.K. Phytochemical mediated-modulation of the expression and transporter function of breast cancer resistance protein at the blood-brain barrier: an in vitro study. Brain Res., 2017, 1654(Pt A), 9-.
[http://dx.doi.org/10.1016/j.brainres.2016.10.020] [PMID: 27771282]
[161]
Kovo, M.; Golan, A. In vitro models using the human placenta to study fetal exposure to drugs. Clin. Med. Reprod. Health., 2008, 2, 15-24.
[http://dx.doi.org/10.4137/CMRH.S974]
[162]
Nakanishi, T.; Ross, D.D. Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. Chin. J. Cancer, 2012, 31(2), 73-99.
[http://dx.doi.org/10.5732/cjc.011.10320] [PMID: 22098950]
[163]
Alrefai, W.A.; Gill, R.K. Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm. Res., 2007, 24(10), 1803-1823.
[http://dx.doi.org/10.1007/s11095-007-9289-1] [PMID: 17404808]
[164]
Wang, X.; Wolkoff, A.W.; Morris, M.E. Flavonoids as a novel class of human organic anion-transporting polypeptide OATP1B1 (OATP-C) modulators. Drug Metab. Dispos., 2005, 33(11), 1666-1672.
[http://dx.doi.org/10.1124/dmd.105.005926] [PMID: 16081670]
[165]
Roth, M.; Araya, J.J.; Timmermann, B.N.; Hagenbuch, B. Isolation of modulators of the liver-specific organic anion-transporting polypeptides (OATPs) 1B1 and 1B3 from Rollinia emarginata Schlecht (Annonaceae). J. Pharmacol. Exp. Ther., 2011, 339(2), 624-632.
[http://dx.doi.org/10.1124/jpet.111.184564] [PMID: 21846839]
[166]
Jaiyen, C.; Jutabha, P.; Anzai, N.; Lungkaphin, A.; Soodvilai, S.; Srimaroeng, C. Interaction of green tea catechins with renal organic cation transporter 2. Xenobiotica, 2016, 46(7), 641-650.
[http://dx.doi.org/10.3109/00498254.2015.1107785] [PMID: 26576923]
[167]
Freitag, A.F.; Cardia, G.F.E.; da Rocha, B.A.; Aguiar, R.P.; Silva-Comar, F.M.D.S.; Spironello, R.A.; Grespan, R.; Caparroz-Assef, S.M.; Bersani-Amado, C.A.; Cuman, R.K. Hepatoprotective effect of silymarin (Silybum marianum) on hepatotoxicity induced by acetaminophen in spontaneously hypertensive rats. Evid. Based Complement. Alternat. Med., 2015, 2015538317
[http://dx.doi.org/10.1155/2015/538317] [PMID: 25821491]
[168]
Miranda, S.R.; Lee, J.K.; Brouwer, K.L.; Wen, Z.; Smith, P.C.; Hawke, R.L. Hepatic metabolism and biliary excretion of silymarin flavonolignans in isolated perfused rat livers: role of multidrug resistance-associated protein 2 (Abcc2). Drug Metab. Dispos., 2008, 36(11), 2219-2226.
[http://dx.doi.org/10.1124/dmd.108.021790] [PMID: 18687803]
[169]
Ros, J.E.; Roskams, T.A.; Geuken, M.; Havinga, R.; Splinter, P.L.; Petersen, B.E.; LaRusso, N.F.; van der Kolk, D.M.; Kuipers, F.; Faber, K.N.; Müller, M.; Jansen, P.L.M. ATP binding cassette transporter gene expression in rat liver progenitor cells. Gut, 2003, 52(7), 1060-1067.
[http://dx.doi.org/10.1136/gut.52.7.1060] [PMID: 12801967]
[170]
Mikkaichi, T.; Suzuki, T.; Onogawa, T.; Tanemoto, M.; Mizutamari, H.; Okada, M.; Chaki, T.; Masuda, S.; Tokui, T.; Eto, N.; Abe, M.; Satoh, F.; Unno, M.; Hishinuma, T.; Inui, K.; Ito, S.; Goto, J.; Abe, T. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc. Natl. Acad. Sci. USA, 2004, 101(10), 3569-3574.
