Anti-NMDA Receptor Encephalitis, Vaccination and Virus

Author(s): Hsiuying Wang*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 43 , 2019

Become EABM
Become Reviewer

Abstract:

Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune disorder. The symptoms range from psychiatric symptoms, movement disorders, cognitive impairment, and autonomic dysfunction. Previous studies revealed that vaccination might induce this disease. A few cases were reported to be related to H1N1 vaccine, tetanus/diphtheria/pertussis and polio vaccine, and Japanese encephalitis vaccine. Although vaccination is a useful strategy to prevent infectious diseases, in a low risk, it may trigger serious neurological symptoms. In addition to anti-NMDA receptor encephalitis, other neurological diseases were reported to be associated with a number of vaccines. In this paper, the anti-NMDA receptor encephalitis cases related to a number of vaccines and other neurological symptoms that might be induced by these vaccines were reviewed. In addition, anti-NMDA receptor encephalitis cases that were induced by virus infection were also reviewed.

Keywords: Anti-NMDA receptor encephalitis, neurological symptom, H1N1 vaccine, tetanus/diphtheria/pertussis, polio vaccine, Japanese encephalitis.

[1]
Dalmau J, Tüzün E, Wu HY, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 2007; 61(1): 25-36.
[http://dx.doi.org/10.1002/ana.21050] [PMID: 17262855]
[2]
Afanasiev V, Brechemier ML, Boisseau W, et al. Anti-NMDA receptor antibody encephalitis and neuroendocrine pancreatic tumor: Causal link? Neurology 2016; 87(1): 112-3.
[http://dx.doi.org/10.1212/WNL.0000000000002809] [PMID: 27281530]
[3]
Offit PA, Hackett CJ. Addressing parents’ concerns: do vaccines cause allergic or autoimmune diseases? Pediatrics 2003; 111(3): 653-9.
[http://dx.doi.org/10.1542/peds.111.3.653] [PMID: 12612250]
[4]
Shim BS, Wu W, Kyriakis CS, et al. MicroRNA-555 has potent antiviral properties against poliovirus. J Gen Virol 2016; 97(3): 659-68.
[http://dx.doi.org/10.1099/jgv.0.000372] [PMID: 26683768]
[5]
Steinman L. Multiple sclerosis: a two-stage disease. Nat Immunol 2001; 2(9): 762-4.
[http://dx.doi.org/10.1038/ni0901-762] [PMID: 11526378]
[6]
Regner M, Lambert PH. Autoimmunity through infection or immunization? Nat Immunol 2001; 2(3): 185-8.
[http://dx.doi.org/10.1038/85228] [PMID: 11224510]
[7]
Albert LJ, Inman RD. Molecular mimicry and autoimmunity. N Engl J Med 1999; 341(27): 2068-74.
[http://dx.doi.org/10.1056/NEJM199912303412707] [PMID: 10615080]
[8]
Hofmann C, Baur MO, Schroten H. Anti-NMDA receptor encephalitis after TdaP-IPV booster vaccination: cause or coincidence? J Neurol 2011; 258(3): 500-1.
[http://dx.doi.org/10.1007/s00415-010-5757-3] [PMID: 20878418]
[9]
Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 2011; 10(1): 63-74.
[http://dx.doi.org/10.1016/S1474-4422(10)70253-2] [PMID: 21163445]
[10]
Wang H. Anti-NMDA Receptor Encephalitis and Vaccination. Int J Mol Sci 2017; 18(1): 193.
[http://dx.doi.org/10.3390/ijms18010193] [PMID: 28106787]
[11]
Tüzün E, Zhou L, Baehring JM, Bannykh S, Rosenfeld MR, Dalmau J. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol 2009; 118(6): 737-43.
[http://dx.doi.org/10.1007/s00401-009-0582-4] [PMID: 19680671]
[12]
Acién P, Acién M, Ruiz-Maciá E, Martín-Estefanía C. Ovarian teratoma-associated anti-NMDAR encephalitis: a systematic review of reported cases. Orphanet J Rare Dis 2014; 9(1): 157.
