Characterizing the Latent HIV-1 Reservoir in Patients with Viremia Suppressed on cART: Progress, Challenges, and Opportunities

Author(s): Jason W. Rausch*, Stuart F.J. Le Grice.

Journal Name: Current HIV Research

Volume 18 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Modern combination antiretroviral therapy (cART) can bring HIV-1 in blood plasma to level undetectable by standard tests, prevent the onset of acquired immune deficiency syndrome (AIDS), and allow a near-normal life expectancy for HIV-infected individuals. Unfortunately, cART is not curative, as within a few weeks of treatment cessation, HIV viremia in most patients rebounds to pre-cART levels. The primary source of this rebound, and the principal barrier to a cure, is the highly stable reservoir of latent yet replication-competent HIV-1 proviruses integrated into the genomic DNA of resting memory CD4+ T cells. In this review, prevailing models for how the latent reservoir is established and maintained, residual viremia and viremic rebound upon withdrawal of cART, and the types and characteristics of cells harboring latent HIV-1 will be discussed. Selected technologies currently being used to advance our understanding of HIV latency will also be presented, as will a perspective on which areas of advancement are most essential for producing the next generation of HIV-1 therapeutics.

Keywords: HIV, latency, provirus, integration, residual viremia, antiretroviral, T cell, CD4, TCR, clonal expansion, homeostatic maintenance, multiple displacement amplification, MDA.

[1]
Gulick RM, Mellors JW, Havlir D, et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 1997; 337(11): 734-9.
[http://dx.doi.org/10.1056/NEJM199709113371102] [PMID: 9287228]
[2]
Hammer SM, Squires KE, Hughes MD, et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N Engl J Med 1997; 337(11): 725-33.
[http://dx.doi.org/10.1056/NEJM199709113371101] [PMID: 9287227]
[3]
Perelson AS, Essunger P, Cao Y, et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 1997; 387(6629): 188-91.
[http://dx.doi.org/10.1038/387188a0] [PMID: 9144290]
[4]
Calabrese SK, Mayer KH. Providers should discuss U=U with all patients living with HIV. Lancet HIV 2019; 6(4): e211-3.
[http://dx.doi.org/10.1016/S2352-3018(19)30030-X] [PMID: 30772420]
[5]
Günthard HF, Aberg JA, Eron JJ, et al. International Antiviral Society-USA Panel. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society-USA Panel. JAMA 2014; 312(4): 410-25.
[http://dx.doi.org/10.1001/jama.2014.8722] [PMID: 25038359]
[6]
Esser S, Helbig D, Hillen U, Dissemond J, Grabbe S. Side effects of HIV therapy. J Dtsch Dermatol Ges 2007; 5(9): 745-54.
[http://dx.doi.org/10.1111/j.1610-0387.2007.06322.x] [PMID: 17760894]
[7]
Hemkens LG, Bucher HC. HIV infection and cardiovascular disease. Eur Heart J 2014; 35(21): 1373-81.
[http://dx.doi.org/10.1093/eurheartj/eht528] [PMID: 24408888]
[8]
Kovari H, Sabin CA, Ledergerber B, et al. Antiretroviral drug-related liver mortality among HIV-positive persons in the absence of hepatitis B or C virus coinfection: the data collection on adverse events of anti-HIV drugs study. Clin Infect Dis 2013; 56(6): 870-9.
[http://dx.doi.org/10.1093/cid/cis919] [PMID: 23090925]
[9]
Lugassy DM, Farmer BM, Nelson LS. Metabolic and hepatobiliary side effects of antiretroviral therapy (ART). Emerg Med Clin North Am 2010; 28(2): 409-19.
[http://dx.doi.org/10.1016/j.emc.2010.01.011] [PMID: 20413022]
[10]
Davey RT Jr, Bhat N, Yoder C, et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci USA 1999; 96(26): 15109-14.
[http://dx.doi.org/10.1073/pnas.96.26.15109] [PMID: 10611346]
[11]
Rothenberger MK, Keele BF, Wietgrefe SW, et al. Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption. Proc Natl Acad Sci USA 2015; 112(10): E1126-34.
[http://dx.doi.org/10.1073/pnas.1414926112] [PMID: 25713386]
[12]
Brenchley JM, Hill BJ, Ambrozak DR, et al. T-cell subsets that harbor human immunodeficiency virus (HIV) in vivo: implications for HIV pathogenesis. J Virol 2004; 78(3): 1160-8.
[http://dx.doi.org/10.1128/JVI.78.3.1160-1168.2004] [PMID: 14722271]
[13]
Chomont N, El-Far M, Ancuta P, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 2009; 15(8): 893-900.
[http://dx.doi.org/10.1038/nm.1972] [PMID: 19543283]
[14]
Chun TW, Carruth L, Finzi D, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 1997; 387(6629): 183-8.
[http://dx.doi.org/10.1038/387183a0] [PMID: 9144289]
[15]
Chun TW, Finzi D, Margolick J, Chadwick K, Schwartz D, Siliciano RF. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med 1995; 1(12): 1284-90.
[http://dx.doi.org/10.1038/nm1295-1284] [PMID: 7489410]
[16]
Jaafoura S, de Goër de Herve MG, Hernandez-Vargas EA, et al. Progressive contraction of the latent HIV reservoir around a core of less-differentiated CD4+ memory T Cells. Nat Commun 2014; 5: 5407.
[http://dx.doi.org/10.1038/ncomms6407] [PMID: 25382623]
[17]
Josefsson L, von Stockenstrom S, Faria NR, et al. The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time. Proc Natl Acad Sci USA 2013; 110(51): E4987-96.
[http://dx.doi.org/10.1073/pnas.1308313110] [PMID: 24277811]
[18]
Pierson T, Hoffman TL, Blankson J, et al. Characterization of chemokine receptor utilization of viruses in the latent reservoir for human immunodeficiency virus type 1. J Virol 2000; 74(17): 7824-33.
[http://dx.doi.org/10.1128/JVI.74.17.7824-7833.2000] [PMID: 10933689]
[19]
Chun TW, Stuyver L, Mizell SB, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci USA 1997; 94(24): 13193-7.
[http://dx.doi.org/10.1073/pnas.94.24.13193] [PMID: 9371822]
[20]
Crooks AM, Bateson R, Cope AB, et al. Precise Quantitation of the Latent HIV-1 Reservoir: Implications for Eradication Strategies. J Infect Dis 2015; 212(9): 1361-5.
[http://dx.doi.org/10.1093/infdis/jiv218] [PMID: 25877550]
[21]
Finzi D, Blankson J, Siliciano JD, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 1999; 5(5): 512-7.
[http://dx.doi.org/10.1038/8394] [PMID: 10229227]
[22]
Finzi D, Hermankova M, Pierson T, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997; 278(5341): 1295-300.
[http://dx.doi.org/10.1126/science.278.5341.1295] [PMID: 9360927]
[23]
Siliciano JD, Kajdas J, Finzi D, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 2003; 9(6): 727-8.