[http://dx.doi.org/10.1073/pnas.0304987101] [PMID: 14993604]
[171]
Wong, C.C.; Botting, N.P.; Orfila, C.; Al-Maharik, N.; Williamson, G. Flavonoid conjugates interact with organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1 (OAT1/SLC22A6). Biochem. Pharmacol., 2011, 81(7), 942-949.
[http://dx.doi.org/10.1016/j.bcp.2011.01.004] [PMID: 21244849]
[172]
Nagle, M.A.; Truong, D.M.; Dnyanmote, A.V.; Ahn, S.Y.; Eraly, S.A.; Wu, W.; Nigam, S.K. Analysis of three-dimensional systems for developing and mature kidneys clarifies the role of OAT1 and OAT3 in antiviral handling. J. Biol. Chem., 2011, 286(1), 243-251.
[http://dx.doi.org/10.1074/jbc.M110.139949] [PMID: 20921221]
[173]
Lungkaphin, A.; Lewchalermwongse, B.; Chatsudthipong, V. Relative contribution of OAT1 and OAT3 transport activities in isolated perfused rabbit renal proximal tubules. Biochim. Biophys. Acta, 2006, 1758(6), 789-795.
[http://dx.doi.org/10.1016/j.bbamem.2006.05.012] [PMID: 16815243]
[174]
Wright, S.H.; Dantzler, W.H. Molecular and cellular physiology of renal organic cation and anion transport. Physiol. Rev., 2004, 84(3), 987-1049.
[http://dx.doi.org/10.1152/physrev.00040.2003] [PMID: 15269342]
[175]
Sweet, D.H.; Miller, D.S.; Pritchard, J.B.; Fujiwara, Y.; Beier, D.R.; Nigam, S.K. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 [Oat3 (Slc22a8)] knockout mice. J. Biol. Chem., 2002, 277(30), 26934-26943.
[http://dx.doi.org/10.1074/jbc.M203803200] [PMID: 12011098]
[176]
Motohashi, H.; Sakurai, Y.; Saito, H.; Masuda, S.; Urakami, Y.; Goto, M.; Fukatsu, A.; Ogawa, O.; Inui, K. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J. Am. Soc. Nephrol., 2002, 13(4), 866-874.
[PMID: 11912245]
[177]
Bode, A.M.; Dong, Z. Toxic phytochemicals and their potential risks for human cancer. Cancer Prev. Res. (Phila.), 2015, 8(1), 1-8.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0160] [PMID: 25348854]
[178]
Zhang, H.; Cifone, M.A.; Murli, H.; Erexson, G.L.; Mecchi, M.S.; Lawlor, T.E. Application of simplified in vitro screening tests to detect genotoxicity of aristolochic acid. Food Chem. Toxicol., 2004, 42(12), 2021-2028.
[http://dx.doi.org/10.1016/j.fct.2004.07.016] [PMID: 15500939]
[179]
Jiménez-Ferrer, J.E.; Pérez-Terán, Y.Y.; Román-Ramos, R.; Tortoriello, J. Antitoxin activity of plants used in Mexican traditional medicine against scorpion poisoning. Phytomedicine, 2005, 12(1-2), 116-122.
[http://dx.doi.org/10.1016/j.phymed.2003.10.001] [PMID: 15693718]
[180]
Arlt, V.M.; Stiborova, M.; Schmeiser, H.H. Aristolochic acid as a probable human cancer hazard in herbal remedies: a review. Mutagenesis, 2002, 17(4), 265-277.
[http://dx.doi.org/10.1093/mutage/17.4.265] [PMID: 12110620]
[181]
Nortier, J.L.; Martinez, M.C.M.; Schmeiser, H.H.; Arlt, V.M.; Bieler, C.A.; Petein, M.; Depierreux, M.F.; De Pauw, L.; Abramowicz, D.; Vereerstraeten, P.; Vanherweghem, J.L. Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N. Engl. J. Med., 2000, 342(23), 1686-1692.