[http://dx.doi.org/10.1186/s13023-014-0157-x] [PMID: 25312434]
[13]
Yan B, Wang Y, Zhang Y, Lou W. Teratoma-associated anti-N-methyl-D-aspartate receptor encephalitis: a case report and literature review. Medicine (Baltimore) 2019; 98(21) e15765
[http://dx.doi.org/10.1097/MD.0000000000015765] [PMID: 31124965]
[14]
Chiu HC, Su YC, Huang SC, Chiang HL, Huang PS. Anti-NMDAR encephalitis with ovarian teratomas: review of the literature and two case reports. Taiwan J Obstet Gynecol 2019; 58(3): 313-7.
[http://dx.doi.org/10.1016/j.tjog.2019.03.004] [PMID: 31122515]
[15]
Lim EW, Yip CW. Anti-N-methyl-D-aspartate receptor encephalitis associated with hepatic neuroendocrine carcinoma: a case report. J Clin Neurosci 2017; 41: 70-2.
[http://dx.doi.org/10.1016/j.jocn.2017.02.038] [PMID: 28262407]
[16]
Kobayashi M, Nishioka K, Takanashi M, et al. Anti-NMDA receptor encephalitis due to large-cell neuroendocrine carcinoma of the uterus. J Neurol Sci 2017; 383: 72-4.
[http://dx.doi.org/10.1016/j.jns.2017.10.024] [PMID: 29246628]
[17]
Li C, Liu C, Lin F, Liu L. Anti-N-methyl-D-aspartate receptor encephalitis associated with mediastinal teratoma: a rare case report and literature review. J Thorac Dis 2017; 9(12): E1118-21.
[http://dx.doi.org/10.21037/jtd.2017.12.71] [PMID: 29312777]
[18]
Eker A, Saka E, Dalmau J, et al. Testicular teratoma and anti-N-methyl-D-aspartate receptor-associated encephalitis. J Neurol Neurosurg Psychiatry 2008; 79(9): 1082-3.
[http://dx.doi.org/10.1136/jnnp.2008.147611] [PMID: 18708569]
[19]
Jeraiby M, Depincé-Berger A, Bossy V, Antoine JC, Paul S. A case of anti-NMDA receptor encephalitis in a woman with a NMDA-R(+) small cell lung carcinoma (SCLC). Clin Immunol 2016; 166(167): 96-9.
[http://dx.doi.org/10.1016/j.clim.2016.03.011] [PMID: 27019996]
[20]
Nolan A, Buza N, Margeta M, Rabban JT. Ovarian teratomas in women with Anti-N-methyl-D-Aspartate receptor encephalitis: topography and composition of immune cell and neuroglial populations is compatible with an autoimmune mechanism of disease. Am J Surg Pathol 2019; 43(7): 949-64.
[http://dx.doi.org/10.1097/PAS.0000000000001249] [PMID: 31021857]
[21]
Armangue T, Leypoldt F, Málaga I, et al. Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann Neurol 2014; 75(2): 317-23.
[http://dx.doi.org/10.1002/ana.24083] [PMID: 24318406]
[22]
Mohammad SS, Sinclair K, Pillai S, et al. Herpes simplex encephalitis relapse with chorea is associated with autoantibodies to N-Methyl-D-aspartate receptor or dopamine-2 receptor. Mov Disord 2014; 29(1): 117-22.
[http://dx.doi.org/10.1002/mds.25623] [PMID: 24115338]
[23]
Nosadini M, Mohammad SS, Corazza F, et al. Herpes simplex virus-induced anti-N-methyl-d-aspartate receptor encephalitis: a systematic literature review with analysis of 43 cases. Dev Med Child Neurol 2017; 59(8): 796-805.
[http://dx.doi.org/10.1111/dmcn.13448] [PMID: 28439890]
[24]
Dale RC, Nosadini M. Infection-triggered autoimmunity: the case of herpes simplex virus type 1 and anti-NMDAR antibodies. Neurol Neuroimmunol Neuroinflamm 2018; 5(4) e471
[http://dx.doi.org/10.1212/NXI.0000000000000471]
[25]
Armangue T, Spatola M, Vlagea A, et al. Spanish herpes simplex encephalitis study group. frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol 2018; 17(9): 760-72.
[http://dx.doi.org/10.1016/S1474-4422(18)30244-8] [PMID: 30049614]
[26]
Shah NN. Antibody based therapies in acute leukemia. Curr Drug Targets 2017; 18(3): 257-70.
