Carbon Dots for Bacterial Detection and Antibacterial Applications-A Minireview

Author(s): Anisha Anand, Gopinathan Manavalan, Ranju Prasad Mandal, Huan-Tsung Chang, Yi-Ru Chiou, Chih-Ching Huang*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 46 , 2019


Abstract:

The prevention and treatment of various infections caused by microbes through antibiotics are becoming less effective due to antimicrobial resistance. Researches are focused on antimicrobial nanomaterials to inhibit bacterial growth and destroy the cells, to replace conventional antibiotics. Recently, carbon dots (C-Dots) become attractive candidates for a wide range of applications, including the detection and treatment of pathogens. In addition to low toxicity, ease of synthesis and functionalization, and high biocompatibility, C-Dots show excellent optical properties such as multi-emission, high brightness, and photostability. C-Dots have shown great potential in various fields, such as biosensing, nanomedicine, photo-catalysis, and bioimaging. This review focuses on the origin and synthesis of various C-Dots with special emphasis on bacterial detection, the antibacterial effect of CDots, and their mechanism.

Keywords: Carbon quantum dots, fluorescence, bacterial detection, antimicrobial activity, reactive oxygen species, photoactivation.

[1]
World Health Organization. Antimicrobial Resistance: Global Report on Surveillance 2014.
[2]
Ahrberg CD, Lee JM, Chung BG. Poisson statistics-mediated particle/cell counting in microwell arrays. Sci Rep 2018; 8(1): 2438.
[http://dx.doi.org/10.1038/s41598-018-20913-0] [PMID: 29403088]
[3]
Váradi L, Luo JL, Hibbs DE, et al. Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev 2017; 46(16): 4818-32.
[http://dx.doi.org/10.1039/C6CS00693K] [PMID: 28644499]
[4]
Li Y-J, Harroun SG, Su Y-C, et al. Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Adv Healthc Mater 2016; 5(19): 2545-54.
[http://dx.doi.org/10.1002/adhm.201600297] [PMID: 27448287]
[5]
Song Y, Lu F, Li H, et al. Degradable carbon dots from cigarette smoking with broad-spectrum antimicrobial activities against drug-resistant bacteria. ACS Appl Bio Mater 2018; 1(6): 1871-9.
[http://dx.doi.org/10.1021/acsabm.8b00421]
[6]
Sattarahmady N, Rezaie-Yazdi M, Tondro GH, Akbari N. Bactericidal laser ablation of carbon dots: an in vitro study on wild-type and antibiotic-resistant Staphylococcus aureus. J Photochem Photobiol B 2017; 166: 323-32.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.006] [PMID: 28024283]
[7]
Kuo W-S, Shao Y-T, Huang K-S, Chou T-M, Yang C-H. Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation. ACS Appl Mater Interfaces 2018; 10(17): 14438-46.
[http://dx.doi.org/10.1021/acsami.8b01429] [PMID: 29620851]
[8]
Pramanik A, Jones S, Pedraza F, et al. Fluorescent, magnetic multifunctional carbon dots for selective separation, identification, and eradication of drug-resistant superbugs. ACS Omega 2017; 2(2): 554-62.
[http://dx.doi.org/10.1021/acsomega.6b00518] [PMID: 28261690]
[9]
Georgakilas V, Perman JA, Tucek J, Zboril R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 2015; 115(11): 4744-822.
[http://dx.doi.org/10.1021/cr500304f] [PMID: 26012488]
[10]
Anand A, Unnikrishnan B, Wei S-C, Chou CP, Zhang L-Z, Huang C-C. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents- a minireview. Nanoscale Horiz 2019; 4(1): 117-37.
[http://dx.doi.org/10.1039/C8NH00174J]
[11]
Xin Q, Shah H, Nawaz A, et al. Antibacterial carbon based nanomaterials. Adv Mater 2019; 31(45) e1804838
[PMID: 30379355]
[12]
Hamblin MR. Fullerenes as photosensitizers in photodynamic therapy: pros and cons. Photochem Photobiol Sci 2018; 17(11): 1515-33.