[http://dx.doi.org/10.1038/nm880] [PMID: 12754504]
[24]
Wong JK, Hezareh M, Günthard HF, et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 1997; 278(5341): 1291-5.
[http://dx.doi.org/10.1126/science.278.5341.1291] [PMID: 9360926]
[25]
Speck SH, Ganem D. Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe 2010; 8(1): 100-15.
[http://dx.doi.org/10.1016/j.chom.2010.06.014] [PMID: 20638646]
[26]
Anderson EM, Maldarelli F. The role of integration and clonal expansion in HIV infection: live long and prosper. Retrovirology 2018; 15(1): 71.
[http://dx.doi.org/10.1186/s12977-018-0448-8] [PMID: 30352600]
[27]
Hughes SH, Coffin JM. What Integration Sites Tell Us about HIV Persistence. Cell Host Microbe 2016; 19(5): 588-98.
[http://dx.doi.org/10.1016/j.chom.2016.04.010] [PMID: 27173927]
[28]
Buckheit RW III, Salgado M, Martins KO, Blankson JN. The implications of viral reservoirs on the elite control of HIV-1 infection. Cell Mol Life Sci 2013; 70(6): 1009-19.
[http://dx.doi.org/10.1007/s00018-012-1101-7] [PMID: 22864624]
[29]
Chun TW, Engel D, Berrey MM, Shea T, Corey L, Fauci AS. Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc Natl Acad Sci USA 1998; 95(15): 8869-73.
[http://dx.doi.org/10.1073/pnas.95.15.8869] [PMID: 9671771]
[30]
Persaud D, Gay H, Ziemniak C, et al. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N Engl J Med 2013; 369(19): 1828-35.
[http://dx.doi.org/10.1056/NEJMoa1302976] [PMID: 24152233]
[31]
Colby DJ, Trautmann L, Pinyakorn S, et al. RV411 study group. Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nat Med 2018; 24(7): 923-6.
[http://dx.doi.org/10.1038/s41591-018-0026-6] [PMID: 29892063]
[32]
Dinoso JB, Rabi SA, Blankson JN, et al. A simian immunodeficiency virus-infected macaque model to study viral reservoirs that persist during highly active antiretroviral therapy. J Virol 2009; 83(18): 9247-57.
[http://dx.doi.org/10.1128/JVI.00840-09] [PMID: 19570871]
[33]
Shen A, Zink MC, Mankowski JL, et al. Resting CD4+ T lymphocytes but not thymocytes provide a latent viral reservoir in a simian immunodeficiency virus-Macaca nemestrina model of human immunodeficiency virus type 1-infected patients on highly active antiretroviral therapy. J Virol 2003; 77(8): 4938-49.
[http://dx.doi.org/10.1128/JVI.77.8.4938-4949.2003] [PMID: 12663799]
[34]
Whitney JB, Hill AL, Sanisetty S, et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 2014; 512(7512): 74-7.
[http://dx.doi.org/10.1038/nature13594] [PMID: 25042999]
[35]
Eriksson S, Graf EH, Dahl V, et al. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog 2013; 9(2): e1003174
[http://dx.doi.org/10.1371/journal.ppat.1003174] [PMID: 23459007]
[36]
Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 2012; 37(3): 377-88.
[http://dx.doi.org/10.1016/j.immuni.2012.08.010] [PMID: 22999944]
[37]
Arfi V, Rivière L, Jarrosson-Wuillème L, et al. Characterization of the early steps of infection of primary blood monocytes by human immunodeficiency virus type 1. J Virol 2008; 82(13): 6557-65.
[http://dx.doi.org/10.1128/JVI.02321-07] [PMID: 18417568]
[38]
Babas T, Muñoz D, Mankowski JL, Tarwater PM, Clements JE, Zink MC. Role of microglial cells in selective replication of simian immunodeficiency virus genotypes in the brain. J Virol 2003; 77(1): 208-16.
[http://dx.doi.org/10.1128/JVI.77.1.208-216.2003] [PMID: 12477826]
[39]
Cribbs SK, Lennox J, Caliendo AM, Brown LA, Guidot DM. Healthy HIV-1-infected individuals on highly active antiretroviral therapy harbor HIV-1 in their alveolar macrophages. AIDS Res Hum Retroviruses 2015; 31(1): 64-70.
[http://dx.doi.org/10.1089/aid.2014.0133] [PMID: 25134819]
[40]
Gartner S, Markovits P, Markovitz DM, Kaplan MH, Gallo RC, Popovic M. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 1986; 233(4760): 215-9.
[http://dx.doi.org/10.1126/science.3014648] [PMID: 3014648]
[41]
González-Scarano F, Martín-García J. The neuropathogenesis of AIDS. Nat Rev Immunol 2005; 5(1): 69-81.
[http://dx.doi.org/10.1038/nri1527] [PMID: 15630430]
[42]
Honeycutt JB, Wahl A, Baker C, et al. Macrophages sustain HIV replication in vivo independently of T cells. J Clin Invest 2016; 126(4): 1353-66.
[http://dx.doi.org/10.1172/JCI84456] [PMID: 26950420]
[43]
Igarashi T, Brown CR, Endo Y, et al. Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): Implications for HIV-1 infections of humans. Proc Natl Acad Sci USA 2001; 98(2): 658-63.
[http://dx.doi.org/10.1073/pnas.98.2.658] [PMID: 11136236]
[44]
Koenig S, Gendelman HE, Orenstein JM, et al. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 1986; 233(4768): 1089-93.
[http://dx.doi.org/10.1126/science.3016903] [PMID: 3016903]
[45]
Peng G, Greenwell-Wild T, Nares S, et al. Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. Blood 2007; 110(1): 393-400.
[http://dx.doi.org/10.1182/blood-2006-10-051763] [PMID: 17371941]
[46]
Redel L, Le Douce V, Cherrier T, et al. HIV-1 regulation of latency in the monocyte-macrophage lineage and in CD4+ T lymphocytes. J Leukoc Biol 2010; 87(4): 575-88.
[http://dx.doi.org/10.1189/jlb.0409264] [PMID: 19801499]
[47]
Schnell G, Joseph S, Spudich S, Price RW, Swanstrom R. HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog 2011; 7(10): e1002286
[http://dx.doi.org/10.1371/journal.ppat.1002286] [PMID: 22007152]
[48]
Schnell G, Spudich S, Harrington P, Price RW, Swanstrom R. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia. PLoS Pathog 2009; 5(4): e1000395
[http://dx.doi.org/10.1371/journal.ppat.1000395] [PMID: 19390619]
[49]
Margolick JB, Volkman DJ, Folks TM, Fauci AS. Amplification of HTLV-III/LAV infection by antigen-induced activation of T cells and direct suppression by virus of lymphocyte blastogenic responses. J Immunol 1987; 138(6): 1719-23.