[http://dx.doi.org/10.2174/1389450117666160905091459] [PMID: 27593687]
[27]
Witkowska M, Smolewski P. Development of Anti-cd20 antigen-targeting therapies for B-cell lymphoproliferative malignancies - the state of the art. Curr Drug Targets 2016; 17(9): 1072-82.
[http://dx.doi.org/10.2174/1389450116666150907105306] [PMID: 26343115]
[28]
Sebastiani M, Giuggioli D, Colaci M, et al. HCV-related rheumatic manifestations and therapeutic strategies. Curr Drug Targets 2017; 18(7): 803-10.
[http://dx.doi.org/10.2174/1389450116666150907103622] [PMID: 26343108]
[29]
Risitano AM. Withdrawn: Aplastic Anemia: alternative immunosuppressive treatments and eltrombopag. a report from the 2014 ebmt educational meeting from the severe aplastic anaemia and infectious diseases working parties. Curr Drug Targets 2015. In press
[PMID: 25619749]
[30]
Wang H. Efficacies of treatments for anti-NMDA receptor encephalitis. Front Biosci 2016; 21: 651-63.
[http://dx.doi.org/10.2741/4412] [PMID: 26709797]
[31]
Rosenfeld MR. Antibody-mediated central nervous system diseases: disease recognition and treatment challenges. Clin Exp Immunol 2014; 178(Suppl. 1): 30-2.
[http://dx.doi.org/10.1111/cei.12501] [PMID: 25546752]
[32]
Titulaer MJ, McCracken L, Gabilondo I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 2013; 12(2): 157-65.
[http://dx.doi.org/10.1016/S1474-4422(12)70310-1] [PMID: 23290630]
[33]
Zhang X, Wang C, Zhu W, Wang B, Liang H, Guo S. Factors Affecting the response to first-line treatments in patients with Anti-N-Methyl-D-Aspartate receptor encephalitis. J Clin Neurol 2019; 15(3): 369-75.
[http://dx.doi.org/10.3988/jcn.2019.15.3.369] [PMID: 31286710]
[34]
Hirano M, Itoh T, Fujimura H, et al. Pathological findings in male patients with Anti-N-methyl-d-Aspartate receptor encephalitis. J Neuropathol Exp Neurol 2019. nlz052
[http://dx.doi.org/10.1093/jnen/nlz052] [PMID: 31282957]
[35]
Balu R, McCracken L, Lancaster E, Graus F, Dalmau J, Titulaer MJ. A score that predicts 1-year functional status in patients with anti-NMDA receptor encephalitis. Neurology 2019; 92(3): e244-52.
[http://dx.doi.org/10.1212/WNL.0000000000006783] [PMID: 30578370]
[36]
Smith LE, Amlôt R, Weinman J, Yiend J, Rubin GJ. A systematic review of factors affecting vaccine uptake in young children. Vaccine 2017; 35(45): 6059-69.
[http://dx.doi.org/10.1016/j.vaccine.2017.09.046] [PMID: 28974409]
[37]
Nestler EJ, Hyman SE, Malenka RC. Molecular neuropharmacology: a foundation for clinical neuroscience. McGraw-Hill Medical 2001.
[38]
Brown C. H1N1 vaccine and narcolepsy link discovered. CMAJ 2015; 187(12)E371
[http://dx.doi.org/10.1503/cmaj.109-5118] [PMID: 26216616]
[39]
Sarkanen TO, Alakuijala APE, Dauvilliers YA, Partinen MM. Incidence of narcolepsy after H1N1 influenza and vaccinations: systematic review and meta-analysis. Sleep Med Rev 2018; 38: 177-86.
[http://dx.doi.org/10.1016/j.smrv.2017.06.006] [PMID: 28847694]
[40]
Johansen K, Johansen K, Brasseur D, MacDonald N, et al. Where are we in our understanding of the association between narcolepsy and one of the 2009 adjuvanted influenza A (H1N1) vaccines? 2016; 44(4): 276-80.
[41]
Edwards K, Hanquet G, Black S, et al. Meeting report narcolepsy and pandemic influenza vaccination: What we know and what we need to know before the next pandemic? A report from the 2nd IABS meeting. Biologicals 2019; 60: 1-7.