[http://dx.doi.org/10.1056/NEJM200006083422301] [PMID: 10841870]
[182]
Swain, E.; Poulton, J.E. Utilization of amygdalin during seedling development of Prunus serotina. Plant Physiol., 1994, 106(2), 437-445.
[http://dx.doi.org/10.1104/pp.106.2.437] [PMID: 12232341]
[183]
Dang, T.; Nguyen, C.; Tran, P.N. Physician beware: severe cyanide toxicity from amygdalin tablets ingestion. Case Rep. Emerg. Med., 2017, 20174289527
[http://dx.doi.org/10.1155/2017/4289527] [PMID: 28912981]
[184]
Liu, T.Y.; Chung, Y.T.; Wang, P.F.; Chi, C.W.; Hsieh, L.L. Safrole-DNA adducts in human peripheral blood-an association with areca quid chewing and CYP2E1 polymorphisms. Mutat. Res., 2004, 559(1-2), 59-66.
[http://dx.doi.org/10.1016/j.mrgentox.2003.12.013] [PMID: 15066574]
[185]
Lee, J.M.; Liu, T.Y.; Wu, D.C.; Tang, H.C.; Leh, J.; Wu, M.T.; Hsu, H.H.; Huang, P.M.; Chen, J.S.; Lee, C.J.; Lee, Y.C. Safrole-DNA adducts in tissues from esophageal cancer patients: clues to areca-related esophageal carcinogenesis. Mutat. Res., 2005, 565(2), 121-128.
[http://dx.doi.org/10.1016/j.mrgentox.2004.10.007] [PMID: 15661610]
[186]
Tourchi-Roudsari, M. Multiple effects of bracken fern under in vivo and in vitro conditions. Asian Pac. J. Cancer Prev., 2014, 15(18), 7505-7513.
[http://dx.doi.org/10.7314/APJCP.2014.15.18.7505] [PMID: 25292020]
[187]
Freitas, R.N.; O’Connor, P.J.; Prakash, A.S.; Shahin, M.; Povey, A.C. Bracken (Pteridium aquilinum)-induced DNA adducts in mouse tissues are different from the adduct induced by the activated form of the Bracken carcinogen ptaquiloside. Biochem. Biophys. Res. Commun., 2001, 281(2), 589-594.
[http://dx.doi.org/10.1006/bbrc.2001.4388] [PMID: 11181088]
[188]
Potter, D.M.; Baird, M.S. Carcinogenic effects of ptaquiloside in bracken fern and related compounds. Br. J. Cancer, 2000, 83(7), 914-920.
[http://dx.doi.org/10.1054/bjoc.2000.1368] [PMID: 10970694]
[189]
Alonso-Amelot, M.E.; Avendaño, M. Possible association between gastric cancer and bracken fern in Venezuela: an epidemiologic study. Int. J. Cancer, 2001, 91(2), 252-259.
[http://dx.doi.org/10.1002/1097-0215(20010115)91:2<252:AID-IJC1028>3.0.CO;2-O] [PMID: 11146454]
[190]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[191]
Yang, C.S.; Sang, S.; Lambert, J.D.; Lee, M.J. Bioavailability issues in studying the health effects of plant polyphenolic compounds. Mol. Nutr. Food Res., 2008, 52(S1)(Suppl. 1), S139-S151.
[http://dx.doi.org/10.1002/mnfr.200700234] [PMID: 18551457]
[192]
Suhail, M.H. Evaluation of antioxidant activity of Andira inermis (W. Wright) H.B.K. Leaves extracts by DPPH free radical method and in silico characterization of its isoflavones as potential pharmacophores. Int. J. Curnt. Tren. Pharm. Res., 2017, 5(1), 23-31.