[http://dx.doi.org/10.1039/C8PP00195B] [PMID: 30043032]
[13]
Torres Sangiao E, Holban AM, Gestal MC. Applications of nanodiamonds in the detection and therapy of infectious diseases. Materials (Basel) 2019; 12(10): 1639.
[http://dx.doi.org/10.3390/ma12101639] [PMID: 31137476]
[14]
Kassem A, Ayoub GM, Malaeb L. Antibacterial activity of chitosan nano-composites and carbon nanotubes: a review. Sci Total Environ 2019; 668: 566-76.
[http://dx.doi.org/10.1016/j.scitotenv.2019.02.446] [PMID: 30856567]
[15]
Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 2004; 126(40): 12736-7.
[http://dx.doi.org/10.1021/ja040082h] [PMID: 15469243]
[16]
Mazrad ZAI, Choi CA, Kwon YM, In I, Lee KD, Park SY. Design of surface-coatable NIR-responsive fluorescent nanoparticles with PEI passivation for bacterial detection and killing. ACS Appl Mater Interfaces 2017; 9(38): 33317-26.
[http://dx.doi.org/10.1021/acsami.7b10688] [PMID: 28876888]
[17]
Choi CA, Mazrad ZAI, Lee G, In I, Lee KD, Park SY. Boronate-based fluorescent carbon dot for rapid and selectively bacterial sensing by luminescence off/on system. J Pharm Biomed Anal 2018; 159: 1-10.
[http://dx.doi.org/10.1016/j.jpba.2018.06.043] [PMID: 29960038]
[18]
Lu F, Song Y, Huang H, et al. Fluorescent carbon dots with tunable negative charges for bio-imaging in bacterial viability assessment. Carbon 2017; 120: 95-102.
[http://dx.doi.org/10.1016/j.carbon.2017.05.039]
[19]
Hui L, Huang J, Chen G, Zhu Y, Yang L. Antibacterial property of grapheme quantum dots (Both source material and bacterial shape matter). ACS Appl Mater Interfaces 2016; 8(1): 20-5.
[http://dx.doi.org/10.1021/acsami.5b10132] [PMID: 26696468]
[20]
Chandra S, Chowdhuri AR, Mahto TK, Samui A, Sahu Sk. One-step synthesis of amikacin modified fluorescent carbon dots for the detection of Gram-negative bacteria like Escherichia coli. RSC Advances 2016; 6(76): 72471-8.
[http://dx.doi.org/10.1039/C6RA15778E]
[21]
Wang R, Xu Y, Zhang T, Jiang Y. Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe. Anal Methods 2015; 7(5): 1701-6.
[http://dx.doi.org/10.1039/C4AY02880E]
[22]
Gao G, Jiang Y-W, Sun W, Wu F-G. Fluorescent quantum dots for microbial imaging. Chin Chem Lett 2018; 29(10): 1475-85.
[http://dx.doi.org/10.1016/j.cclet.2018.07.004]
[23]
Rakovich A, Rakovich T. Semiconductor versus graphene quantum dots as fluorescent probes for cancer diagnosis and therapy applications. J Mater Chem B Mater Biol Med 2018; 6(18): 2690-712.
[http://dx.doi.org/10.1039/C8TB00153G]
[24]
Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother 2017; 87: 209-22.
[http://dx.doi.org/10.1016/j.biopha.2016.12.108] [PMID: 28061404]
[25]
Wu ZL, Liu ZX, Yuan YH. Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. J Mater Chem B Mater Biol Med 2017; 5(21): 3794-809.
[http://dx.doi.org/10.1039/C7TB00363C] [PMID: 28775848]
[26]
Singh I, Arora R, Dhiman H, Pahwa R. Carbon quantum dots: synthesis, characterization and biomedical applications. Turk J Pharm Sci 2018; 15(2): 219-30.
[http://dx.doi.org/10.4274/tjps.63497]
[27]
Das P, Bose M, Ganguly S, et al. Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria Escherichia coli. Nanotechnology 2017; 28(19) 195501
[http://dx.doi.org/10.1088/1361-6528/aa6714] [PMID: 28417900]
[28]
Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from natural resource: a review. Mater Today Chem 2018; 8: 96-109.