[42]
Granath F, Gedeborg R, Smedje H, Feltelius N, et al. Change in risk for narcolepsy over time and impact of definition of onset date following vaccination with AS03 adjuvanted pandemic A/H1N1 influenza vaccine (P andemrix) during the 2009 H1N1 influenza pandemic. Pharmacoepidemiol Drug Saf 2019; 28(8): 1045-53.
[43]
Cohet C, van der Most R, Bauchau V, et al. Safety of AS03-adjuvanted influenza vaccines: a review of the evidence. Vaccine 2019; 37(23): 3006-21.
[http://dx.doi.org/10.1016/j.vaccine.2019.04.048] [PMID: 31031030]
[44]
Hallberg P, Smedje H, Eriksson N, et al. Swedegene. Pandemrix-induced narcolepsy is associated with genes related to immunity and neuronal survival. EBioMedicine 2019; 40: 595-604.
[http://dx.doi.org/10.1016/j.ebiom.2019.01.041] [PMID: 30711515]
[45]
Dodd CN, de Ridder M, Huang WT, et al. Incidence rates of narcolepsy diagnoses in Taiwan, Canada, and Europe: the use of statistical simulation to evaluate methods for the rapid assessment of potential safety issues on a population level in the SOMNIA study. PLoS One 2018; 13(10) e0204799
[http://dx.doi.org/10.1371/journal.pone.0204799] [PMID: 30332477]
[46]
Patel SS, Bizjajeva S, Heijnen E, Oberye J. MF59-adjuvanted seasonal trivalent inactivated influenza vaccine: Safety and immunogenicity in young children at risk of influenza complications. Int J Infect Dis 2019; 85(Supple.): S18-25.
[http://dx.doi.org/10.1016/j.ijid.2019.04.023]
[47]
Eaton A, Lewis N, Fireman B, et al. Birth outcomes following immunization of pregnant women with pandemic H1N1 influenza vaccine 2009-2010. Vaccine 2018; 36(19): 2733-9.
[http://dx.doi.org/10.1016/j.vaccine.2017.08.080] [PMID: 28917536]
[48]
Andorf S, Bhattacharya S, Gaudilliere B, et al. A pilot study showing a stronger H1N1 influenza vaccination response during pregnancy in women who subsequently deliver preterm. J Reprod Immunol 2019; 132: 16-20.
[http://dx.doi.org/10.1016/j.jri.2019.02.004] [PMID: 30852461]
[49]
Donahue JG, Kieke BA, King JP, et al. Association of spontaneous abortion with receipt of inactivated influenza vaccine containing H1N1pdm09 in 2010-11 and 2011-12. Vaccine 2017; 35(40): 5314-22.
[http://dx.doi.org/10.1016/j.vaccine.2017.06.069] [PMID: 28917295]
[50]
Zafar S, Habboush Y. Beidas SJJme. Use of grading of recommendations, assessment, development, and evaluation to combat fake news: a case study of influenza vaccination in pregnancy. JMIR Med Educ 2018; 4(2) e10347
[http://dx.doi.org/10.2196/10347]
[51]
Giles ML, Krishnaswamy S, Macartney K, Cheng A. The safety of inactivated influenza vaccines in pregnancy for birth outcomes: a systematic review. Hum Vaccin Immunother 2019; 15(3): 687-99.
[http://dx.doi.org/10.1080/21645515.2018.1540807] [PMID: 30380986]
[52]
Haber P, DeStefano F, Angulo FJ, et al. Guillain-Barré syndrome following influenza vaccination. JAMA 2004; 292(20): 2478-81.
[http://dx.doi.org/10.1001/jama.292.20.2478] [PMID: 15562126]
[53]
Sanz Fadrique R, Martín Arias L. Molina-Guarneros JA1, Jimeno Bulnes N, García Ortega P. Guillain-Barré syndrome and influenza vaccines: current evidence. Rev Esp Quimioter 2019; 32(4): 288-95.
[54]
Sipilä JOT, Soilu-Hänninen M, Ruuskanen JO, Rautava P, Kytö V. Epidemiology of Guillain-Barré syndrome in Finland 2004-2014. J Peripher Nerv Syst 2017; 22(4): 440-5.