[PMID: 3493285]
[50]
Zhang Z, Schuler T, Zupancic M, et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 1999; 286(5443): 1353-7.
[http://dx.doi.org/10.1126/science.286.5443.1353] [PMID: 10558989]
[51]
Coffin J, Swanstrom R. HIV pathogenesis: dynamics and genetics of viral populations and infected cells. Cold Spring Harb Perspect Med 2013; 3(1): a012526
[http://dx.doi.org/10.1101/cshperspect.a012526] [PMID: 23284080]
[52]
Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996; 271(5255): 1582-6.
[http://dx.doi.org/10.1126/science.271.5255.1582] [PMID: 8599114]
[53]
Eckstein DA, Penn ML, Korin YD, et al. HIV-1 actively replicates in naive CD4(+) T cells residing within human lymphoid tissues. Immunity 2001; 15(4): 671-82.
[http://dx.doi.org/10.1016/S1074-7613(01)00217-5] [PMID: 11672548]
[54]
Murray AJ, Kwon KJ, Farber DL, Siliciano RF. The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence. J Immunol 2016; 197(2): 407-17.
[http://dx.doi.org/10.4049/jimmunol.1600343] [PMID: 27382129]
[55]
Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996; 272(5270): 1955-8.
[http://dx.doi.org/10.1126/science.272.5270.1955] [PMID: 8658171]
[56]
Choe H, Farzan M, Sun Y, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996; 85(7): 1135-48.
[http://dx.doi.org/10.1016/S0092-8674(00)81313-6] [PMID: 8674119]
[57]
Deng H, Liu R, Ellmeier W, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996; 381(6584): 661-6.
[http://dx.doi.org/10.1038/381661a0] [PMID: 8649511]
[58]
Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381(6584): 667-73.
[http://dx.doi.org/10.1038/381667a0] [PMID: 8649512]
[59]
Trkola A, Dragic T, Arthos J, et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 1996; 384(6605): 184-7.
[http://dx.doi.org/10.1038/384184a0] [PMID: 8906796]
[60]
Wu L, Gerard NP, Wyatt R, et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 1996; 384(6605): 179-83.
[http://dx.doi.org/10.1038/384179a0] [PMID: 8906795]
[61]
Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci USA 1997; 94(5): 1925-30.
[http://dx.doi.org/10.1073/pnas.94.5.1925] [PMID: 9050881]
[62]
Mohammadi P, Desfarges S, Bartha I, et al. 24 hours in the life of HIV-1 in a T cell line. PLoS Pathog 2013; 9(1): e1003161
[http://dx.doi.org/10.1371/journal.ppat.1003161] [PMID: 23382686]
[63]
Adams M, Sharmeen L, Kimpton J, et al. Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter-proximal transcripts. Proc Natl Acad Sci USA 1994; 91(9): 3862-6.
[http://dx.doi.org/10.1073/pnas.91.9.3862] [PMID: 8171003]
[64]
Böhnlein E, Lowenthal JW, Siekevitz M, Ballard DW, Franza BR, Greene WC. The same inducible nuclear proteins regulates mitogen activation of both the interleukin-2 receptor-alpha gene and type 1 HIV. Cell 1988; 53(5): 827-36.
[http://dx.doi.org/10.1016/0092-8674(88)90099-2] [PMID: 2836068]
[65]
Duh EJ, Maury WJ, Folks TM, Fauci AS, Rabson AB. Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kappa B sites in the long terminal repeat. Proc Natl Acad Sci USA 1989; 86(15): 5974-8.
[http://dx.doi.org/10.1073/pnas.86.15.5974] [PMID: 2762307]
[66]
Kinoshita S, Chen BK, Kaneshima H, Nolan GP. Host control of HIV-1 parasitism in T cells by the nuclear factor of activated T cells. Cell 1998; 95(5): 595-604.
[http://dx.doi.org/10.1016/S0092-8674(00)81630-X] [PMID: 9845362]
[67]
Lin X, Irwin D, Kanazawa S, et al. Transcriptional profiles of latent human immunodeficiency virus in infected individuals: effects of Tat on the host and reservoir. J Virol 2003; 77(15): 8227-36.
[http://dx.doi.org/10.1128/JVI.77.15.8227-8236.2003] [PMID: 12857891]
[68]
Nabel G, Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 1987; 326(6114): 711-3.
[http://dx.doi.org/10.1038/326711a0] [PMID: 3031512]
[69]
Pessler F, Cron RQ. Reciprocal regulation of the nuclear factor of activated T cells and HIV-1. Genes Immun 2004; 5(3): 158-67.
[http://dx.doi.org/10.1038/sj.gene.6364047] [PMID: 14762397]
[70]
Rice AP, Herrmann CH. Regulation of TAK/P-TEFb in CD4+ T lymphocytes and macrophages. Curr HIV Res 2003; 1(4): 395-404.
[http://dx.doi.org/10.2174/1570162033485159] [PMID: 15049426]
[71]
Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. Science 1996; 272(5258): 54-60.
[http://dx.doi.org/10.1126/science.272.5258.54] [PMID: 8600537]
[72]
Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995; 373(6510): 123-6.
[http://dx.doi.org/10.1038/373123a0] [PMID: 7816094]
[73]
Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995; 373(6510): 117-22.
[http://dx.doi.org/10.1038/373117a0] [PMID: 7529365]
[74]
Cooper A, García M, Petrovas C, Yamamoto T, Koup RA, Nabel GJ. HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. Nature 2013; 498(7454): 376-9.
[http://dx.doi.org/10.1038/nature12274] [PMID: 23739328]
[75]
Sakai K, Dimas J, Lenardo MJ. The Vif and Vpr accessory proteins independently cause HIV-1-induced T cell cytopathicity and cell cycle arrest. Proc Natl Acad Sci USA 2006; 103(9): 3369-74.
[http://dx.doi.org/10.1073/pnas.0509417103] [PMID: 16492778]
[76]
Borrow P, Lewicki H, Wei X, et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat Med 1997; 3(2): 205-11.
[http://dx.doi.org/10.1038/nm0297-205] [PMID: 9018240]
[77]
Koup RA, Safrit JT, Cao Y, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 1994; 68(7): 4650-5.
[PMID: 8207839]
[78]
Schmitz JE, Kuroda MJ, Santra S, et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 1999; 283(5403): 857-60.
[http://dx.doi.org/10.1126/science.283.5403.857] [PMID: 9933172]
[79]
Walker BD, Chakrabarti S, Moss B, et al. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature 1987; 328(6128): 345-8.
[http://dx.doi.org/10.1038/328345a0] [PMID: 3496541]
[80]
Klatt NR, Shudo E, Ortiz AM, et al. CD8+ lymphocytes control viral replication in SIVmac239-infected rhesus macaques without decreasing the lifespan of productively infected cells. PLoS Pathog 2010; 6(1): e1000747
[http://dx.doi.org/10.1371/journal.ppat.1000747] [PMID: 20126441]
[81]
Wong JK, Strain MC, Porrata R, et al. In vivo CD8+ T-cell suppression of siv viremia is not mediated by CTL clearance of productively infected cells. PLoS Pathog 2010; 6(1): e1000748
[http://dx.doi.org/10.1371/journal.ppat.1000748] [PMID: 20126442]
[82]
Yoder A, Yu D, Dong L, et al. HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell 2008; 134(5): 782-92.
