Tetraamminecopper(II) Sulfate Monohydrate in Oxidative Azide-olefin Cyclo-addition and Three-component Click Reaction

Author(s): Jasmin Sultana, Diganta Sarma*.

Journal Name: Current Organic Synthesis

Volume 17 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Introduction: An effective Cu-complex, [Cu(NH3)4SO4 • H2O] was prepared conveniently from the inexpensive and easily available starting reagents in a simple route.

Materials and Methods: Excellent reactivity of the catalyst was observed towards two competent clickcycloadditions: (a) oxidative cycloaddition of azides with electron-poor olefins and (b) one-pot cycloaddition of alkynes with boronic acid and sodium azide under “click-appropriate” conditions.

Results: No external oxidant, short reaction time, high product yield, wide substrate scope, and aqueous solvent media make the azide-olefin cycloaddition approach a greener route in contrast to the reported methods.

Conclusion: The newly developed mild, green, and rapid three-component strategy shows product diversity with superb yields at room temperature by reducing the synthetic process time and using only 1 mol % of the synthesized copper complex.

Keywords: Ammoniated Cu-complex, OAOC, boronic acid, aqueous media, regioselective, 1, 2, 3-triazole.

[1]
(a)Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.Available at.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
(b)Bohacek, R.S.; McMartin, C.; Guida, W.C. The art and practice of structure-based drug design: A molecular modeling perspective. Med. Res.Rev.,, 1996, 16(1), 3-50.Available at.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199601)16:1 ‹3::AID-MED1› 3.0.CO;2-6.] [PMID: 8788213]
(c)Meldal, M.; Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev., 2008, 108(8), 2952-3015.Available at.
[http://dx.doi.org/10.1021/cr0783479] [PMID: 18698735]
(d)Angell, Y.L; Burgess, K. Peptidomimetics via copper-catalyzed azidealkyne cycloadditions. Chem. Soc. Rev.,, 2007, 36(10), 1674-1689.Available at.
[http://dx.doi.org/10.1039/b701444a.] [PMID: 17721589]
[2]
Kolb, H.C.; Finnand, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed.,, 2001, 40, 2004-2021.Available at.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11‹2004::AID-ANIE2004 ›3.0.CO;2-5]
[3]
(a)Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.Available at.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
(b)Whiting, M.; Tripp, J.C.; Lin, Y-C.; Lindstrom, W.; Olson, A.J.; Elder, J.H.; Sharpless, K.B.; Fokin, V.V. Rapid discovery and structure-activity profiling of novel inhibitors of human immunodeficiency virus type 1 protease enabled by the copper(I)-catalyzed synthesis of 1,2,3-triazoles and their further functionalization. J. Med. Chem., 2006, 49(26), 7697-7710.Available at.
[http://dx.doi.org/10.1021/jm060754] [PMID: 17181152]
[4]
Hawker, C.J.; Fokin, V.V.; Finn, M.G.; Sharpless, K.B. Bringing efficiency to materials synthesis: The philosophy of click chemistry. Aust. J. Chem., 2007, 60, 381.Available at.
[http://dx.doi.org/10.1071/CH07107]
[5]
(a)Link, A.J.; Tirrell, D.A. Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. J. Am. Chem. Soc., 2003, 125(37), 11164-11165.Available at.
[http://dx.doi.org/10.1021/ja036765z] [PMID: 16220915]
(b)Wang, Q.; Chan, T.R.; Hilgraf, R.; Fokin, V.V.; Sharpless, K.B.; Finn, M.G. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 2003, 125, 3192. c) Lutz, J.-F.; Zarafshani, Z. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry. Adv. Drug Deliv. Rev., 2008, 60, 958.
[6]
(a)Evans, R.A. The rise of azide–alkyne 1,3-dipolar ‘click’ cycloaddition and its application to polymer science and surface modification. Aust. J. Chem., 2007, 60, 384.Available at.
