KF/Clinoptilolite Nanoparticles as a Heterogeneous Catalyst for Green Synthesis of pyrido[2,1-a]isoquinolines using Four-Component Reaction of Alkyl Bromides

Author(s): Naghmeh F. Hamedani*, Maryam Ghazvini, Fatemeh Sheikholeslami-Farahani, Mohammad T.B. Jamnani.

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 22 , Issue 10 , 2019

Become EABM
Become Reviewer

Abstract:

Objective: KF/Clinoptilolite nanoparticles are employed as a heterogeneous catalyst for the preparation of pyrido[2,1-a]isoquinoline derivatives through a four-component reaction of isoquinoline, two different alkyl bromides and an electron deficient internal alkynes at ambient temperature in water as green solvent.

Methods: In this research, (2,2-Diphenyl-1-picrylhydrazyl) radical trapping and reducing potential of ferric ion experiments was used for determining antioxidant activity of some newly synthesized compounds such as 5a, 5c, 5f and 5g and comparing results with synthetic antioxidants (TBHQ and BHT).

Results: Compounds 5a, 5c, 5f and 5g display trace DPPH radical trapping and excellent reducing power of ferric ion. Furthermore, the power of some prepared compounds against Gram-positive and Gram-negative bacteria was proved by employing the disk dispersion experiment.

Conclusion: The obtained results of disk diffusion test showed that compounds 5a, 5d and 5e prevented the bacterial growth. The reported procedure shows the advantages of clean reaction, high yield and simple purification.

Keywords: KF/Clinoptilolite nanoparticles, isoquinoline, gram-positive bacteria, antioxidant activity, pyrido[2, 1- a]isoquinoline, four-component reaction, pyrido[2, 1-a]isoquinoline, DPPH radical trapping.

[1]
Li, C.J.; Chan, T.H. Comprehensive Organic Reactions in Aqueous Media; John Wiley & Sons, 2007.
[http://dx.doi.org/10.1002/9780470131442]
[2]
Chanda, A.; Fokin, V.V. Organic synthesis “on water”. Chem. Rev., 2009, 109(2), 725-748.
[http://dx.doi.org/10.1021/cr800448q] [PMID: 19209944]
[3]
Breslow, R. Hydrophobic effects on simple organic reactions in water. Acc. Chem. Res., 1991, 24, 159.
[http://dx.doi.org/10.1021/ar00006a001]
[4]
Dömling, A. Isocyanide based multi component reactions in combinatorial chemistry. Comb. Chem. High Throughput Screen., 1998, 1(1), 1-22.
[PMID: 10499126]
[5]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39, 3169.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U]
[6]
Weber, L. Multi-component reactions and evolutionary chemistry. Drug Discov. Today, 2002, 7(2), 143-147.
[http://dx.doi.org/10.1016/S1359-6446(01)02090-6] [PMID: 11790626]
[7]
Zhu, J.; Bienayme, H. Multicomponent Reactions; Wiley-VCH: Weinheim, Germany, 2005.
[8]
Wipf, P.; Kendall, C. Novel applications of alkenyl zirconocenes. Chemistry, 2002, 8, 1779.
[9]
Balme, G.; Bossharth, E.; Monteiro, N. Pd‐assisted multicomponent synthesis of heterocycles. Eur. J. Org. Chem., 2003, 2003, 4101-4111.
[http://dx.doi.org/10.1002/ejoc.200300378]
[10]
Jacobi von Wangelin, A.; Neumann, H.; Gordes, D.; Klaus, S.; Strubing, D.; Beller, M. Iron nitrate/TEMPO-catalyzed oxidative Passerini reaction of alcohols in air. Chemistry, 2003, 9, 4286.
[http://dx.doi.org/10.1002/chem.200305048] [PMID: 14502613]
[11]
Chao, W.; Ling-Hui, L.; Ai-Zhong, P.; Guo-Kai, J.; Cun, P.; Zhong, C.; Zilong, T.; Wei-Min, H.; Xinhua, X. Ultrasound-promoted Brønsted acid ionic liquid-catalyzed hydrothiocyanation of activated alkynes under minimal solvent conditions. Green Chem., 2018, 20, 3683.