[http://dx.doi.org/10.1016/j.cell.2008.06.036] [PMID: 18775311]
[83]
Baldauf HM, Pan X, Erikson E, et al. SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 2012; 18(11): 1682-7.
[http://dx.doi.org/10.1038/nm.2964] [PMID: 22972397]
[84]
Berger A, Sommer AF, Zwarg J, et al. SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog 2011; 7(12): e1002425
[http://dx.doi.org/10.1371/journal.ppat.1002425] [PMID: 22174685]
[85]
Laguette N, Sobhian B, Casartelli N, et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011; 474(7353): 654-7.
[http://dx.doi.org/10.1038/nature10117] [PMID: 21613998]
[86]
Pierson TC, Zhou Y, Kieffer TL, Ruff CT, Buck C, Siliciano RF. Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection. J Virol 2002; 76(17): 8518-31.
[http://dx.doi.org/10.1128/JVI.76.17.8518-8513.2002] [PMID: 12163571]
[87]
Taylor HE, Simmons GE Jr, Mathews TP, et al. Phospholipase D1 Couples CD4+ T Cell Activation to c-Myc-Dependent Deoxyribonucleotide Pool Expansion and HIV-1 Replication. PLoS Pathog 2015; 11(5): e1004864
[http://dx.doi.org/10.1371/journal.ppat.1004864] [PMID: 26020637]
[88]
Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 1990; 61(2): 213-22.
[http://dx.doi.org/10.1016/0092-8674(90)90802-L] [PMID: 2331748]
[89]
Doitsh G, Galloway NL, Geng X, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 2014; 505(7484): 509-14.
[http://dx.doi.org/10.1038/nature12940] [PMID: 24356306]
[90]
Monroe KM, Yang Z, Johnson JR, et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 2014; 343(6169): 428-32.
[http://dx.doi.org/10.1126/science.1243640] [PMID: 24356113]
[91]
Muñoz-Arias I, Doitsh G, Yang Z, Sowinski S, Ruelas D, Greene WC. Blood-Derived CD4 T Cells Naturally Resist Pyroptosis during Abortive HIV-1 Infection. Cell Host Microbe 2015; 18(4): 463-70.
[http://dx.doi.org/10.1016/j.chom.2015.09.010] [PMID: 26468749]
[92]
He G, Ylisastigui L, Margolis DM. The regulation of HIV-1 gene expression: the emerging role of chromatin. DNA Cell Biol 2002; 21(10): 697-705.
[http://dx.doi.org/10.1089/104454902760599672] [PMID: 12443539]
[93]
West MJ, Lowe AD, Karn J. Activation of human immunodeficiency virus transcription in T cells revisited: NF-kappaB p65 stimulates transcriptional elongation. J Virol 2001; 75(18): 8524-37.
[http://dx.doi.org/10.1128/JVI.75.18.8524-8537.2001] [PMID: 11507198]
[94]
Ylisastigui L, Archin NM, Lehrman G, Bosch RJ, Margolis DM. Coaxing HIV-1 from resting CD4 T cells: histone deacetylase inhibition allows latent viral expression. AIDS 2004; 18(8): 1101-8.
[http://dx.doi.org/10.1097/00002030-200405210-00003] [PMID: 15166525]
[95]
Gasper DJ, Tejera MM, Suresh M. CD4 T-cell memory generation and maintenance. Crit Rev Immunol 2014; 34(2): 121-46.
[http://dx.doi.org/10.1615/CritRevImmunol.2014010373] [PMID: 24940912]
[96]
Harrington LE, Janowski KM, Oliver JR, Zajac AJ, Weaver CT. Memory CD4 T cells emerge from effector T-cell progenitors. Nature 2008; 452(7185): 356-60.
[http://dx.doi.org/10.1038/nature06672] [PMID: 18322463]
[97]
Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2002; 2(4): 251-62.
[http://dx.doi.org/10.1038/nri778] [PMID: 12001996]
[98]
Marshall HD, Chandele A, Jung YW, et al. Differential expression of Ly6C and T-bet distinguish effector and memory Th1 CD4(+) cell properties during viral infection. Immunity 2011; 35(4): 633-46.
[http://dx.doi.org/10.1016/j.immuni.2011.08.016] [PMID: 22018471]
[99]
Pepper M, Jenkins MK. Origins of CD4(+) effector and central memory T cells. Nat Immunol 2011; 12(6): 467-71.
[http://dx.doi.org/10.1038/ni.2038] [PMID: 21739668]
[100]
Pepper M, Linehan JL, Pagán AJ, et al. Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nat Immunol 2010; 11(1): 83-9.
[http://dx.doi.org/10.1038/ni.1826] [PMID: 19935657]
[101]
Topham DJ, Doherty PC. Longitudinal analysis of the acute Sendai virus-specific CD4+ T cell response and memory. J Immunol 1998; 161(9): 4530-5.
[PMID: 9794378]
[102]
Lanzavecchia A, Sallusto F. Progressive differentiation and selection of the fittest in the immune response. Nat Rev Immunol 2002; 2(12): 982-7.
[http://dx.doi.org/10.1038/nri959] [PMID: 12461571]
[103]
Chang JT. Polarity and lymphocyte fate determination. Curr Opin Cell Biol 2012; 24(4): 526-33.
[http://dx.doi.org/10.1016/j.ceb.2012.05.002] [PMID: 22658837]
[104]
Choi YS, Kageyama R, Eto D, et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 2011; 34(6): 932-46.
[http://dx.doi.org/10.1016/j.immuni.2011.03.023] [PMID: 21636296]
[105]
Bosque A, Planelles V. Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood 2009; 113(1): 58-65.
[http://dx.doi.org/10.1182/blood-2008-07-168393] [PMID: 18849485]
[106]
Sahu GK, Lee K, Ji J, Braciale V, Baron S, Cloyd MW. A novel in vitro system to generate and study latently HIV-infected long-lived normal CD4+ T-lymphocytes. Virology 2006; 355(2): 127-37.
[http://dx.doi.org/10.1016/j.virol.2006.07.020] [PMID: 16919704]
[107]
Saleh S, Solomon A, Wightman F, Xhilaga M, Cameron PU, Lewin SR. CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood 2007; 110(13): 4161-4.
[http://dx.doi.org/10.1182/blood-2007-06-097907] [PMID: 17881634]
[108]
Tyagi M, Pearson RJ, Karn J. Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J Virol 2010; 84(13): 6425-37.
[http://dx.doi.org/10.1128/JVI.01519-09] [PMID: 20410271]
[109]
Yang HC, Xing S, Shan L, et al. Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. J Clin Invest 2009; 119(11): 3473-86.