[http://dx.doi.org/10.1071/CH06457]
(b)Johnson, J.A.; Koberstein, J.T.; Finn, M.G.; Turro, N.J. Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper‐catalyzed azide‐alkyne cycloaddition “click” chemistry. Macromol. Rapid Commun., 2008, 29, 1052.Available at.
[http://dx.doi.org/10.1002/marc.200800208]
[7]
(a)Huisgen, R. Angew. 1,3‐dipolar cycloadditions. past and future. Chem. Int. Ed. Engl., 1963, 2, 565-598.Available at.
[http://dx.doi.org/10.1002/anie.196305651]
(b)Huisgen, R. Kinetics and mechanism of 1,3‐dipolar cycloadditions. Angew. Chem. Int. Ed. Engl., 1963, 2, 633-645.Available at.
[http://dx.doi.org/10.1002/anie.196306331]
(c)Huisgen, R. 1.3‐ dipolar cycloadditions review and outlook. Angew. Chem., 1963, 75, 604-637.Available at.
[http://dx.doi.org/10.1002/ange.19630751304]
(d)Huisgen, R. Kinetics and mechanism of 1.3 ‐ dipolar cycloadditions. Angew. Chem., 1963, 75, 742-754.Available at.
[http://dx.doi.org/10.1002/ange.19630751603]
[8]
(a)Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.Available at.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
(b)Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(i)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed.,, 2002, 41, 2596-2599.Available at.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14‹2596::AID-ANIE2596›3.0.CO;2-4.]
[9]
(a)Zhang, L.; Chen, X.; Xue, P.; Sun, H.H.Y.; Williams, I.D.; Sharpless, K.B.; Fokin, V.V.; Jia, G. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc., 2005, 127(46), 15998-15999.Available at.
[http://dx.doi.org/10.1021/ja054114s] [PMID: 16287266]
(b)Rasmussen, L.K.; Boren, B.C.; Fokin, V.V. Ruthenium-catalyzed cycloaddition of aryl azides and alkynes. Org. Lett., 2007, 9(26), 5337-5339.Available at.
[http://dx.doi.org/10.1021/ol701912s] [PMID: 18052070]
(c)Boren, B.C.; Narayan, S.; Rasmussen, L.K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V.V. Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism. J. Am. Chem. Soc., 2008, 130(28), 8923-8930.Available at.
[http://dx.doi.org/10.1021/ja0749993] [PMID: 18570425]
[10]
(a)Krasiński, A.; Fokin, V.V.; Sharpless, K.B. Direct synthesis of 1,5-disubstituted-4-magnesio-1,2,3-triazoles, revisited. Org. Lett., 2004, 6(8), 1237-1240.Available at.
[http://dx.doi.org/10.1021/ol0499203] [PMID: 15070306]
(b)Wu, W-M.; Deng, J.; Li, Y.; Chen, Q-Y. Regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazole via one-pot reaction promoted by copper(i) salt. Synthesis, 2005, 8, 1314.Available at.
[http://dx.doi.org/10.1055/s-2005-861860]
(c)Majireck, M.M.; Weinreb, S.M.J. A study of the scope and regioselectivity of the ruthenium-catalyzed [3 + 2]-cycloaddition of azides with internal alkynes. J. Org. Chem., 2006, 71(22), 8680-8683.Available at.
[http://dx.doi.org/10.1021/jo061688m] [PMID: 17064059]
(d)Drez-Gonzalez, S.; Stevens, D.D.; Nolan, S.P. Chem. Commun. (Camb.), 2008, 4747Available at.
[http://dx.doi.org/10.1039/b806806b]
(e)Zhang, H.; Tanimoto, H.; Morimoto, T.; Nishiyama, Y.; Kakiuchi, K. Regioselective rapid synthesis of fully substituted 1,2,3-triazoles mediated by propargyl cations. Org. Lett., 2013, 15(20), 5222-5225.Available at.
[http://dx.doi.org/10.1021/ol402387w] [PMID: 24087927]
[11]
(a)Ramachary, D.B.; Ramakumar, K.; Narayana, V.V. Amino acid-catalyzed cascade [3+2]-cycloaddition/hydrolysis reactions based on the push-pull dienamine platform: synthesis of highly functionalized NH-1,2,3-triazoles. Chemistry, 2008, 14(30), 9143-9147.Available at.
[http://dx.doi.org/10.1002/chem.200801325.] [PMID: 18767077]