[http://dx.doi.org/10.1039/C8GC00491A]
[12]
Ling-Hui, L.; Zheng, W.; Weng, X.; Ping, C.; Bo, Zh.; Zhong, C.; Wei-Min, H. Sustainable routes for quantitative green selenocyanation of activated alkynes. Chin. Chem. Lett., 2019, 30, 1237.
[http://dx.doi.org/10.1016/j.cclet.2019.04.033]
[13]
Ling-Hui, L.; Si-Jia, Z.; Meng, S.; Jia-Liang, C.; Wen, X.; Xianyong, Y.; Xinhua, X.; Wei-Min, H. Metal- and Solvent-Free Ultrasonic Multicomponent Synthesis of (Z)-β-Iodo Vinylthiocyanates. ACS Sustain. Chem.& Eng., 2019, 2169.
[14]
Wen-Hu, B.; Zheng, W.; Xiao, T.; Yun-Fu, Z.; Jia-Xi, T.; Qin, Z.; Zhong, C.; Ying-Wu, L.; Wei-Min, H. Dynamic materials fabricated from water soluble pillar[n]arenes bearing triethylene oxide groups. Chin. Chem. Lett., 2019, 30(12), 2259-2262.
[http://dx.doi.org/10.1016/j.cclet.2019.06.052]
[15]
(a)Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39, 3168.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U]
(b)Ugi, I.; Dömling, A. Multicomponent reactions in organic chemistry. Endeavour, 1994, 18, 115.
[http://dx.doi.org/10.1016/S0160-9327(05)80086-9]
(c)Heck, S.; Dömling, A. A versatile multi-component one-pot thiazole synthesis. Synlett, 2000, 2000, 424-426.
[16]
Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[http://dx.doi.org/10.1021/ar800214s] [PMID: 19175315]
[17]
(a)Shaabani, A.; Maleki, A.; Rezayan, A.H.; Sarvary, A. Recent progress of isocyanide-based multicomponent reactions in Iran. Mol. Divers., 2011, 15(1), 41-68.
[http://dx.doi.org/10.1007/s11030-010-9258-1] [PMID: 20669047]
(b)Altug, C.; Burnett, A.K.; Caner, E.; Dürüst, Y.; Elliott, M.C.; Glanville, R.P.J.; Guy, C.; Westwell, A.D. An efficient one-pot multicomponent approach to 5-amino-7-aryl-8-nitrothiazolo[3,2-a]pyridines. Tetrahedron, 2011, 67, 9522-9528.
[http://dx.doi.org/10.1016/j.tet.2011.10.005]
[18]
Rostami-Charati, F.; Hajinasiri, R.; Sayyed Alangi, S.Z.; Afshari Sharif Abad, S. ZnO-nanorods as economical catalyst for synthesis of 4-amino-2-iminodithiole derivatives using tetramethyl thiourea in water. Chem. Pap., 2016, 70, 907-912.
[http://dx.doi.org/10.1515/chempap-2016-0030]
[19]
Sajjadi-Ghotbabadi, H.; Javanshir, Sh.; Rostami-Charati, F. Nano KF/Clinoptilolite: An effective heterogeneous base nanocatalyst for synthesis of substituted quinolines in water. Catal. Lett., 2016, 146, 338-344.
[http://dx.doi.org/10.1007/s10562-015-1652-y]
[20]
Soleimani, A.; Asadi, J.; Rostami-Charati, F.; Gharaei, R. High cytotoxicity and apoptotic effects of natural bioactive benzofuran derivative on the MCF-7 breast cancer cell line. Comb. Chem. High Throughput Screen., 2015, 18(5), 505-513.
[http://dx.doi.org/10.2174/1386207318666150430114815] [PMID: 25924658]
[21]
Rostami-Charati, F.; Hossaini, Z.S.; Sheikholeslami-Farahani, F.; Azizi, Z. Siadati. S.A. Synthesis of 9H-furo [2,3-f]chromene derivatives by promoting ZnO-nanoparticles. Comb. Chem. High Throughput Screen., 2015, 18, 872-880.