[http://dx.doi.org/10.1172/JCI39199] [PMID: 19805909]
[110]
Restifo NP, Gattinoni L. Lineage relationship of effector and memory T cells. Curr Opin Immunol 2013; 25(5): 556-63.
[http://dx.doi.org/10.1016/j.coi.2013.09.003] [PMID: 24148236]
[111]
Gattinoni L, Lugli E, Ji Y, et al. A human memory T cell subset with stem cell-like properties. Nat Med 2011; 17(10): 1290-7.
[http://dx.doi.org/10.1038/nm.2446] [PMID: 21926977]
[112]
Sallusto F, Lanzavecchia A. Memory in disguise. Nat Med 2011; 17(10): 1182-3.
[http://dx.doi.org/10.1038/nm.2502] [PMID: 21988989]
[113]
Sallusto F, Lanzavecchia A. Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity. Eur J Immunol 2009; 39(8): 2076-82.
[http://dx.doi.org/10.1002/eji.200939722] [PMID: 19672903]
[114]
Carbone FR. Tissue-resident memory t cells and fixed immune surveillance in nonlymphoid organs. J Immunol 2015; 195(1): 17-22.
[http://dx.doi.org/10.4049/jimmunol.1500515] [PMID: 26092813]
[115]
Ebert A, Hill L, Busslinger M. Spatial Regulation of V-(D)J Recombination at Antigen Receptor Loci. Adv Immunol 2015; 128: 93-121.
[http://dx.doi.org/10.1016/bs.ai.2015.07.006] [PMID: 26477366]
[116]
Kalyan S, Kabelitz D. Defining the nature of human γδ T cells: a biographical sketch of the highly empathetic. Cell Mol Immunol 2013; 10(1): 21-9.
[http://dx.doi.org/10.1038/cmi.2012.44] [PMID: 23085947]
[117]
Kovacs JA, Lempicki RA, Sidorov IA, et al. Induction of prolonged survival of CD4+ T lymphocytes by intermittent IL-2 therapy in HIV-infected patients. J Clin Invest 2005; 115(8): 2139-48.
[http://dx.doi.org/10.1172/JCI23196] [PMID: 16025158]
[118]
Soriano-Sarabia N, Bateson RE, Dahl NP, et al. Quantitation of replication-competent HIV-1 in populations of resting CD4+ T cells. J Virol 2014; 88(24): 14070-7.
[http://dx.doi.org/10.1128/JVI.01900-14] [PMID: 25253353]
[119]
Vandergeeten C, Fromentin R, DaFonseca S, et al. Interleukin-7 promotes HIV persistence during antiretroviral therapy. Blood 2013; 121(21): 4321-9.
[http://dx.doi.org/10.1182/blood-2012-11-465625] [PMID: 23589672]
[120]
Bosque A, Famiglietti M, Weyrich AS, Goulston C, Planelles V. Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells. PLoS Pathog 2011; 7(10): e1002288
[http://dx.doi.org/10.1371/journal.ppat.1002288] [PMID: 21998586]
[121]
Sáez-Cirión A, Bacchus C, Hocqueloux L, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog 2013; 9(3): e1003211
[http://dx.doi.org/10.1371/journal.ppat.1003211] [PMID: 23516360]
[122]
Buzon MJ, Sun H, Li C, et al. HIV-1 persistence in CD4+ T cells with stem cell-like properties. Nat Med 2014; 20(2): 139-42.
[http://dx.doi.org/10.1038/nm.3445] [PMID: 24412925]
[123]
Muranski P, Restifo NP. Essentials of Th17 cell commitment and plasticity. Blood 2013; 121(13): 2402-14.
[http://dx.doi.org/10.1182/blood-2012-09-378653] [PMID: 23325835]
[124]
Baron BW, Desai M, Baber LJ, et al. BCL6 can repress transcription from the human immunodeficiency virus type I promoter/enhancer region. Genes Chromosomes Cancer 1997; 19(1): 14-21.
[http://dx.doi.org/10.1002/(SICI)1098-2264(199705)19:1<14:AID-GCC3>3.0.CO;2-3] [PMID: 9135990]
[125]
Holmes D, Knudsen G, Mackey-Cushman S, Su L. FoxP3 enhances HIV-1 gene expression by modulating NFkappaB occupancy at the long terminal repeat in human T cells. J Biol Chem 2007; 282(22): 15973-80.
[http://dx.doi.org/10.1074/jbc.M702051200] [PMID: 17416586]
[126]
Yang Z, Engel JD. Human T cell transcription factor GATA-3 stimulates HIV-1 expression. Nucleic Acids Res 1993; 21(12): 2831-6.
[http://dx.doi.org/10.1093/nar/21.12.2831] [PMID: 8332492]
[127]
Muranski P, Borman ZA, Kerkar SP, et al. Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 2011; 35(6): 972-85.
[http://dx.doi.org/10.1016/j.immuni.2011.09.019] [PMID: 22177921]
[128]
Wei S, Zhao E, Kryczek I, Zou W. Th17 cells have stem cell-like features and promote long-term immunity. OncoImmunology 2012; 1(4): 516-9.
[http://dx.doi.org/10.4161/onci.19440] [PMID: 22754771]
[129]
Sun H, Kim D, Li X, et al. Th1/17 Polarization of CD4 T Cells Supports HIV-1 Persistence during Antiretroviral Therapy. J Virol 2015; 89(22): 11284-93.
[http://dx.doi.org/10.1128/JVI.01595-15] [PMID: 26339043]
[130]
Cleret-Buhot A, Zhang Y, Planas D, et al. Identification of novel HIV-1 dependency factors in primary CCR4(+)CCR6(+)Th17 cells via a genome-wide transcriptional approach. Retrovirology 2015; 12: 102.
[http://dx.doi.org/10.1186/s12977-015-0226-9] [PMID: 26654242]
[131]
Gosselin A, Monteiro P, Chomont N, et al. Peripheral blood CCR4+CCR6+ and CXCR3+CCR6+CD4+ T cells are highly permissive to HIV-1 infection. J Immunol 2010; 184(3): 1604-16.
[http://dx.doi.org/10.4049/jimmunol.0903058] [PMID: 20042588]
[132]
Connick E, Folkvord JM, Lind KT, et al. Compartmentalization of simian immunodeficiency virus replication within secondary lymphoid tissues of rhesus macaques is linked to disease stage and inversely related to localization of virus-specific CTL. J Immunol 2014; 193(11): 5613-25.
[http://dx.doi.org/10.4049/jimmunol.1401161] [PMID: 25362178]
[133]
Fukazawa Y, Lum R, Okoye AA, et al. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat Med 2015; 21(2): 132-9.