[193]
Hanski, L.; Genina, N.; Uvell, H.; Malinovskaja, K.; Gylfe, Å.; Laaksonen, T.; Kolakovic, R.; Mäkilä, E.; Salonen, J.; Hirvonen, J.; Elofsson, M.; Sandler, N.; Vuorela, P.M. Inhibitory activity of the isoflavone biochanin A on intracellular bacteria of genus Chlamydia and initial development of a buccal formulation. PLoS One, 2014, 9(12)e115115
[http://dx.doi.org/10.1371/journal.pone.0115115] [PMID: 25514140]
[194]
Wu, B.; Kulkarni, K.; Basu, S.; Zhang, S.; Hu, M. First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J. Pharm. Sci., 2011, 100(9), 3655-3681.
[http://dx.doi.org/10.1002/jps.22568] [PMID: 21484808]
[195]
Lambert, J.D.; Hong, J.; Kim, D.H.; Mishin, V.M.; Yang, C.S. Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice. J. Nutr., 2004, 134(8), 1948-1952.
[http://dx.doi.org/10.1093/jn/134.8.1948] [PMID: 15284381]
[196]
Prakash, U.N.; Srinivasan, K. Beneficial influence of dietary spices on the ultrastructure and fluidity of the intestinal brush border in rats. Br. J. Nutr., 2010, 104(1), 31-39.
[http://dx.doi.org/10.1017/S0007114510000334] [PMID: 20178671]
[197]
Rajasekaran, S.A. Therapeutic potential of curcumin in gastrointestinal diseases. World J. Gastrointest. Pathophysiol., 2011, 2(1), 1-14.
[http://dx.doi.org/10.4291/wjgp.v2.i1.1] [PMID: 21607160]
[198]
Suresh, D.; Srinivasan, K. Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J. Med. Res., 2010, 131(5), 682-691.
[PMID: 20516541]
[199]
de Santi, C.; Pietrabissa, A.; Mosca, F.; Pacifici, G.M. Glucuronidation of resveratrol, a natural product present in grape and wine, in the human liver. Xenobiotica, 2000, 30(11), 1047-1054.
[http://dx.doi.org/10.1080/00498250010002487] [PMID: 11197066]
[200]
De Santi, C.; Pietrabissa, A.; Spisni, R.; Mosca, F.; Pacifici, G.M. Sulphation of resveratrol, a natural compound present in wine, and its inhibition by natural flavonoids. Xenobiotica, 2000, 30(9), 857-866.
[http://dx.doi.org/10.1080/004982500433282] [PMID: 11055264]
[201]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[202]
Garcea, G.; Berry, D.P.; Jones, D.J.; Singh, R.; Dennison, A.R.; Farmer, P.B.; Sharma, R.A.; Steward, W.P.; Gescher, A.J. Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol. Biomarkers Prev., 2005, 14(1), 120-125.
[PMID: 15668484]
[203]
Kim, H.; Peterson, T.G.; Barnes, S. Mechanisms of action of the soy isoflavone genistein: emerging role for its effects via transforming growth factor beta signaling pathways. Am. J. Clin. Nutr., 1998, 68(6)(Suppl.), 1418S-1425S.
[http://dx.doi.org/10.1093/ajcn/68.6.1418S] [PMID: 9848510]
[204]
Gu, L.; House, S.E.; Prior, R.L.; Fang, N.; Ronis, M.J.; Clarkson, T.B.; Wilson, M.E.; Badger, T.M. Metabolic phenotype of isoflavones differ among female rats, pigs, monkeys, and women. J. Nutr., 2006, 136(5), 1215-1221.
[http://dx.doi.org/10.1093/jn/136.5.1215] [PMID: 16614407]
[205]
Ren, Z.; Wang, L.; Cui, J.; Huoc, Z.; Xue, J.; Cui, H.; Mao, Q.; Yang, R. Resveratrol inhibits NF-kB signaling through suppression of p65 and IkappaB kinase activities. Pharmazie, 2013, 68(8), 689-694.
[PMID: 24020126]
[206]
Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E., Jr; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos., 2004, 32(12), 1377-1382.