[http://dx.doi.org/10.1016/j.mtchem.2018.03.003]
[29]
Lai IP-J, Harroun SG, Chen S-Y, Unnikrishnan B, Li Y-J, Huang C-C. Solid-state synthesis of self-functional carbon quantum dots fordetection of bacteria and tumor cells. Sens Actuators B Chem 2016; 228: 465-70.
[http://dx.doi.org/10.1016/j.snb.2016.01.062]
[30]
Jian H-J, Wu R-S, Lin T-Y, et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano 2017; 11(7): 6703-16.
[http://dx.doi.org/10.1021/acsnano.7b01023] [PMID: 28677399]
[31]
Zhou J, Zhou H, Tang J, et al. Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Mikrochim Acta 2017; 184(2): 343-68.
[http://dx.doi.org/10.1007/s00604-016-2043-9]
[32]
Yao B, Huang H, Liu Y, Kang Z. Carbon dots: a small conundrum. Trends Chem 2019; 1(2): 235-46.
[http://dx.doi.org/10.1016/j.trechm.2019.02.003]
[33]
Tepliakov NV, Kundelev EV, Khavlyuk PD, et al. sp2-sp3-hybridized atomic domains determine optical features of carbon dots. ACS Nano 2019; 13(9): 10737-44.
[http://dx.doi.org/10.1021/acsnano.9b05444] [PMID: 31411860]
[34]
Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 2015; 11(14): 1620-36.
[http://dx.doi.org/10.1002/smll.201402648] [PMID: 25521301]
[35]
Shi X, Wei W, Fu Z, et al. Review on carbon dots in food safety applications. Talanta 2019; 194: 809-21.
[http://dx.doi.org/10.1016/j.talanta.2018.11.005] [PMID: 30609610]
[36]
Mehta VN, Jha S, Kailasa SK. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C 2014; 38: 20-7.
[http://dx.doi.org/10.1016/j.msec.2014.01.038] [PMID: 24656348]
[37]
Hua X-W, Bao Y-W, Wang H-Y, Chen Z, Wu F-G. Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation. Nanoscale 2017; 9(6): 2150-61.
[http://dx.doi.org/10.1039/C6NR06558A] [PMID: 27874123]
[38]
Yang C, Xie H, Li Q-C, Sun E-J, Su B-L. Adherence and interaction of cationic quantum dots on bacterial surfaces. J Colloid Interface Sci 2015; 450: 388-95.
[http://dx.doi.org/10.1016/j.jcis.2015.03.041] [PMID: 25863221]
[39]
Roh SG, Robby AI, Phuong PTM, In I, Park SY. Photoluminescence-tunable fluorescent carbon dots-deposited silver nanoparticle for detection and killing of bacteria. Mater Sci Eng C 2019; 97: 613-23.
[http://dx.doi.org/10.1016/j.msec.2018.12.070] [PMID: 30678948]
[40]
Nandi S, Ritenberg M, Jelinek R. Bacterial detection with amphiphilic carbon dots. Analyst (Lond) 2015; 140(12): 4232-7.
[http://dx.doi.org/10.1039/C5AN00471C] [PMID: 25919018]
[41]
Baig MMF, Chen Y-C. Bright carbon dots as fluorescence sensing agents for bacteria and curcumin. J Colloid Interface Sci 2017; 501: 341-9.
[http://dx.doi.org/10.1016/j.jcis.2017.04.045] [PMID: 28463765]
[42]
Pal T, Mohiyuddin S, Packirisamy G. Facile and green synthesis of multicolor fluorescence carbon dots from curcumin: In vitro and in vivo bioimaging and other applications. ACS Omega 2018; 3(1): 831-43.
[http://dx.doi.org/10.1021/acsomega.7b01323] [PMID: 30023790]
[43]
Bhushan B, Kumar SU, Gopinath P. Multifunctional carbon dots as efficient fluorescent nanotags for tracking cells through successive generations. J Mater Chem B Mater Biol Med 2016; 4(28): 4862-71.
[http://dx.doi.org/10.1039/C6TB01178K]
[44]
Pathak A, Pv S, Stanley J, Satheesh Babu TG. Multicolor emitting N/S-doped carbon dots as a fluorescent probe for imaging pathogenic bacteria and human buccal epithelial cells. Mikrochim Acta 2019; 186(3): 157.