[http://dx.doi.org/10.2174/1386207318666150525094109] [PMID: 26004051]
[22]
(a)Elinson, M.N.; Ilovaisky, A.I.; Merkulova, V.M.; Belyakov, P.A.; Chizhov, A.O. A facile and green three-component synthesis of 2-amino-3-cyano-7-hydroxy-4H-chromenes on grinding. Tetrahedron, 2010, 66, 4043-4048.
[http://dx.doi.org/10.1016/j.tet.2010.04.024]
(b)Dekamin, M.G.; Mokhtari, Z. Highly efficient and convenient Strecker reaction of carbonyl compounds and amines with TMSCN catalyzed by MCM-41 anchored sulfonic acid as a recoverable catalyst. Tetrahedron, 2012, 68, 922-930.
[http://dx.doi.org/10.1016/j.tet.2011.10.087]
(c)Dekamin, M.G.; Mokhtari, Z.; Karimi, Z. Nano-ordered B-MCM-41: An efficient and recoverable solid acid catalyst for three-component Strecker reaction of carbonyl compounds, amines and TMSCN. Sci. Iran. Trans. C: Chem. Chem. Eng, 2011, 18, 1356-1364.
[23]
Weber, L. The application of multi-component reactions in drug discovery. Curr. Med. Chem., 2002, 9(23), 2085-2093.
[http://dx.doi.org/10.2174/0929867023368719] [PMID: 12470248]
[24]
Long-Yong, X.; Duan, Y.; Ling-Hui, Lu.; Yong-Jian, Li.; Peng, S. Ch.; Kai-Jian, L.; Zheng, W.; Wei-Min, H. Fast, base-free and aqueous synthesis of quinolin-2(1H)-ones under ambient conditions. ACS Sustain. Chem.& Eng., 2017, 5, 10407-10412.
[25]
Long-Yong, X.; Sha, P.; Ling-Hui, L.; Jue, H.; Wen-Hu, B.; Fei, Z.; Zilong, T.; Xinhua, X.; Wei-Min, H. Metal- and solvent-free ultrasonic multicomponent synthesis of (Z)-β-iodo vinylthiocyanates. ACS Sustain. Chem.& Eng., 2019, 7, 1574-1579.
[26]
Sha, P.; Yan-Xi, S.; Jun-Yi, H.; Shan-Shan, T.; Jia-Xi, T.; Zhong, C.; Ying-Wu, L.; Wei-Min, H. TsCl-promoted sulfonylation of quinoline N-oxides with sodium sulfinates in water. Chin. Chem. Lett., 2019, 30(12), 2287-2290.
[http://dx.doi.org/10.1016/j.cclet.2019.08.002]
[27]
(a) Chanda, A.; Fokin, V. V. Organic synthesis “on water”. Chem. Rev., 2009, 109, 725-748.
[28]
Butler, R.N.; Coyne, A.G. Water: nature’s reaction enforcer--comparative effects for organic synthesis “in-water” and “on-water”. Chem. Rev., 2010, 110(10), 6302-6337.
[http://dx.doi.org/10.1021/cr100162c] [PMID: 20815348]
[29]
Simon, M.O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41, 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[30]
(a)Markmee, S.; Ruchirawat, S.; Prachyawarakorn, V.; Ingkaninan, K.; Khorana, N. Isoquinoline derivatives as potential acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(8), 2170-2172.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.067] [PMID: 16483771]
(b)Chao, Q.; Deng, L.; Shih, H.; Leoni, L.M.; Genini, D.; Carson, D.A.; Cottam, H.B. Substituted isoquinolines and quinazolines as potential antiinflammatory agents. Synthesis and biological evaluation of inhibitors of tumor necrosis factor alpha. J. Med. Chem., 1999, 42(19), 3860-3873.
[http://dx.doi.org/10.1021/jm9805900] [PMID: 10508435]
(c)Wright, C.W.; Marshall, S.J.; Russell, P.F.; Anderson, M.M.; Phillipson, J.D.; Kirby, G.C.; Warhurst, D.C.; Schiff, P.L. In vitro antiplasmodial, antiamoebic, and cytotoxic activities of some monomeric isoquinoline alkaloids. J. Nat. Prod., 2000, 63(12), 1638-1640.