[http://dx.doi.org/10.1124/dmd.104.000885] [PMID: 15333514]
[207]
Shin, H.Y.; Kim, S.H.; Jeong, H.J.; Kim, S.Y.; Shin, T.Y.; Um, J.Y.; Hong, S.H.; Kim, H.M. Epigallocatechin-3-gallate inhibits secretion of TNF-alpha, IL-6 and IL-8 through the attenuation of ERK and NF-kappaB in HMC-1 cells. Int. Arch. Allergy Immunol., 2007, 142(4), 335-344.
[http://dx.doi.org/10.1159/000097503] [PMID: 17135765]
[208]
Yang, C.S.; Chen, L.; Lee, M.J.; Balentine, D.; Kuo, M.C.; Schantz, S.P. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol. Biomarkers Prev., 1998, 7(4), 351-354.
[PMID: 9568793]
[209]
Duo, J.; Ying, G.G.; Wang, G.W.; Zhang, L. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Mol. Med. Rep., 2012, 5(6), 1453-1456.
[PMID: 22447039]
[210]
Goldberg, D.M.; Yan, J.; Soleas, G.J. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin. Biochem., 2003, 36(1), 79-87.
[http://dx.doi.org/10.1016/S0009-9120(02)00397-1] [PMID: 12554065]
[211]
Li, Y.; He, S.; Tang, J.; Ding, N.; Chu, X.; Cheng, L.; Ding, X.; Liang, T.; Feng, S.; Rahman, S.U.; Wang, X.; Wu, J. Andrographolide inhibits inflammatory cytokines secretion in lps-stimulated RAW264.7 Cells through suppression of NF-κB/MAPK signaling pathway. Evid. Based Complement. Alternat. Med., 2017, 20178248142
[http://dx.doi.org/10.1155/2017/8248142] [PMID: 28676833]
[212]
Panossian, A.; Hovhannisyan, A.; Mamikonyan, G.; Abrahamian, H.; Hambardzumyan, E.; Gabrielian, E.; Goukasova, G.; Wikman, G.; Wagner, H. Pharmacokinetic and oral bioavailability of andrographolide from andrographis paniculata fixed combination Kan Jang in rats and human. Phytomedicine, 2000, 7(5), 351-364.
[http://dx.doi.org/10.1016/S0944-7113(00)80054-9] [PMID: 11081986]
[213]
Zhao, G.; Han, X.; Cheng, W.; Ni, J.; Zhang, Y.; Lin, J.; Song, Z. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells. Oncol. Rep., 2017, 37(4), 2277-2285.
[http://dx.doi.org/10.3892/or.2017.5450] [PMID: 28260058]
[214]
Meyer, H.; Bolarinwa, A.; Wolfram, G.; Linseisen, J. Bioavailability of apigenin from apiin-rich parsley in humans. Ann. Nutr. Metab., 2006, 50(3), 167-172.
[http://dx.doi.org/10.1159/000090736] [PMID: 16407641]
[215]
Stalmach, A.; Troufflard, S.; Serafini, M.; Crozier, A. Absorption, metabolism and excretion of Choladi green tea flavan-3-ols by humans. Mol. Nutr. Food Res., 2009, 53(Suppl. 1), S44-S53.
[http://dx.doi.org/10.1002/mnfr.200800169] [PMID: 18979506]
[216]
Choksi, P.M.; Joshi, V.Y. A review on lycopene-extraction, purification, stability and applications. Int. J. Food Prop., 2007, 10(2), 289-298.
[http://dx.doi.org/10.1080/10942910601052699]
[217]
D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the polyphenols: status and controversies. Int. J. Mol. Sci., 2010, 11(4), 1321-1342.
[http://dx.doi.org/10.3390/ijms11041321] [PMID: 20480022]
[218]
Seeram, N.P.; Zhang, Y.; McKeever, R.; Henning, S.M.; Lee, R.P.; Suchard, M.A.; Li, Z.; Chen, S.; Thames, G.; Zerlin, A.; Nguyen, M.; Wang, D.; Dreher, M.; Heber, D. Pomegranate juice and extracts provide similar levels of plasma and urinary ellagitannin metabolites in human subjects. J. Med. Food, 2008, 11(2), 390-394.