[http://dx.doi.org/10.1111/jns.12239] [PMID: 29095548]
[55]
Sandhu SK, Hua W, MaCurdy TE, et al. Near real-time surveillance for Guillain-Barre syndrome after influenza vaccination among the Medicare population, 2010/11 to 2013/14. Vaccine 2017; 35(22): 2986-92.
[56]
Bardenheier BH, Duderstadt SK, Engler RJ, McNeil MM. Adverse events following pandemic influenza A (H1N1) 2009 monovalent and seasonal influenza vaccinations during the 2009-2010 season in the active component U.S. military and civilians aged 17-44years reported to the Vaccine Adverse Event Reporting System. Vaccine 2016; 34(37): 4406-14.
[http://dx.doi.org/10.1016/j.vaccine.2016.07.019] [PMID: 27449076]
[57]
Alcalde-Cabero E, Almazán-Isla J, García López FJ, et al. Spanish GBS epidemiology study group. guillain-barré syndrome following the 2009 pandemic monovalent and seasonal trivalent influenza vaccination campaigns in Spain from 2009 to 2011: outcomes from active surveillance by a neurologist network, and records from a country-wide hospital discharge database. BMC Neurol 2016; 16(1): 75.
[http://dx.doi.org/10.1186/s12883-016-0598-z] [PMID: 27206524]
[58]
Kimmel SR. Vaccine adverse events: separating myth from reality. Am Fam Physician 2002; 66(11): 2113-20.
[PMID: 12484693]
[59]
Sancovski M, Mesaros N, Feng Y, Ceregido MA, Luyts D, De Barros E. Safety of reduced antigen content diphtheria-tetanus-acellular pertussis vaccine when administered during pregnancy as part of the maternal immunization program in Brazil: a single center, observational, retrospective, cohort study. Hum Vaccin Immunother 2019; 15(12): 2873-81.
[http://dx.doi.org/10.1080/21645515.2019.1627161] [PMID: 31216218]
[60]
Zheng C, Yu W, Xie F, et al. The use of natural language processing to identify Tdap-related local reactions at five health care systems in the Vaccine Safety Datalink. Int J Med Inform 2019; 127: 27-34.
[http://dx.doi.org/10.1016/j.ijmedinf.2019.04.009] [PMID: 31128829]
[61]
Rieckmann A, Hærskjold A, Benn CS, Aaby P, Lange T, Sørup S. Measles, mumps and rubella vs diphtheria-tetanus-acellular-pertussis-inactivated-polio-Haemophilus influenzae type b as the most recent vaccine and risk of early ‘childhood asthma’. Int J Epidemiol 2019. pii: dyz062
[62]
Lindsey NP, Staples JE, Jones JF, et al. Adverse event reports following Japanese encephalitis vaccination in the United States, 1999-2009. Vaccine 2010; 29(1): 58-64.
[http://dx.doi.org/10.1016/j.vaccine.2010.10.016] [PMID: 20970488]
[63]
Nothdurft HD, Jelinek T, Marschang A, Maiwald H, Kapaun A, Löscher T. Adverse reactions to Japanese encephalitis vaccine in travellers. J Infect 1996; 32(2): 119-22.
[http://dx.doi.org/10.1016/S0163-4453(96)91281-5] [PMID: 8708368]
[64]
Plesner AM, Arlien-Soborg P, Herning M. Neurological complications to vaccination against Japanese encephalitis. Eur J Neurol 1998; 5(5): 479-85.
[http://dx.doi.org/10.1046/j.1468-1331.1998.550479.x] [PMID: 10210877]
[65]
Plesner AM. Allergic reactions to Japanese encephalitis vaccine. Immunol Allergy Clin North Am 2003; 23(4): 665-97.
[http://dx.doi.org/10.1016/S0889-8561(03)00102-4] [PMID: 14753386]
[66]
Andersen MM, Rønne T. Side-effects with Japanese encephalitis vaccine. Lancet 1991; 337(8748): 1044.
[http://dx.doi.org/10.1016/0140-6736(91)92707-9] [PMID: 1673198]
[67]
Robinson P, Ruff T, Kass R. Australian case-control study of adverse reactions to Japanese encephalitis vaccine. J Travel Med 1995; 2(3): 159-64.