[http://dx.doi.org/10.1038/nm.3781] [PMID: 25599132]
[134]
Hong JJ, Amancha PK, Rogers K, Ansari AA, Villinger F. Spatial alterations between CD4(+) T follicular helper, B, and CD8(+) T cells during simian immunodeficiency virus infection: T/B cell homeostasis, activation, and potential mechanism for viral escape. J Immunol 2012; 188(7): 3247-56.
[http://dx.doi.org/10.4049/jimmunol.1103138] [PMID: 22387550]
[135]
Perreau M, Savoye AL, De Crignis E, et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J Exp Med 2013; 210(1): 143-56.
[http://dx.doi.org/10.1084/jem.20121932] [PMID: 23254284]
[136]
Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2014; 41(4): 529-42.
[http://dx.doi.org/10.1016/j.immuni.2014.10.004] [PMID: 25367570]
[137]
Tran TA, de Goër de Herve MG, Hendel-Chavez H, et al. Resting regulatory CD4 T cells: a site of HIV persistence in patients on long-term effective antiretroviral therapy. PLoS One 2008; 3(10): e3305
[http://dx.doi.org/10.1371/journal.pone.0003305] [PMID: 18827929]
[138]
Soriano-Sarabia N, Archin NM, Bateson R, et al. Peripheral Vγ9Vδ2 T Cells Are a Novel Reservoir of Latent HIV Infection. PLoS Pathog 2015; 11(10): e1005201
[http://dx.doi.org/10.1371/journal.ppat.1005201] [PMID: 26473478]
[139]
Couturier J, Suliburk JW, Brown JM, et al. Human adipose tissue as a reservoir for memory CD4+ T cells and HIV. AIDS 2015; 29(6): 667-74.
[http://dx.doi.org/10.1097/QAD.0000000000000599] [PMID: 25849830]
[140]
Damouche A, Lazure T, Avettand-Fènoël V, et al. Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection. PLoS Pathog 2015; 11(9): e1005153
[http://dx.doi.org/10.1371/journal.ppat.1005153] [PMID: 26402858]
[141]
Furtado MR, Callaway DS, Phair JP, et al. Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. N Engl J Med 1999; 340(21): 1614-22.
[http://dx.doi.org/10.1056/NEJM199905273402102] [PMID: 10341273]
[142]
Koelsch KK, Liu L, Haubrich R, et al. Dynamics of total, linear nonintegrated, and integrated HIV-1 DNA in vivo and in vitro. J Infect Dis 2008; 197(3): 411-9.
[http://dx.doi.org/10.1086/525283] [PMID: 18248304]
[143]
Morand-Joubert L, Marcellin F, Launay O, et al. Contribution of cellular HIV-1 DNA quantification to the efficacy analysis of antiretroviral therapy: a randomized comparison of 2 regimens, including 3 drugs from 2 or 3 classes (TRIANON, ANRS 081). J Acquir Immune Defic Syndr 2005; 38(3): 268-76.
[PMID: 15735443]
[144]
Dornadula G, Zhang H, VanUitert B, et al. Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. JAMA 1999; 282(17): 1627-32.
[http://dx.doi.org/10.1001/jama.282.17.1627] [PMID: 10553788]
[145]
Maldarelli F, Palmer S, King MS, et al. ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia. PLoS Pathog 2007; 3(4): e46
[http://dx.doi.org/10.1371/journal.ppat.0030046] [PMID: 17411338]
[146]
Palmer S, Wiegand AP, Maldarelli F, et al. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 2003; 41(10): 4531-6.
[http://dx.doi.org/10.1128/JCM.41.10.4531-4536.2003] [PMID: 14532178]
[147]
Dinoso JB, Kim SY, Wiegand AM, et al. Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. Proc Natl Acad Sci USA 2009; 106(23): 9403-8.
[http://dx.doi.org/10.1073/pnas.0903107106] [PMID: 19470482]
[148]
Gandhi RT, Zheng L, Bosch RJ, et al. The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial. PLoS Med 2010; 7(8): e1000321
[http://dx.doi.org/10.1371/journal.pmed.1000321] [PMID: 20711481]
[149]
McMahon D, Jones J, Wiegand A, et al. Short-course raltegravir intensification does not reduce persistent low-level viremia in patients with HIV-1 suppression during receipt of combination antiretroviral therapy. Clin Infect Dis 2010; 50(6): 912-9.
[http://dx.doi.org/10.1086/650749] [PMID: 20156060]
[150]
Besson GJ, Lalama CM, Bosch RJ, et al. HIV-1 DNA decay dynamics in blood during more than a decade of suppressive antiretroviral therapy. Clin Infect Dis 2014; 59(9): 1312-21.
[http://dx.doi.org/10.1093/cid/ciu585] [PMID: 25073894]
[151]
Wang X, Mink G, Lin D, Song X, Rong L. Influence of raltegravir intensification on viral load and 2-LTR dynamics in HIV patients on suppressive antiretroviral therapy. J Theor Biol 2017; 416: 16-27.
[http://dx.doi.org/10.1016/j.jtbi.2016.12.015] [PMID: 28025011]
[152]
Bailey JR, Sedaghat AR, Kieffer T, et al. Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells. J Virol 2006; 80(13): 6441-57.
[http://dx.doi.org/10.1128/JVI.00591-06] [PMID: 16775332]
[153]
Hermankova M, Ray SC, Ruff C, et al. HIV-1 drug resistance profiles in children and adults with viral load of <50 copies/ml receiving combination therapy. JAMA 2001; 286(2): 196-207.
[http://dx.doi.org/10.1001/jama.286.2.196] [PMID: 11448283]
[154]
Kieffer TL, Finucane MM, Nettles RE, et al. Genotypic analysis of HIV-1 drug resistance at the limit of detection: virus production without evolution in treated adults with undetectable HIV loads. J Infect Dis 2004; 189(8): 1452-65.
[http://dx.doi.org/10.1086/382488] [PMID: 15073683]
[155]
Nettles RE, Kieffer TL, Kwon P, et al. Intermittent HIV-1 viremia (Blips) and drug resistance in patients receiving HAART. JAMA 2005; 293(7): 817-29.
[http://dx.doi.org/10.1001/jama.293.7.817] [PMID: 15713771]
[156]
Persaud D, Siberry GK, Ahonkhai A, et al. Continued production of drug-sensitive human immunodeficiency virus type 1 in children on combination antiretroviral therapy who have undetectable viral loads. J Virol 2004; 78(2): 968-79.
[http://dx.doi.org/10.1128/JVI.78.2.968-979.2004] [PMID: 14694128]
[157]
Anderson JA, Archin NM, Ince W, et al. Clonal sequences recovered from plasma from patients with residual HIV-1 viremia and on intensified antiretroviral therapy are identical to replicating viral RNAs recovered from circulating resting CD4+ T cells. J Virol 2011; 85(10): 5220-3.
[http://dx.doi.org/10.1128/JVI.00284-11] [PMID: 21367910]
[158]
Tobin NH, Learn GH, Holte SE, et al. Evidence that low-level viremias during effective highly active antiretroviral therapy result from two processes: expression of archival virus and replication of virus. J Virol 2005; 79(15): 9625-34.