(b)Danence, L.J.T.; Gao, Y.; Li, M.; Huang, Y.; Wang, J. Organocatalytic enamide-azide cycloaddition reactions: Regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazoles. Chemistry, 2011, 17(13), 3584-3587.Available at.
[http://dx.doi.org/10.1002/chem.201002775.] [PMID: 21341323]
(c)Wang, L.; Peng, S.; Danence, L.J.T.; Gao, Y.; Wang, J. Amine-catalyzed [3+2] Huisgen cycloaddition strategy for the efficient assembly of highly substituted 1,2,3-triazoles. Chemistry, 2012, 18(19), 6088-6093.Available at.
[http://dx.doi.org/10.1002/chem.201103393.] [PMID: 22461307]
(d)Seus, N.; Goncalves, L.C.; Deobald, A.M.; Savegnago, L.; Alves, D.; Paixao, M.W. Synthesis of arylselanyl-1H-1,2,3-triazole-4-carboxylates by organocatalytic cycloaddition of azidophenyl arylselenides with β-keto-esters. Tetrahedron, 2012, 68, 10456.Available at.
[http://dx.doi.org/10.1016/j.tet.2012.10.007.]
(e)Li, Z.L.; Xie, Y.; Zhou, W. Professor Wang Ju-yi’s experience on clinical application of Siguan points. Zhongguo Zhenjiu, 2013, 33(3), 255-257.
[PMID: 23713316]
(f)Ramachary, D.B.; Shashank, A.B. Organocatalytic triazole formation, followed by oxidative aromatization: Regioselective metal-free synthesis of benzotriazoles. Chemistry, 2013, 19(39), 13175-13181.Available at.
[http://dx.doi.org/10.1002/chem.201301412.] [PMID: 24038664]
(g)Ramachary, D.B.; Shashank, A.B.; Karthik, S. An organocatalytic azide–aldehyde [3+2] cycloaddition: High‐yielding regioselective synthesis of 1,4‐disubstituted 1,2,3‐triazoles. Angew. Chem. Int. Ed., 2014, 53, 10420.Available at.
[http://dx.doi.org/10.1002/anie.20140672.]
(h)Cheng, G.; Zeng, X.; Shen, J.; Wang, X.; Cui, X. A metal‐free multicomponent cascade reaction for the regiospecific synthesis of 1,5‐disubstituted 1,2,3‐triazoles. Angew. Chem. Int. Ed., 2013, 52, 13265.Available at.
[http://dx.doi.org/10.1002/anie.201307499.]
(i)Tian, L.; Hu, X-Q.; Li, Y.H.; Xu, P-F. Organocatalytic asymmetric multicomponent cascade reaction via 1,3-proton shift and [3+2] cycloaddition: an efficient strategy for the synthesis of oxindole derivatives. Chem. Commun. (Camb.), 2013, 49(65), 7213-7215.Available at.
[http://dx.doi.org/10.1039/c3cc43755h.] [PMID: 23838686]
[12]
Amantini, D.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Zunino, E.; Vaccaro, L. Synthesis of 4-aryl-1H-1,2,3-triazoles through TBAF-catalyzed [3 + 2] cycloaddition of 2-aryl-1-nitroethenes with TMSN3 under solvent-free conditions. J. Org. Chem., 2005, 70(16), 6526-6529.Available at.
[http://dx.doi.org/10.1021/jo0507845] [PMID: 16050724]
[13]
(a)Li, W.; Wang, J. Lewis base catalyzed aerobic oxidative intermolecular azide–zwitterion cycloaddition. Angew. Chem. Int. Ed., 2014, 53, 14186-14190.Available at.
[http://dx.doi.org/10.1002/anie.201408265]
(b)Li, W.; Du, Z.; Zhang, K.; Wang, J. Green Chem., 2015, 17, 781-784.Available at.
[http://dx.doi.org/10.1039/C4GC01929F]
[14]
Janreddy, D.; Kavala, V.; Kuo, C.W.; Chen, W.C.; Ramesh, C.; Kotipalli, T.; Kuo, T.S.; Chen, M.L.; He, C.H.; Yao, C.F. Organocatalytic 1,3-dipolar cycloaddition reaction of α,β-unsaturated ketones with azides through iminium catalysis. Adv. Synth. Catal., 2013, 355, 2918-2927.Available at.
[http://dx.doi.org/10.1002/adsc.20130034]
[15]
(a)Huisgen, R.; Szeimies, G.; Mobius, L. 1.3‐Dipolare Cycloadditionen, XXIV. Triazoline aus organischen Aziden und α.β‐ungesättigten Carbonylverbindungen oder Nitrilen. Chem. Ber., 1966, 99, 475-490.Available at.
[http://dx.doi.org/10.1002/cber.19660990216]
(b)Broeckx, W.; Overbergh, N.; Samyn, C.; Smets, G.; L’abbe, G. Cycloaddition reactions of azides with electron-poor olefins: Isomerization and thermolysis of the resulting Δ2-triazolines. Tetrahedron, 1971, 27, 3527-3534.Available at.