[http://dx.doi.org/10.1021/np000144r] [PMID: 11141105]
(d)Kartsev, V.G. Natural compounds in drug discovery. biological activity and new trends in the chemistry of isoquinoline alkaloids. Med. Chem. Res., 2004, 13, 325.
[http://dx.doi.org/10.1007/s00044-004-0038-2]
(e)Chen, P.; Norris, D.; Haslow, K.D.; Murali Dhar, T.G.; Pitts, W.J.; Watterson, S.H.; Cheney, D.L.; Bassolino, D.A.; Fleener, C.A.; Rouleau, K.A.; Hollenbaugh, D.L.; Townsend, R.M.; Barrish, J.C.; Iwanowicz, E.J. Identification of novel and potent isoquinoline aminooxazole-based IMPDH inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(7), 1345-1348.
[http://dx.doi.org/10.1016/S0960-894X(03)00107-0] [PMID: 12657279]
(f)Giri, P.; Kumar, G.S. Isoquinoline alkaloids and their binding with polyadenylic acid: potential basis of therapeutic action. Mini Rev. Med. Chem., 2010, 10(7), 568-577.
[http://dx.doi.org/10.2174/138955710791384009] [PMID: 20500148]
[31]
(a)Tillhon, M.; Guamán Ortiz, L.M.; Lombardi, P.; Scovassi, A.I. Berberine: New perspectives for old remedies. Biochem. Pharmacol., 2012, 84(10), 1260-1267.
[http://dx.doi.org/10.1016/j.bcp.2012.07.018] [PMID: 22842630]
(b)Vennerstrom, J.L.; Klayman, D.L. Protoberberine alkaloids as antimalarials. J. Med. Chem., 1988, 31(6), 1084-1087.
[http://dx.doi.org/10.1021/jm00401a006] [PMID: 3286870]
(c)Guo, J.; Wang, S.B.; Yuan, T.Y.; Wu, Y.J.; Yan, Y.; Li, L.; Xu, X.N.; Gong, L.L.; Qin, H.L.; Fang, L.H.; Du, G.H. Coptisine protects rat heart against myocardial ischemia/reperfusion injury by suppressing myocardial apoptosis and inflammation. Atherosclerosis, 2013, 231(2), 384-391.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.10.003] [PMID: 24267256]
(d)Beecher, C.W.W.; Kelleher, W.J. The incorporation of berberine into jatrorrhizine. Tetrahedron Lett., 1983, 24, 469.
[http://dx.doi.org/10.1016/S0040-4039(00)81439-2]
(e)Giri, P.; Hossain, M.; Kumar, G.S. RNA specific molecules: Cytotoxic plant alkaloid palmatine binds strongly to poly(A). Bioorg. Med. Chem. Lett., 2006, 16(9), 2364-2368.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.124] [PMID: 16497501]
(f)Maiti, M.; Nandi, R.; Chaudhuri, K. Sanguinarine: A monofunctional intercalating alkaloid. FEBS Lett., 1982, 142(2), 280-284.
[http://dx.doi.org/10.1016/0014-5793(82)80152-X] [PMID: 7106291]
[32]
(a)Rozwadowska, M.D. Pol. J. Chem., 1994, 68, 2271-2278.
(b)Chrzanowska, M.; Rozwadowska, M.D. Asymmetric synthesis of isoquinoline alkaloids. Chem. Rev., 2004, 104(7), 3341-3370.
[http://dx.doi.org/10.1021/cr030692k] [PMID: 15250744]
(c)Chrzanowska, M.; Grajewska, A.; Rozwadowska, M.D. Asymmetric synthesis of isoquinoline alkaloids: 2004-2015. Chem. Rev., 2016, 116(19), 12369-12465.
[http://dx.doi.org/10.1021/acs.chemrev.6b00315] [PMID: 27680197]
[33]
Xiang, Z.; Luo, T.; Lu, K.; Cui, J.; Shi, X.; Fathi, R.; Chen, J.; Yang, Z. Concise synthesis of isoquinoline via the Ugi and Heck reactions. Org. Lett., 2004, 6(18), 3155-3158.
[http://dx.doi.org/10.1021/ol048791n] [PMID: 15330611]
[34]
Ngouansavanh, T. Zhu, J. IBX‐Mediated oxidative ugi‐type multicomponent reactions: application to the n and c1 functionalization of tetrahydroisoquinoline. J. Angew. Chem. Int. Ed., 2007, 46, 5775.