[http://dx.doi.org/10.1089/jmf.2007.650] [PMID: 18598186]
[219]
Upadhyay, S.; Dixit, M. Role of polyphenols and other phytochemicals on molecular signaling. Oxid. Med. Cell. Longev., 2015, 2015504253
[http://dx.doi.org/10.1155/2015/504253] [PMID: 26180591]
[220]
De Rosa, S.; Arcidiacono, B.; Chiefari, E.; Brunetti, A.; Indolfi, C.; Foti, D.P. Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links. Front. Endocrinol. (Lausanne), 2018, 9, 2.
[http://dx.doi.org/10.3389/fendo.2018.00002] [PMID: 29387042]
[221]
Matheus, A.S.; Tannus, L.R.; Cobas, R.A.; Palma, C.C.; Negrato, C.A.; Gomes, M.B. Impact of diabetes on cardiovascular disease: an update. Int. J. Hypertens., 2013, 2013653789
[http://dx.doi.org/10.1155/2013/653789] [PMID: 23533715]
[222]
Casey, D.E. Metabolic issues and cardiovascular disease in patients with psychiatric disorders. Am. J. Med., 2005, 118(Suppl. 2), 15S-22S.
[PMID: 15903291]
[223]
Chen, C.; Zeng, Y.; Xu, J.; Zheng, H.; Liu, J.; Fan, R.; Zhu, W.; Yuan, L.; Qin, Y.; Chen, S.; Zhou, Y.; Wu, Y.; Wan, J.; Mi, M.; Wang, J. Therapeutic effects of soluble dietary fiber consumption on type 2 diabetes mellitus. Exp. Ther. Med., 2016, 12(2), 1232-1242.
[http://dx.doi.org/10.3892/etm.2016.3377] [PMID: 27446349]
[224]
Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients, 2010, 2(12), 1266-1289.
[http://dx.doi.org/10.3390/nu2121266] [PMID: 22254008]
[225]
García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res., 2009, 58(9), 537-552.
[http://dx.doi.org/10.1007/s00011-009-0037-3] [PMID: 19381780]
[226]
Gaikwad, B.S.; Krishna Mohan, G.; Sandhya Rani, M. Phytochemicals for diabetes management. Pharma. Crops, 2014, 5(1), 11-28.
[227]
Ong, K.W.; Hsu, A.; Tan, B.K.H. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem. Pharmacol., 2013, 85(9), 1341-1351.
[http://dx.doi.org/10.1016/j.bcp.2013.02.008] [PMID: 23416115]
[228]
Olson, A.L. Regulation of GLUT4 and insulin-dependent glucose flux. ISRN Mol. Biol., 2012, 2012856987
[http://dx.doi.org/10.5402/2012/856987] [PMID: 27335671]
[229]
Cline, G.W.; Petersen, K.F.; Krssak, M.; Shen, J.; Hundal, R.S.; Trajanoski, Z.; Inzucchi, S.; Dresner, A.; Rothman, D.L.; Shulman, G.I. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N. Engl. J. Med., 1999, 341(4), 240-246.
[http://dx.doi.org/10.1056/NEJM199907223410404] [PMID: 10413736]
[230]
Maria, Z.; Campolo, A.R.; Scherlag, B.J.; Ritchey, J.W.; Lacombe, V.A. Dysregulation of insulin-sensitive glucose transporters during insulin resistance-induced atrial fibrillation. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(4 Pt A), 987-996.
[http://dx.doi.org/10.1016/j.bbadis.2017.12.038] [PMID: 29291943]
[231]
Stöckli, J.; Fazakerley, D.J.; James, D.E. GLUT4 exocytosis. J. Cell Sci., 2011, 124(Pt 24), 4147-4159.
[http://dx.doi.org/10.1242/jcs.097063] [PMID: 22247191]
[232]
Tremblay, F.; Lavigne, C.; Jacques, H.; Marette, A. Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C (zeta/lambda) activities. Diabetes, 2001, 50(8), 1901-1910.