[http://dx.doi.org/10.1007/s00604-019-3270-7] [PMID: 30715615]
[45]
Bhaisare ML, Gedda G, Khan MS, Wu H-F. Fluorimetric detection of pathogenic bacteria using magnetic carbon dots. Anal Chim Acta 2016; 920: 63-71.
[http://dx.doi.org/10.1016/j.aca.2016.02.025] [PMID: 27114224]
[46]
Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016; 14(9): 563-75.
[http://dx.doi.org/10.1038/nrmicro.2016.94] [PMID: 27510863]
[47]
Ommen P, Zobek N, Meyer RL. Quantification of biofilm biomass by staining: non-toxic safranin can replace the popular crystal violet. J Microbiol Methods 2017; 141: 87-9.
[http://dx.doi.org/10.1016/j.mimet.2017.08.003] [PMID: 28802722]
[48]
Ramasamy M, Lee J. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Res Int 2016; 20161851242
[http://dx.doi.org/10.1155/2016/1851242] [PMID: 27872845]
[49]
Besinis A, De Peralta T, Tredwin CJ, Handy RD. Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano 2015; 9(3): 2255-89.
[http://dx.doi.org/10.1021/nn505015e] [PMID: 25625290]
[50]
Mi G, Shi D, Wang M, Webster TJ. Reducing bacterial infections and biofilm formation using nanoparticles and nanostructured antibacterial surfaces. Adv Healthc Mater 2018; 7(13) e1800103
[http://dx.doi.org/10.1002/adhm.201800103] [PMID: 29790304]
[51]
Lin F, Li C, Dong L, Fu D, Chen Z. Imaging biofilm-encased microorganisms using carbon dots derived from L. plantarum. Nanoscale 2017; 9(26): 9056-64.
[http://dx.doi.org/10.1039/C7NR01975K] [PMID: 28639672]
[52]
Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol 2015; 15: 36.
[http://dx.doi.org/10.1186/s12866-015-0376-x] [PMID: 25881030]
[53]
Lin F, Li C, Chen Z. Exopolysaccharide-derived carbon dots for microbial viability assessment. Front Microbiol 2018; 9(2697): 2697.
[http://dx.doi.org/10.3389/fmicb.2018.02697] [PMID: 30473686]
[54]
Song Y, Li H, Lu F, et al. Fluorescent carbon dots with highly negative charges as a sensitive probe for real-time monitoring of bacterial viability. J Mater Chem B Mater Biol Med 2017; 5(30): 6008-15.
[http://dx.doi.org/10.1039/C7TB01092C]
[55]
Weng C-I, Chang H-T, Lin C-H, et al. One-step synthesis of biofunctional carbon quantum dots for bacterial labeling. Biosens Bioelectron 2015; 68: 1-6.
[http://dx.doi.org/10.1016/j.bios.2014.12.028] [PMID: 25557286]
[56]
Yang L, Deng W, Cheng C, Tan Y, Xie Q, Yao S. Fluorescent immunoassay for the detection of pathogenic bacteria at the single-cell level using carbon dots-encapsulated breakable organosilica nanocapsule as labels. ACS Appl Mater Interfaces 2018; 10(4): 3441-8.
[http://dx.doi.org/10.1021/acsami.7b18714] [PMID: 29299908]
[57]
Bhattacharya S, Nandi S, Jelinek R. Carbon-dot-hydrogel for enzyme-mediated bacterial detection. RSC Advances 2017; 7(2): 588-94.
[http://dx.doi.org/10.1039/C6RA25148J]
[58]
Maas M. Carbon nanomaterials as antibacterial colloids. Materials (Basel) 2016; 9(8): 617.
[http://dx.doi.org/10.3390/ma9080617] [PMID: 28773737]
[59]
Liu J, Lu S, Tang Q, et al. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis. Nanoscale 2017; 9(21): 7135-42.
[http://dx.doi.org/10.1039/C7NR02128C] [PMID: 28513713]
[60]
Ristic BZ, Milenkovic MM, Dakic IR, et al. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 2014; 35(15): 4428-35.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.014] [PMID: 24612819]
[61]
Bing W, Sun H, Yan Z, Ren J, Qu X. Programmed bacteria death induced by carbon dots with different surface charge. Small 2016; 12(34): 4713-8.