[http://dx.doi.org/10.1002/anie.200701603]
[35]
Che, C.; Yang, B.; Jiang, X.; Shao, T.; Yu, Z.; Tao, C.; Li, S.; Lin, S. Syntheses of fused tetracyclic quinolines via Ugi-variant MCR and Pd-catalyzed bis-annulation. J. Org. Chem., 2014, 79(1), 436-440.
[http://dx.doi.org/10.1021/jo4024792] [PMID: 24320093]
[36]
Chen, Y.; Feng, G. Visible light mediated sp(3) C-H bond functionalization of N-aryl-1,2,3,4-tetrahydroisoquinolines via Ugi-type three-component reaction. Org. Biomol. Chem., 2015, 13(14), 4260-4265.
[http://dx.doi.org/10.1039/C5OB00201J] [PMID: 25753364]
[37]
Corey, E.J.; Gin, D. A convergent enantioselective synthesis of the tetrahydroisoquinoline unit in the spiro ring of ecteinascidin. Tetrahedron Lett., 1996, 37, 7163.
[http://dx.doi.org/10.1016/0040-4039(96)01622-X]
[38]
Yadav, J.S.; Reddy, B.V.S.; Raj, K.S.; Prasad, A.R. Room temperature ionic liquids promoted three-component coupling reactions: a facile synthesis of cis-isoquinolonic acids. Tetrahedron, 2003, 59(10), 1805.
[http://dx.doi.org/10.1016/S0040-4020(03)00076-0]
[39]
Zalan, Z.; Martinek, T.A.; Lazar, L.; Fulop, F. Synthesis and conformational analysis of 1,3,2-diazaphosphorino[6,1-a]isoquinolines, a new ring system. Tetrahedron, 2003, 59(46), 9117.
[http://dx.doi.org/10.1016/j.tet.2003.09.062]
[40]
Scott, J.D.; Williams, R.M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem. Rev., 2002, 102(5), 1669-1730.
[http://dx.doi.org/10.1021/cr010212u] [PMID: 11996547]
[41]
Craig, P.; Nabenhauer, F.; Williams, P.; Macko, E.; Toner, J. Tetrahydroisoquinolines. I. 1-alkyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines. J. Am. Chem. Soc., 1952, 74, 1316.
[http://dx.doi.org/10.1021/ja01125a051]
[42]
Yamato, E.; Hirakura, M.; Sugasawa, S. Synthesis of 6,7-dihydrox-1,2,3,4-tetrahydroisoquinoline derivatives. Tetrahedron, 1966, 22, 129.
[http://dx.doi.org/10.1016/S0040-4020(01)82177-3]
[43]
Ohkubo, M.; Kuno, A.; Katsuta, K.; Ueda, Y.; Shirakawa, K.; Nakanishi, H.; Nakanishi, I.; Kinoshita, T.; Takasugi, H. Studies on cerebral protective agents. IX. Synthesis of novel 1,2,3,4-tetrahydroisoquinolines as N-methyl-D-aspartate antagonists. Chem. Pharm. Bull. (Tokyo), 1996, 44(1), 95-102.
[http://dx.doi.org/10.1248/cpb.44.95] [PMID: 8582046]
[44]
Hirobe, M.; Ohta, S.; Masukawa, Y. WIPO Patent Application WO9736588 Kind Code: A2 1997.
[45]
Francisco, M.C.; Nasser, A.L.; Lopes, L.M. Tetrahydroisoquinoline alkaloids and 2-deoxyribonolactones from Aristolochia arcuata. Phytochemistry, 2003, 62(8), 1265-1270.
[http://dx.doi.org/10.1016/S0031-9422(02)00655-6] [PMID: 12648549]
[46]
Kubota, H.; Watanabe, T.; Kakefuda, A.; Masuda, N.; Wada, K.; Ishii, N.; Sakamoto, S.; Tsukamoto, S. Synthesis and pharmacological evaluation of N-acyl-1,2,3,4-tetrahydroiso quinoline derivatives as novel specific bradycardic agents. Bioorg. Med. Chem., 2004, 12(5), 871-882.