[http://dx.doi.org/10.1016/S0040-4020(01)97763-4]
[16]
(a)Husinec, S.; Porter, A.E.A.; Roberts, J.S.; Strachan, C.H. Some approaches to the synthesis of kainic acid. J. Chem. Soc., Perkin Trans., 1984, 1, 2517-2522.Available at.
[http://dx.doi.org/10.1039/p19840002517]
(b)Anderson, G.T.; Henry, J.R.; Weinreb, S.M. High-pressure induced 1,3-dipolar cycloadditions of azides with electron-deficient olefins. J. Org. Chem., 1991, 56, 6946-6948.Available at.
[http://dx.doi.org/10.1021/jo00024a047]
(c)Prager, R.H.; Razzino, P. Heterocyclic synthesis with azides. iii. reactions of triazolines made from arylmethylidenemalonates. Aust. J. Chem., 1994, 47, 1375-1385.Available at.
[http://dx.doi.org/10.1071/CH9941375]
(d)Yang, C-H.; Lee, L-T. ang, J.-H. Spiropyrazolines from tandem reaction of azides and alkyl vinyl ketones. Tetrahedron, 1994, 50, 12133-12142.Available at.
[http://dx.doi.org/10.1016/S0040-4020(01)89566-]
[17]
Janreddy, D.; Kavala, V.; Kuo, C-W.; Chen, W-C.; Ramesh, C.; Kotipalli, T.; Kuo, T-S.; Chen, M-L.; He, C-H.; Yao, C-F. Copper(i)‐catalyzed aerobic oxidative azide–alkene cyclo‐ addition: An efficient synthesis of substituted 1,2,3‐triazoles. Adv. Synth. Catal., 2013, 355, 2918-2927.Available at.
[http://dx.doi.org/10.1002/adsc.201300344]
[18]
Zhang, Y.; Li, X.; Li, J.; Chen, J.; Meng, X.; Zhao, M.; Chen, B. CuO-promoted construction of N-2-aryl-substituted-1,2,3-triazoles via azide-chalcone oxidative cycloaddition and post-triazole arylation. Org. Lett., 2012, 14(1), 26-29.Available at.
[http://dx.doi.org/10.1021/ol202718d] [PMID: 22133007]
[19]
Chen, Y.; Nie, G.; Zhang, Q.; Ma, S.; Li, H.; Hu, Q. Copper-catalyzed [3 + 2] cycloaddition/oxidation reactions between nitro-olefins and organic azides: highly regioselective synthesis of NO2-substituted 1,2,3-triazoles. Org. Lett., 2015, 17(5), 1118-1121.Available at.
[http://dx.doi.org/10.1021/ol503687w] [PMID: 25695309]
[20]
Rohilla, S.; Patel, S.S.; Jain, N. Eur. J. Org. Chem., 2016, 847-854.Available at.
[http://dx.doi.org/10.1002/ejoc.201501301]
[21]
(a)Barral, K.; Moorhouse, A.D.; Moses, J.E. Efficient conversion of aromatic amines into azides: A one-pot synthesis of triazole linkages. Org. Lett., 2007, 9(9), 1809-1811.Available at.
[http://dx.doi.org/10.1021/ol070527h] [PMID: 17391043]
(b)Guo, S.; Lim, M.H.; Huynh, H.V. Copper(i) heteroleptic bis(nhc) and mixed nhc/phosphine complexes: Syntheses and catalytic activities in the one-pot sequential cuaac reaction of aromatic amines. Organometallics, 2013, 32, 7225-7233.Available at.
[http://dx.doi.org/10.1021/om400911u]
[22]
(a)Zhu, W.; Ma, D. Synthesis of aryl azides and vinyl azides via proline-promoted CuI-catalyzed coupling reactions. Chem. Commun. (Camb.), 2004, (7), 888-889.Available at.
[http://dx.doi.org/10.1039/b400878b] [PMID: 15045114]
(b)Feldman, A.K.; Colasson, B.; Fokin, V.V. One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from in situ generated azides. Org. Lett., 2004, 6(22), 3897-3899.Available at.
[http://dx.doi.org/10.1021/ol048859z] [PMID: 15496058]
(c)Andersen, J.; Bolving, S.; Liang, X. Synlett, 2005, 2941-2947.
[23]
Mukherjee, N.; Ahammed, S.; Bhadra, S.; Ranu, B.C. Solvent-free one-pot synthesis of 1,2,3-triazole derivatives by the ‘Click’ reaction of alkyl halides or aryl boronic acids, sodium azide and terminal alkynes over a Cu/Al2O3 surface under ball-milling. Green Chem., 2013, 15, 389.Available at.
[http://dx.doi.org/10.1039/C2GC36521A]
[24]
Anil Kumar, B.S.P.; Reddy, K.H.V.; Karnakar, K.; Satish, G.; Nageswar, Y.V.D. Copper on chitosan: An efficient and easily recoverable heterogeneous catalyst for one pot synthesis of 1,2,3-triazoles from aryl boronic acids in water at room temperature. Tetrahedron Lett., 2015, 56, 1968.Available at.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.107]