[http://dx.doi.org/10.1002/smll.201600294] [PMID: 27027246]
[62]
Kuo W-S, Chang C-Y, Chen H-H, et al. Two-photon photoexcited photodynamic therapy and contrast agent with antimicrobial graphene quantum dots. ACS Appl Mater Interfaces 2016; 8(44): 30467-74.
[http://dx.doi.org/10.1021/acsami.6b12014] [PMID: 27753472]
[63]
Jijie R, Barras A, Bouckaert J, Dumitrascu N, Szunerits S, Boukherroub R. Enhanced antibacterial activity of carbon dots functionalized with ampicillin combined with visible light triggered photodynamic effects. Colloids Surf B Biointerfaces 2018; 170: 347-54.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.040] [PMID: 29940501]
[64]
Dong X, Awak MA, Tomlinson N, Tang Y, Sun Y-P, Yang L. Antibacterial effects of carbon dots in combination with other antimicrobial reagents. PLoS One 2017; 12(9) e0185324
[http://dx.doi.org/10.1371/journal.pone.0185324] [PMID: 28934346]
[65]
Choi Y, Choi Y, Kwon O-H, Kim B-S. Carbon dots: bottom-up syntheses, properties, and light-harvesting applications. Chem Asian J 2018; 13(6): 586-98.
[http://dx.doi.org/10.1002/asia.201701736] [PMID: 29316309]
[66]
Mintz KJ, Zhou Y, Leblanc RM. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 2019; 11(11): 4634-52.
[http://dx.doi.org/10.1039/C8NR10059D] [PMID: 30834912]
[67]
Meziani MJ, Dong X, Zhu L, et al. Visible-light-activated bactericidal functions of carbon “quantum” dots. ACS Appl Mater Interfaces 2016; 8(17): 10761-6.
[http://dx.doi.org/10.1021/acsami.6b01765] [PMID: 27064729]
[68]
Al Awak MM, Wang P, Wang S, Tang Y, Sun Y-P, Yang L. Correlation of carbon dots’ light-activated antimicrobial activities and fluorescence quantum yield. RSC Advances 2017; 7(48): 30177-84.
[http://dx.doi.org/10.1039/C7RA05397E] [PMID: 29177045]
[69]
Luo Z, Yang D, Yang C, et al. Graphene quantum dots modified with adenine for efficient two-photon bioimaging and white light-activated antibacteria. Appl Surf Sci 2018; 434: 155-62.
[http://dx.doi.org/10.1016/j.apsusc.2017.10.121]
[70]
Kuo W-S, Chen H-H, Chen S-Y, et al. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomaterials 2017; 120: 185-94.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.022] [PMID: 28063357]
[71]
Kholikov K, Ilhom S, Sajjad M, et al. Improved singlet oxygen generation and antimicrobial activity of sulphur-doped graphene quantum dots coupled with methylene blue for photodynamic therapy applications. Photodiagn Photodyn Ther 2018; 24: 7-14.
[http://dx.doi.org/10.1016/j.pdpdt.2018.08.011] [PMID: 30144532]
[72]
Stanković NK, Bodik M, Šiffalovič P, et al. Antibacterial and antibiofouling properties of light triggered fluorescent hydrophobic carbon quantum dots Langmuir-Blodgett thin films. ACS Sustain Chem& Eng 2018; 6(3): 4154-63.
[http://dx.doi.org/10.1021/acssuschemeng.7b04566]
[73]
Sun H, Gao N, Dong K, Ren J, Qu X. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014; 8(6): 6202-10.
[http://dx.doi.org/10.1021/nn501640q] [PMID: 24870970]
[74]
Zhu G, Wang Q, Lu S, Niu Y. Hydrogen peroxide: a potential wound therapeutic target. Med Princ Pract 2017; 26(4): 301-8.
[http://dx.doi.org/10.1159/000475501] [PMID: 28384636]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 46
Year: 2019
Page: [4848 - 4860]
Pages: 13
DOI: 10.2174/1381612825666191216150948
Price: $58

Article Metrics

PDF: 19
HTML: 3

Special-new-year-discount