[http://dx.doi.org/10.1016/j.bmc.2003.12.032] [PMID: 14980599]
[47]
Masao, T.; Okamoto, Y.; Kikuchi, T.; Osaki, K.; Nishikawa, M.; Kamiya, K.; Sasaky, Y.; Matoba, K.; Goto, K. Studies on the alkaloids of menispermaceous plants. K. Chem. Pharm. Bull. (Tokyo), 1971, 19, 770.
[http://dx.doi.org/10.1248/cpb.19.770]
[48]
Kunitomo, J.; Satoh, M. Structure and synthesis of menisporphine, a new type of isoquinoline alkaloid: Alkaloids of Menispermum dauricum dc. (9). Chem. Pharm. Bull. (Tokyo), 1982, 30, 2659.
[http://dx.doi.org/10.1248/cpb.30.2659]
[49]
Zhang, X.; Ye, W.; Zhao, S.; Che, C-T. Isoquinoline and isoindole alkaloids from Menispermum dauricum. Phytochemistry, 2004, 65(7), 929-932.
[http://dx.doi.org/10.1016/j.phytochem.2003.12.004] [PMID: 15081297]
[50]
Kane, T.R.; Ly, C.Q.; Kelly, D.E.; Dener, J.M. Solid-phase synthesis of 1,2,3,4-tetrahydroisoquinoline derivatives employing support-bound tyrosine esters in the Pictet-Spengler reaction. J. Comb. Chem., 2004, 6(4), 564-572.
[http://dx.doi.org/10.1021/cc020105t] [PMID: 15244418]
[51]
Czarnocki, Z.; Suh, D.; MacLean, D.B.; Hultin, P.G.; Szarek, W.A. Enantioselective synthesis of l-substituted tetrahydroisoquinoline-1-carboxylic acids. Can. J. Chem., 1992, 70, 1555.
[http://dx.doi.org/10.1139/v92-191]
[52]
Horiguchi, Y.; Kodama, H.; Nakamura, M.; Yoshimura, T.; Hanezi, K.; Hamada, H.; Saitoh, T.; Sano, T. A convenient synthesis of 1,1-disubstituted 1,2,3,4-tetrahydroisoquinolines via Pictet-Spengler reaction using titanium(IV) isopropoxide and acetic-formic anhydride. Chem. Pharm. Bull. (Tokyo), 2002, 50(2), 253-257.
[http://dx.doi.org/10.1248/cpb.50.253] [PMID: 11848218]
[53]
Kumpaty, H.; Bhattacharyya, S.; Rehr, E.; Gonzalez, A. Selective access to secondary amines by a highly controlled reductive mono-n-alkylation of primary amines. Synthesis, 2003, 2206.
[54]
Hegedüs, A.; Hell, Z. One-step preparation of 1-substituted tetrahydroisoquinolines via the Pictet-Spengler reaction using zeolite catalysts. Tetrahedron Lett., 2004, 45, 8553.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.097]
[55]
(a)Alcock, N.W.; Brown, J.M.; Hulmes, G.I. Synthesis and resolution of 1-(2-diphenylphosphino-1-naphthyl)isoquinoline; a P=N chelating ligand for asymmetric catalysis. Tetrahedron Asymmetry, 1993, 4, 743.
[http://dx.doi.org/10.1016/S0957-4166(00)80183-4]
(b)Lim, C.W.; Tissot, O.; Mattison, A.; Hooper, M.W.; Brown, J.M.; Cowley, A.R.; Hulmes, D.I.; Blacker, A. Practical preparation and resolution of 1-(2‘-diphenylphosphino-1‘-naphthyl) isoquinoline: A useful ligand for catalytic asymmetric synthesis. J. Org. Process Res. Dev., 2003, 7, 379.
[http://dx.doi.org/10.1021/op034007n]
(c)Sweetman, B.A.; Muller-Bunz, H.; Guiry, P.J. Synthesis, resolution and racemisation studies of new tridentate ligands for asymmetric catalysis. Tetrahedron Lett., 2005, 46, 4643.