[25]
Prez, J.M.; Crosbie, P.; Lal, S.; Gonzalez, S.D. Low‐temperature preferential oxidation of carbon monoxide on pt3ni alloy nanoparticle catalyst with engineered surface (chemcatchem 1/2016). ChemCatChem, 2016, 8, 1-6.Available at.
[http://dx.doi.org/10.1002/cctc.201501371]
[26]
Zhang, J.; Jin, G.; Xiao, S.; Wu, J.; Cao, S. Novel synthesis of 1,4,5-trisubstituted 1,2,3-triazoles via a one-pot three-component reaction of boronic acids, azide, and active methylene ketones. Tetrahedron, 2013, 69, 2352-2356.Available at.
[http://dx.doi.org/10.1016/j.tet.2012.12.086]
[27]
Kaboudin, B.; Abedi, Y.; Yokomatsu, T. One-pot synthesis of 1,2,3-triazoles from boronic acids in water using Cu(II)-β-cyclodextrin complex as a nanocatalyst. Org. Biomol. Chem., 2012, 10(23), 4543-4548.
[http://dx.doi.org/10.1039/c2ob25061f] [PMID: 22576790]
[28]
Lua, J.; Maa, E.; Liub, Y.; Lia, Y.; Moa, L.; Zhang, Z. Cobalt(ii)-catalyzed remote C5-selective C–H sulfonylation of quinolines via insertion of sulfur dioxide. RSC Advances, 2017, 7, 51313-51317.
[29]
Kaboudin, B.; Mostafalua, R.; Yokomatsu, T. Fe3O4nanoparticle-supported Cu(ii)-β-cyclodextrin complex as a magnetically recoverable and reusable catalyst for the synthesis of symmetrical biaryls and 1,2,3-triazoles from aryl boronic acids. Green Chem., 2013, 15, 2266-2274.Available at.
[http://dx.doi.org/10.1039/c3gc40753e]
[30]
Garg, A.; Ali, A.A.; Damarla, K.; Kumar, A.; Sarma, D. Aqueous bile salt accelerated cascade synthesis of 1,2,3-triazoles from arylboronic acids. Tetrahedron Lett., 2018, 59, 3975-4045.Available at.
[http://dx.doi.org/10.1016/j.tetlet.2018.09.064]
[31]
(a)Clareen, S.S.; Marshall, S.R.; Price, K.E.; Royall, M.B.; Yoder, C.H.; Schaeffer, R.W. J. Chem. Educ., 2000, 77.
(b)Glemser, O.; Sauer, H. Tetraamminecopper (II) SulfateHandbook of Preparative Inorganic Chemistry; 2nd Ed., Academic Press: Cambridge,. , 1963, p. 11021.
[32]
Morosin, B. The crystal structures of copper tetraammine complexes. A. Acta Crystallogr., 1969, B25, 19-30.Available at.
[http://dx.doi.org/10.1107/S0567740869001725]
[33]
Clareen, S.S.; Marshall, S.R.; Price, K.E.; Royall, M.B.; Yoder, C.H.; Schaeffer, R.W. J. Chem. Educ., 2002, 17, 904.
[34]
(a)McNulty, J.; Keskar, K.; Vemula, R. The first well-defined silver(I)-complex-catalyzed cycloaddition of azides onto terminal alkynes at room temperature. Chemistry, 2011, 17(52), 14727-14730.Available at.
[http://dx.doi.org/10.1002/chem.201103244] [PMID: 22125272]
(b)McNulty, J.; Keskar, K. Discovery of a robust and efficient homogeneous silver(i) catalyst for the cycloaddition of azides onto terminal alkynes. Eur. J. Org. Chem., 2012, 5462-5470.Available at.
[http://dx.doi.org/10.1002/ejoc.201200930]
[35]
(a)Speers, A.E.; Cravatt, B.F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol., 2004, 11(4), 535-546.
[http://dx.doi.org/10.1016/j.chembiol.2004.03.012] [PMID: 15123248]
(b)Salic, A.; Mitchison, T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2415-2420.
[http://dx.doi.org/10.1073/pnas.0712168105] [PMID: 18272492]
[36]
Abel, G.R., Jr; Calabrese, Z.A.; Ayco, J.; Hein, J.E.; Ye, T. Measuring and suppressing the oxidative damage to DNA during cu(i)-catalyzed azide-alkyne cycloaddition. Bioconjug. Chem., 2016, 27(3), 698-704.Available at.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00665.] [PMID: 26829457]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 17
ISSUE: 1
Year: 2020
Page: [65 - 72]
Pages: 8
DOI: 10.2174/1570179417666191223152643
Price: $65

Article Metrics

PDF: 8
HTML: 3
PRC: 1