[http://dx.doi.org/10.2337/diabetes.50.8.1901] [PMID: 11473054]
[233]
Prabhakar, P.K.; Doble, M. Interaction of phytochemicals with hypoglycemic drugs on glucose uptake in L6 myotubes. Phytomedicine, 2011, 18(4), 285-291.
[http://dx.doi.org/10.1016/j.phymed.2010.06.016] [PMID: 20724125]
[234]
Prabhakar, P.K.; Doble, M. Synergistic effect of phytochemicals in combination with hypoglycemic drugs on glucose uptake in myotubes. Phytomedicine, 2009, 16(12), 1119-1126.
[http://dx.doi.org/10.1016/j.phymed.2009.05.021] [PMID: 19660925]
[235]
Rayalam, S.; Della-Fera, M.A.; Baile, C.A. Synergism between resveratrol and other phytochemicals: implications for obesity and osteoporosis. Mol. Nutr. Food Res., 2011, 55(8), 1177-1185.
[http://dx.doi.org/10.1002/mnfr.201000616] [PMID: 21538845]
[236]
Park, H.J.; Yang, J.Y.; Ambati, S.; Della-Fera, M.A.; Hausman, D.B.; Rayalam, S.; Baile, C.A. Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J. Med. Food, 2008, 11(4), 773-783.
[http://dx.doi.org/10.1089/jmf.2008.0077] [PMID: 19053873]
[237]
Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; Geny, B.; Laakso, M.; Puigserver, P.; Auwerx, J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell, 2006, 127(6), 1109-1122.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[238]
Zhu, X.; Yang, J.; Zhu, W.; Yin, X.; Yang, B.; Wei, Y.; Guo, X. Combination of Berberine with Resveratrol Improves the Lipid-Lowering Efficacy. Int. J. Mol. Sci., 2018, 19(12), 3903.
[http://dx.doi.org/10.3390/ijms19123903] [PMID: 30563192]
[239]
Lampe, J.W.; Chang, J.L. Interindividual differences in phytochemical metabolism and disposition. Semin. Cancer Biol., 2007, 17(5), 347-353.
[http://dx.doi.org/10.1016/j.semcancer.2007.05.003] [PMID: 17588771]
[240]
Carrera-Quintanar, L.; López Roa, R.I.; Quintero-Fabián, S.; Sánchez-Sánchez, M.A.; Vizmanos, B.; Ortuño-Sahagún, D. Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediators Inflamm., 2018, 20189734845
[http://dx.doi.org/10.1155/2018/9734845] [PMID: 29785173]
[241]
Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem., 2013, 24(8), 1415-1422.
[http://dx.doi.org/10.1016/j.jnutbio.2013.05.001] [PMID: 23849454]
[242]
van Duynhoven, J.; Vaughan, E.E.; Jacobs, D.M.; Kemperman, R.A.; van Velzen, E.J.; Gross, G.; Roger, L.C.; Possemiers, S.; Smilde, A.K.; Doré, J.; Westerhuis, J.A.; Van de Wiele, T. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. USA, 2011, 108(1)(Suppl. 1), 4531-4538.
[http://dx.doi.org/10.1073/pnas.1000098107] [PMID: 20615997]
[243]
Atkinson, C.; Frankenfeld, C.L.; Lampe, J.W. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp. Biol. Med. (Maywood), 2005, 230(3), 155-170.
[http://dx.doi.org/10.1177/153537020523000302] [PMID: 15734719]
[244]
Possemiers, S.; Heyerick, A.; Robbens, V.; De Keukeleire, D.; Verstraete, W. Activation of proestrogens from hops (Humulus lupulus L.) by intestinal microbiota; conversion of isoxanthohumol into 8-prenylnaringenin. J. Agric. Food Chem., 2005, 53(16), 6281-6288.