[http://dx.doi.org/10.1016/j.tetlet.2005.04.139]
(d)Durola, F.; Sauvage, J-P.; Wenger, O.S. Sterically non-hindering endocyclic ligands of the bi-isoquinoline family. Chem. Commun. (Camb.), 2006, (2), 171-173.
[http://dx.doi.org/10.1039/B513222C] [PMID: 16372095]
[56]
Hoogewerf, S.; Dorp, V.W.A. Collection of Work in Chemistry in the Netherlands, 1885.
[57]
Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Isapoor, E.; Azad, M. Amino acid-based ionic liquid immobilized on α-Fe2O3-MCM-41: An efficient magnetic nanocatalyst and recyclable reaction media for the synthesis of quinazolin-4(3H)-one derivatives. J. Mol. Catal. Chem., 2013, 374-375, 102-110.
[http://dx.doi.org/10.1016/j.molcata.2013.04.002]
[58]
Beydoun, D.; Amal, R.; Low, G.; McEvoy, S.J. Role of nanoparticles in photocatalysis. Nanopart. Res., 1999, 1, 439-458.
[http://dx.doi.org/10.1023/A:1010044830871]
[59]
(a)Khalilzadeh, M.A.; Hosseini, A.; Pilevar, A. Potassium fluoride supported on natural nanoporous zeolite: A new solid base for the synthesis of diaryl ethers. Eur. J. Org. Chem., 2011, 8, 1587.
[http://dx.doi.org/10.1002/ejoc.201001447]
(b)Khalilzadeh, M.A.; Keipour, H.; Hosseini, A.; Zareyee, D. KF/Clinoptilolite, an effective solid base in Ullmann ether synthesis catalyzed by CuO nanoparticles. New J. Chem., 2014, 38, 42.
[http://dx.doi.org/10.1039/C3NJ00834G]
[60]
Xie, W.L.; Huang, X.M. Synthesis of bio-diesel from soybean oil using heterogeneous KF/ZnO catalyst. Catal. Lett., 2006, 107, 53.
[http://dx.doi.org/10.1007/s10562-005-9731-0]
[61]
Gao, L.J.; Teng, G.Y.; Lv, J.H.; Xiao, G.M. Transesterification of palm oil with methanol to biodiesel over a KF/Hydrotalcite solid catalyst. Energy Fuels, 2010, 24, 646.
[http://dx.doi.org/10.1021/ef900800d]
[62]
Hu, S.; Guan, Y.; Wang, Y.; Han, H. Nano-magnetic catalyst KF/CaO-Fe3O4 for biodiesel production. Appl. Energy, 2011, 88, 2685.
[http://dx.doi.org/10.1016/j.apenergy.2011.02.012]
[63]
Zahouily, M.; Bahlaouane, B.; Aadil, M.; Rayadh, A.; Sebti, S. Natural phosphate doped with potassium fluoride: Efficient catalyst for the construction of a carbon−carbon bond. Org. Process Res. Dev., 2004, 8, 278.
[http://dx.doi.org/10.1021/op034161+]
[64]
Gao, L.; Teng, G.; Xiao, G.; Wei, R. Biodiesel from palm oil via loading KF/Ca Al hydrotalcite catalyst. Biomass Bioenergy, 2010, 34, 1283.
[http://dx.doi.org/10.1016/j.biombioe.2010.03.023]
[65]
(a)Halliwell, B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic. Res., 1999, 31(4), 261-272.
[http://dx.doi.org/10.1080/10715769900300841] [PMID: 10517532]
(b)Ahmadi, F.; Kadivar, M.; Shahedi, M. Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food Chem., 2007, 105, 57-64.
[http://dx.doi.org/10.1016/j.foodchem.2007.03.056]
[66]
Babizhayev, M.A.; Deyev, A.I.; Yermakova, V.N.; Brikman, I.V.; Bours, J. Lipid peroxidation and cataracts: N-acetylcarnosine as a therapeutic tool to manage age-related cataracts in human and in canine eyes. Drugs R D., 2004, 5(3), 125-139.
[http://dx.doi.org/10.2165/00126839-200405030-00001] [PMID: 15139774]
[67]
Liu, L.; Meydani, M. Combined vitamin C and E supplementation retards early progression of arteriosclerosis in heart transplant patients. Nutr. Rev., 2002, 60(11), 368-371.