[http://dx.doi.org/10.1111/j.1708-8305.1995.tb00644.x] [PMID: 9815377]
[68]
Bonington A, Harbord M, Davidson RN, Cropley I, Behrens RH. Immunisation against Japanese encephalitis. Lancet 1995; 345(8962): 1445-6.
[http://dx.doi.org/10.1016/S0140-6736(95)92636-4] [PMID: 7760642]
[69]
Sakaguchi M, Yoshida M, Kuroda W, Harayama O, Matsunaga Y, Inouye S. Systemic immediate-type reactions to gelatin included in Japanese encephalitis vaccines. Vaccine 1997; 15(2): 121-2.
[http://dx.doi.org/10.1016/S0264-410X(96)00170-3] [PMID: 9066026]
[70]
Plesner AM, Rønne T. Allergic mucocutaneous reactions to Japanese encephalitis vaccine. Vaccine 1997; 15(11): 1239-43.
[http://dx.doi.org/10.1016/S0264-410X(97)00020-0] [PMID: 9286050]
[71]
Sakaguchi M, Nakashima K, Takahashi H, Nakayama T, Fujita H, Inouye S. Anaphylaxis to Japanese encephalitis vaccine. Allergy 2001; 56(8): 804-5.
[http://dx.doi.org/10.1034/j.1398-9995.2001.056008804.x] [PMID: 11488694]
[72]
Takahashi H, Pool V, Tsai TF, Chen RT. The VAERS Working Group. Adverse events after Japanese encephalitis vaccination: review of post-marketing surveillance data from Japan and the United States. Vaccine 2000; 18(26): 2963-9.
[http://dx.doi.org/10.1016/S0264-410X(00)00111-0] [PMID: 10825597]
[73]
Robinson H, Russell M. Csokonay WJCdwrRhdmaC Japanese encephalitis vaccine and adverse effects among travellers. 1991; 17(32): 173.
[74]
Mohan Rao CV, Risbud AR, Dandawate CN, et al. Serological response to Japanese encephalitis vaccine in a group of school children in South Arcot district of Tamil Nadu. Indian J Med 1993; 97: 53-9.
[75]
Nazareth B, Levin J, Johnson H, Begg N. Systemic allergic reactions to Japanese encephalitis vaccines. Vaccine 1994; 12(7): 666.
[http://dx.doi.org/10.1016/0264-410X(94)90274-7] [PMID: 8085387]
[76]
Defraites RF, Gambel JM, Hoke CH Jr, et al. Japanese encephalitis vaccine (inactivated, BIKEN) in U.S. soldiers: immunogenicity and safety of vaccine administered in two dosing regimens. Am J Trop Med Hyg 1999; 61(2): 288-93.
[http://dx.doi.org/10.4269/ajtmh.1999.61.288] [PMID: 10463681]
[77]
Baltagi SA, Shoykhet M, Felmet K, Kochanek PM, Bell MJ. Neurological sequelae of 2009 influenza A (H1N1) in children: a case series observed during a pandemic. Pediatr Crit Care Med 2010; 11(2): 179-84.
[http://dx.doi.org/10.1097/PCC.0b013e3181cf4652] [PMID: 20081552]
[78]
Salovin A, Glanzman J, Roslin K, Armangue T, Lynch DR, Panzer JA. Anti-NMDA receptor encephalitis and nonencephalitic HSV-1 infection. Neurol Neuroimmunol Neuroinflamm 2018; 5(4) e458
[http://dx.doi.org/10.1212/NXI.0000000000000458] [PMID: 29629396]
[79]
Omae T, Saito Y, Tsuchie H, Ohno K, Maegaki Y, Sakuma H. Cytokine/chemokine elevation during the transition phase from HSV encephalitis to autoimmune anti-NMDA receptor encephalitis. Brain Dev 2018; 40(4): 361-5.
[http://dx.doi.org/10.1016/j.braindev.2017.12.007] [PMID: 29277332]
[80]
Kothur K, Gill D, Wong M, et al. Cerebrospinal fluid cyto-/chemokine profile during acute herpes simplex virus induced anti-N-methyl-d-aspartate receptor encephalitis and in chronic neurological sequelae. Dev Med Child Neurol 2017; 59(8): 806-14.