[http://dx.doi.org/10.1128/JVI.79.15.9625-9634.2005] [PMID: 16014925]
[159]
Wagner TA, McKernan JL, Tobin NH, Tapia KA, Mullins JI, Frenkel LM. An increasing proportion of monotypic HIV-1 DNA sequences during antiretroviral treatment suggests proliferation of HIV-infected cells. J Virol 2013; 87(3): 1770-8.
[http://dx.doi.org/10.1128/JVI.01985-12] [PMID: 23175380]
[160]
Hill AL, Rosenbloom DI, Fu F, Nowak MA, Siliciano RF. Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. Proc Natl Acad Sci USA 2014; 111(37): 13475-80.
[http://dx.doi.org/10.1073/pnas.1406663111] [PMID: 25097264]
[161]
Joos B, Fischer M, Kuster H, et al. HIV rebounds from latently infected cells, rather than from continuing low-level replication. Proc Natl Acad Sci USA 2008; 105(43): 16725-30.
[http://dx.doi.org/10.1073/pnas.0804192105] [PMID: 18936487]
[162]
Henrich TJ, Hanhauser E, Marty FM, et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann Intern Med 2014; 161(5): 319-27.
[http://dx.doi.org/10.7326/M14-1027] [PMID: 25047577]
[163]
Henrich TJ, Hu Z, Li JZ, et al. Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J Infect Dis 2013; 207(11): 1694-702.
[http://dx.doi.org/10.1093/infdis/jit086] [PMID: 23460751]
[164]
Kearney M, Maldarelli F, Shao W, et al. Human immunodeficiency virus type 1 population genetics and adaptation in newly infected individuals. J Virol 2009; 83(6): 2715-27.
[http://dx.doi.org/10.1128/JVI.01960-08] [PMID: 19116249]
[165]
Keele BF, Giorgi EE, Salazar-Gonzalez JF, et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci USA 2008; 105(21): 7552-7.
[http://dx.doi.org/10.1073/pnas.0802203105] [PMID: 18490657]
[166]
Nickle DC, Jensen MA, Shriner D, et al. Evolutionary indicators of human immunodeficiency virus type 1 reservoirs and compartments. J Virol 2003; 77(9): 5540-6.
[http://dx.doi.org/10.1128/JVI.77.9.5540-5546.2003] [PMID: 12692259]
[167]
Chun TW, Nickle DC, Justement JS, et al. HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir. J Clin Invest 2005; 115(11): 3250-5.
[http://dx.doi.org/10.1172/JCI26197] [PMID: 16276421]
[168]
Cory TJ, Schacker TW, Stevenson M, Fletcher CV. Overcoming pharmacologic sanctuaries. Curr Opin HIV AIDS 2013; 8(3): 190-5.
[http://dx.doi.org/10.1097/COH.0b013e32835fc68a] [PMID: 23454865]
[169]
Fletcher CV, Staskus K, Wietgrefe SW, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci USA 2014; 111(6): 2307-12.
[http://dx.doi.org/10.1073/pnas.1318249111] [PMID: 24469825]
[170]
Huang Y, Hoque MT, Jenabian MA, et al. Antiretroviral drug transporters and metabolic enzymes in human testicular tissue: potential contribution to HIV-1 sanctuary site. J Antimicrob Chemother 2016; 71(7): 1954-65.
[http://dx.doi.org/10.1093/jac/dkw046] [PMID: 27076103]
[171]
Lorenzo-Redondo R, Fryer HR, Bedford T, et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 2016; 530(7588): 51-6.
[http://dx.doi.org/10.1038/nature16933] [PMID: 26814962]
[172]
Boritz EA, Darko S, Swaszek L, et al. Multiple Origins of Virus Persistence during Natural Control of HIV Infection. Cell 2016; 166(4): 1004-15.
[http://dx.doi.org/10.1016/j.cell.2016.06.039] [PMID: 27453467]
[173]
Kearney MF, Wiegand A, Shao W, et al. Ongoing HIV Replication During ART Reconsidered. Open Forum Infect Dis 2017; 4(3): ofx173
[http://dx.doi.org/10.1093/ofid/ofx173] [PMID: 30310821]
[174]
Brodin J, Zanini F, Thebo L, et al. Establishment and stability of the latent HIV-1 DNA reservoir. eLife 2016; 5: 5.
[http://dx.doi.org/10.7554/eLife.18889] [PMID: 27855060]
[175]
Evering TH, Mehandru S, Racz P, et al. Absence of HIV-1 evolution in the gut-associated lymphoid tissue from patients on combination antiviral therapy initiated during primary infection. PLoS Pathog 2012; 8(2): e1002506
[http://dx.doi.org/10.1371/journal.ppat.1002506] [PMID: 22319447]
[176]
Kearney MF, Spindler J, Shao W, et al. Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. PLoS Pathog 2014; 10(3): e1004010
[http://dx.doi.org/10.1371/journal.ppat.1004010] [PMID: 24651464]
[177]
Hammarlund E, Lewis MW, Hansen SG, et al. Duration of antiviral immunity after smallpox vaccination. Nat Med 2003; 9(9): 1131-7.
[http://dx.doi.org/10.1038/nm917] [PMID: 12925846]
[178]
Takaki A, Wiese M, Maertens G, et al. Cellular immune responses persist and humoral responses decrease two decades after recovery from a single-source outbreak of hepatitis C. Nat Med 2000; 6(5): 578-82.
[http://dx.doi.org/10.1038/75063] [PMID: 10802716]
[179]
Hellerstein MK, Hoh RA, Hanley MB, et al. Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. J Clin Invest 2003; 112(6): 956-66.
[http://dx.doi.org/10.1172/JCI200317533] [PMID: 12975480]
[180]
Mclean AR, Michie CA. In vivo estimates of division and death rates of human T lymphocytes. Proc Natl Acad Sci USA 1995; 92(9): 3707-11.
[http://dx.doi.org/10.1073/pnas.92.9.3707] [PMID: 7731969]
[181]
Michie CA, McLean A, Alcock C, Beverley PC. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 1992; 360(6401): 264-5.
[http://dx.doi.org/10.1038/360264a0] [PMID: 1436108]
[182]
Vrisekoop N, den Braber I, de Boer AB, et al. Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool. Proc Natl Acad Sci USA 2008; 105(16): 6115-20.
[http://dx.doi.org/10.1073/pnas.0709713105] [PMID: 18420820]
[183]
Surh CD, Sprent J. Homeostasis of naive and memory T cells. Immunity 2008; 29(6): 848-62.
[http://dx.doi.org/10.1016/j.immuni.2008.11.002] [PMID: 19100699]
[184]
Maldarelli F, Wu X, Su L, et al. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 2014; 345(6193): 179-83.
[http://dx.doi.org/10.1126/science.1254194] [PMID: 24968937]
[185]
Simonetti FR, Sobolewski MD, Fyne E, et al. Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc Natl Acad Sci USA 2016; 113(7): 1883-8.