[http://dx.doi.org/10.1301/00296640260385810] [PMID: 12462519]
[68]
Rajabi, M.; Hossaini, Z.; Khalilzadeh, M.A.; Datta, S.; Halder, M.; Mousa, S.A. Synthesis of a new class of furo[3,2-c]coumarins and its anticancer activity. J. Photochem. Photobiol. B, 2015, 148, 66-72.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.03.027] [PMID: 25889947]
[69]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S. Efficient synthesis of functionalized 2,5-dihydrofurans and 1,5-dihydro-2H-pyrrol-2-ones by reaction of isocyanides with activated acetylenes in the presence of hexachloroacetone. Chemical Monthly, 2008, 139, 625-628.
[http://dx.doi.org/10.1007/s00706-007-0810-3]
[70]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S. Proline-promoted efficient synthesis of 4-aryl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-diones in aqueous media. Synlett, 2008, 1153-1154.
[http://dx.doi.org/10.1055/s-2008-1072656]
[71]
Yavari, I.; Hossaini, Z.S.; Sabbaghan, M.; Ghazanfarpour-Darjani, M. Efficient synthesis of functionalized spiro-2,5-dihydro-1,2-λ5-oxaphospholes. Tetrahedron, 2007, 63, 9423-9428.
[http://dx.doi.org/10.1016/j.tet.2007.06.102]
[72]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S.; Ghazanfarpour-Darjani, M. Surprising formation of chlorinated butenolides from dialkyl acetylenedicarboxylates and hexachloro¬acetone in the presence of triphenyl phosphite. Helv. Chim. Acta, 2008, 91, 1144-1147.
[http://dx.doi.org/10.1002/hlca.200890123]
[73]
Rostami-Charati, F. Efficient synthesis of functionalized hydroindoles viacatalyst-free multicomponent reactions of ninhydrin in water. Chin. Chem. Lett., 2014, 169-171.
[http://dx.doi.org/10.1016/j.cclet.2013.09.016]
[74]
Rostami‐Charati, F.; Hossaini, Z.S.; Khalilzadeh, M.A.; Jafaryan, H. Solvent‐free synthesis of pyrrole derivatives. J. Heterocycl. Chem., 2012, 49, 217-220.
[http://dx.doi.org/10.1002/jhet.785]
[75]
Hajinasiri, R.; Hossaini, Z.S.; Rostami‐Charati, F. Synthesis of α‐aminophosphonates via one‐pot reactions of aldehydes, amines, and phosphates in ionic liquid. Heteroatom Chem., 2011, 22, 625-629.
[http://dx.doi.org/10.1002/hc.20724]
[76]
Rostami Charati, F.; Hossaini, Z.S.; Hosseini-Tabatabaei, M.R. A simple synthesis of oxaphospholes. Phosphorus, Sulfur, and Silicon and the Related Elements A., 2011, 186, 1443-1448.
[http://dx.doi.org/10.1080/10426507.2010.515953]
[77]
Moghaddam, F.M.; Saeidian, H.; Mirjafary, H.; Sadeghi, A. ZnO nanoparticles: An efficient nanocatalyst for the synthesis of β-acetamido ketones/esters via a multi-component reaction. Catal. Commun., 2008, 9, 299.
[http://dx.doi.org/10.1016/j.catcom.2007.06.018]
[78]
Shimada, K.; Fujikawa, K.; Yahara, N.T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 1992, 40, 945.
[http://dx.doi.org/10.1021/jf00018a005]
[79]
Yen, G.C.; Duh, P.D. Scavenging effect of methanolic extracts of Peanut Hulls on free-radical and active-oxygen species. J. Agric. Food Chem., 1994, 42, 629.
[http://dx.doi.org/10.1021/jf00039a005]
[80]
Yildirim, A.; Mavi, A.; Kara, A.A. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem., 2001, 49(8), 4083-4089.
[http://dx.doi.org/10.1021/jf0103572] [PMID: 11513714]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 22
ISSUE: 10
Year: 2019
Page: [728 - 739]
Pages: 12
DOI: 10.2174/1386207323666191213143417
Price: $58

Article Metrics

PDF: 10

Special-new-year-discount