[http://dx.doi.org/10.1021/jf0509714] [PMID: 16076107]
[245]
Rechner, A.R.; Smith, M.A.; Kuhnle, G.; Gibson, G.R.; Debnam, E.S.; Srai, S.K.S.; Moore, K.P.; Rice-Evans, C.A. Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic. Biol. Med., 2004, 36(2), 212-225.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.09.022] [PMID: 14744633]
[246]
Getahun, S.M.; Chung, F.L. Conversion of glucosinolates to isothiocyanates in humans after ingestion of cooked watercress. Cancer Epidemiol. Biomarkers Prev., 1999, 8(5), 447-451.
[PMID: 10350441]
[247]
Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 51-88.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095857] [PMID: 15822171]
[248]
Yang, G.; Gao, Y.T.; Shu, X.O.; Cai, Q.; Li, G.L.; Li, H.L.; Ji, B.T.; Rothman, N.; Dyba, M.; Xiang, Y.B.; Chung, F.L.; Chow, W.H.; Zheng, W. Isothiocyanate exposure, glutathione S-transferase polymorphisms, and colorectal cancer risk. Am. J. Clin. Nutr., 2010, 91(3), 704-711.
[http://dx.doi.org/10.3945/ajcn.2009.28683] [PMID: 20042523]
[249]
Licciardello, C.; D’Agostino, N.; Traini, A.; Recupero, G.R.; Frusciante, L.; Chiusano, M.L. Characterization of the glutathione S-transferase gene family through ESTs and expression analyses within common and pigmented cultivars of Citrus sinensis (L.) Osbeck. BMC Plant Biol., 2014, 14, 39.
[http://dx.doi.org/10.1186/1471-2229-14-39] [PMID: 24490620]
[250]
Boersma, M.G.; van der Woude, H.; Bogaards, J.; Boeren, S.; Vervoort, J.; Cnubben, N.H.; van Iersel, M.L.; van Bladeren, P.J.; Rietjens, I.M. Regioselectivity of phase II metabolism of luteolin and quercetin by UDP-glucuronosyl transferases. Chem. Res. Toxicol., 2002, 15(5), 662-670.
[http://dx.doi.org/10.1021/tx0101705] [PMID: 12018987]
[251]
Gheldof, N.; Moco, S.; Chabert, C.; Teav, T.; Barron, D.; Hager, J. Role of sulfotransferases in resveratrol metabolism in human adipocytes. Mol. Nutr. Food Res., 2017, 61(10)1700020
[http://dx.doi.org/10.1002/mnfr.201700020] [PMID: 28523759]
[252]
Pai, T.G.; Suiko, M.; Sakakibara, Y.; Liu, M.C. Sulfation of flavonoids and other phenolic dietary compounds by the human cytosolic sulfotransferases. Biochem. Biophys. Res. Commun., 2001, 285(5), 1175-1179.
[http://dx.doi.org/10.1006/bbrc.2001.5316] [PMID: 11478778]
[253]
Zhang, Y.; Kolm, R.H.; Mannervik, B.; Talalay, P. Reversible conjugation of isothiocyanates with glutathione catalyzed by human glutathione transferases. Biochem. Biophys. Res. Commun., 1995, 206(2), 748-755.
[http://dx.doi.org/10.1006/bbrc.1995.1106] [PMID: 7826396]
[254]
Kolm, R.H.; Danielson, U.H.; Zhang, Y.; Talalay, P.; Mannervik, B. Isothiocyanates as substrates for human glutathione transferases: structure-activity studies. Biochem. J., 1995, 311(Pt 2), 453-459.
[http://dx.doi.org/10.1042/bj3110453] [PMID: 7487881]
[255]
Seow, A.; Vainio, H.; Yu, M.C. Effect of glutathione-S-transferase polymorphisms on the cancer preventive potential of isothiocyanates: an epidemiological perspective. Mutat. Res., 2005, 592(1-2), 58-67.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.06.004] [PMID: 16019037]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 14
Year: 2019
Page: [1085 - 1102]
Pages: 18
DOI: 10.2174/1389200221666200103090757
Price: $58

Article Metrics

PDF: 25
HTML: 3