[http://dx.doi.org/10.1073/pnas.1522675113] [PMID: 26858442]
[186]
Wagner TA, McLaughlin S, Garg K, et al. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 2014; 345(6196): 570-3.
[http://dx.doi.org/10.1126/science.1256304] [PMID: 25011556]
[187]
Katlama C, Lambert-Niclot S, Assoumou L, et al. Treatment intensification followed by interleukin-7 reactivates HIV without reducing total HIV DNA: a randomized trial. AIDS 2016; 30(2): 221-30.
[http://dx.doi.org/10.1097/QAD.0000000000000894] [PMID: 26684819]
[188]
Purton JF, Tan JT, Rubinstein MP, Kim DM, Sprent J, Surh CD. Antiviral CD4+ memory T cells are IL-15 dependent. J Exp Med 2007; 204(4): 951-61.
[http://dx.doi.org/10.1084/jem.20061805] [PMID: 17420265]
[189]
Brenchley JM, Ruff LE, Casazza JP, Koup RA, Price DA, Douek DC. Preferential infection shortens the life span of human immunodeficiency virus-specific CD4+ T cells in vivo. J Virol 2006; 80(14): 6801-9.
[http://dx.doi.org/10.1128/JVI.00070-06] [PMID: 16809286]
[190]
Han Y, Lassen K, Monie D, et al. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J Virol 2004; 78(12): 6122-33.
[http://dx.doi.org/10.1128/JVI.78.12.6122-6133.2004] [PMID: 15163705]
[191]
Schröder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110(4): 521-9.
[http://dx.doi.org/10.1016/S0092-8674(02)00864-4] [PMID: 12202041]
[192]
Berry CC, Gillet NA, Melamed A, Gormley N, Bangham CR, Bushman FD. Estimating abundances of retroviral insertion sites from DNA fragment length data. Bioinformatics 2012; 28(6): 755-62.
[http://dx.doi.org/10.1093/bioinformatics/bts004] [PMID: 22238265]
[193]
Cohn LB, Silva IT, Oliveira TY, et al. HIV-1 integration landscape during latent and active infection. Cell 2015; 160(3): 420-32.
[http://dx.doi.org/10.1016/j.cell.2015.01.020] [PMID: 25635456]
[194]
Flucke U, Tops BB, de Saint Aubain Somerhausen N, et al. Presence of C11orf95-MKL2 fusion is a consistent finding in chondroid lipomas: a study of eight cases. Histopathology 2013; 62(6): 925-30.
[http://dx.doi.org/10.1111/his.12100] [PMID: 23672313]
[195]
Kobayashi S, Taki T, Chinen Y, et al. Identification of IGHCδ-BACH2 fusion transcripts resulting from cryptic chromosomal rearrangements of 14q32 with 6q15 in aggressive B-cell lymphoma/leukemia. Genes Chromosomes Cancer 2011; 50(4): 207-16.
[http://dx.doi.org/10.1002/gcc.20845] [PMID: 21319257]
[196]
Muehlich S, Hampl V, Khalid S, et al. The transcriptional coactivators megakaryoblastic leukemia 1/2 mediate the effects of loss of the tumor suppressor deleted in liver cancer 1. Oncogene 2012; 31(35): 3913-23.
[http://dx.doi.org/10.1038/onc.2011.560] [PMID: 22139079]
[197]
Ikeda T, Shibata J, Yoshimura K, Koito A, Matsushita S. Recurrent HIV-1 integration at the BACH2 locus in resting CD4+ T cell populations during effective highly active antiretroviral therapy. J Infect Dis 2007; 195(5): 716-25.
[http://dx.doi.org/10.1086/510915] [PMID: 17262715]
[198]
Lucic B, Chen HC, Kuzman M, et al. Spatially clustered loci with multiple enhancers are frequent targets of HIV-1 integration. Nat Commun 2019; 10(1): 4059.
[http://dx.doi.org/10.1038/s41467-019-12046-3] [PMID: 31492853]
[199]
Simonetti FR, Spindler J, Wu X, Hill S, Shao W, Mellors JW, et al. Analysis of HIV proviurses in clonally expanded cells in vivo. conference on retrovirues and opportunistic infections (Boston). 127.
[200]
Bruner KM, Murray AJ, Pollack RA, et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med 2016; 22(9): 1043-9.
[http://dx.doi.org/10.1038/nm.4156] [PMID: 27500724]
[201]
Ho YC, Shan L, Hosmane NN, et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 2013; 155(3): 540-51.
[http://dx.doi.org/10.1016/j.cell.2013.09.020] [PMID: 24243014]
[202]
Bender AM, Simonetti FR, Kumar MR, Fray EJ, Bruner KM, Timmons AE, et al. The Landscape of Persistent Viral Genomes in ART-Treated SIV, SHIV, and HIV-2 Infections. Cell Host Microbe 2019; 26(1): 73-85.
[203]
Harris RS, Dudley JP. APOBECs and virus restriction. Virology 2015; 479-480: 131-45.
[http://dx.doi.org/10.1016/j.virol.2015.03.012] [PMID: 25818029]
[204]
Boltz VF, Rausch J, Shao W, et al. Ultrasensitive single-genome sequencing: accurate, targeted, next generation sequencing of HIV-1 RNA. Retrovirology 2016; 13(1): 87.
[http://dx.doi.org/10.1186/s12977-016-0321-6] [PMID: 27998286]
[205]
Hiener B, Eden JS, Horsburgh BA, Palmer S. Amplification of near full-length HIV-1 proviruses for next-generation sequencing. J Vis Exp 2018; (140): : e58016
[206]
Einkauf KB, Lee GQ, Gao C, et al. Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy. J Clin Invest 2019; 129(3): 988-98.
[http://dx.doi.org/10.1172/JCI124291] [PMID: 30688658]
[207]
Patro SC, Brandt LD, Bale MJ, Halvas EK, Joseph KW, Shao W, et al. Combined HIV-1 sequence and integration site analysis informs viral dynamics and allows reconstruction of replicating viral ancestors. Proceedings of the National Academy of Sciences of the United States of America.
[http://dx.doi.org/10.1073/pnas.1910334116]
[208]
Lasken RS. Single-cell genomic sequencing using Multiple Displacement Amplification. Curr Opin Microbiol 2007; 10(5): 510-6.
[http://dx.doi.org/10.1016/j.mib.2007.08.005] [PMID: 17923430]
[209]
De Simone M, Rossetti G, Pagani M. Single Cell T Cell Receptor Sequencing: Techniques and Future Challenges. Front Immunol 2018; 9: 1638.
[http://dx.doi.org/10.3389/fimmu.2018.01638] [PMID: 30072991]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 18
ISSUE: 2
Year: 2020
Page: [99 - 113]
Pages: 15
DOI: 10.2174/1570162X18666191231105438
Price: $65

Article Metrics

PDF: 18