[http://dx.doi.org/10.1111/dmcn.13431] [PMID: 28439892]
[81]
Sutcu M, Akturk H, Somer A, et al. Role of Autoantibodies to N-Methyl-d-Aspartate (NMDA) receptor in relapsing herpes simplex encephalitis: a retrospective, one-center experience. J Child Neurol 2016; 31(3): 345-50.
[http://dx.doi.org/10.1177/0883073815595079] [PMID: 26184485]
[82]
Morris NA, Kaplan TB, Linnoila J, Cho T. HSV encephalitis-induced anti-NMDAR encephalitis in a 67-year-old woman: report of a case and review of the literature. J Neurovirol 2016; 22(1): 33-7.
[http://dx.doi.org/10.1007/s13365-015-0364-9] [PMID: 26139017]
[83]
Desena A, Graves D, Warnack W, Greenberg BM. Herpes simplex encephalitis as a potential cause of anti-N-methyl-D-aspartate receptor antibody encephalitis: report of 2 cases. JAMA Neurol 2014; 71(3): 344-6.
[http://dx.doi.org/10.1001/jamaneurol.2013.4580] [PMID: 24473671]
[84]
Hou R, Wu J, He D, Yan Y, Li L. Anti-N-methyl-D-aspartate receptor encephalitis associated with reactivated Epstein-Barr virus infection in pediatric patients: three case reports. Medicine (Baltimore) 2019; 98(20) e15726
[http://dx.doi.org/10.1097/MD.0000000000015726] [PMID: 31096528]
[85]
Tian M, Li J, Lei W, Shu X. Japanese encephalitis virus-induced Anti-N-Methyl-D-Aspartate receptor encephalitis: a case report and review of literature. Neuropediatrics 2019; 50(2): 111-5.
[http://dx.doi.org/10.1055/s-0038-1675607] [PMID: 30620950]
[86]
Pastel H, Chakrabarty B, Saini L, Kumar A, Gulati S. A case of anti- N-methyl-D-aspartate (NMDA) receptor encephalitis possibly triggered by an episode of Japanese B encephalitis. Neurol India 2017; 65(4): 895-7.
[http://dx.doi.org/10.4103/neuroindia.NI_340_16] [PMID: 28681777]
[87]
Shaik RS, Netravathi M, Nitish LK, et al. A rare case of Japanese encephalitis-induced anti-N-methyl-d-aspartate receptor encephalitis. Neurol India 2018; 66(5): 1495-6.
[http://dx.doi.org/10.4103/0028-3886.241335] [PMID: 30233032]
[88]
Arana J, Mba-Jonas A, Jankosky C, et al. Reports of postural orthostatic tachycardia syndrome after human papillomavirus vaccination in the vaccine adverse event reporting system. J Adolesc Health 2017; 61(5): 577-82.
[http://dx.doi.org/10.1016/j.jadohealth.2017.08.004] [PMID: 29061232]
[89]
Blitshteyn S, Brinth L, Hendrickson JE, Martinez-Lavin M. Autonomic dysfunction and HPV immunization: an overview. Immunol Res 2018; 66(6): 744-54.
[http://dx.doi.org/10.1007/s12026-018-9036-1]
[90]
Huang J, Du J, Duan R, Zhang X, Tao C, Chen Y. Characterization of the differential adverse event rates by race/ethnicity groups for HPV vaccine by integrating data from different sources. Front Pharmacol 2018; 9: 539.
[http://dx.doi.org/10.3389/fphar.2018.00539] [PMID: 29896103]
[91]
Ward D, Thorsen NM, Frisch M, Valentiner-Branth P, Mølbak K, Hviid A. A cluster analysis of serious adverse event reports after human papillomavirus (HPV) vaccination in Danish girls and young women, September 2009 to August 2017. Euro Surveill 2019; 24(19)
[http://dx.doi.org/10.2807/1560-7917.ES.2019.24.19.1800380] [PMID: 31088598]
[92]
Blitshteyn S, Brook J. Postural tachycardia syndrome (POTS) with anti-NMDA receptor antibodies after human papillomavirus vaccination. Immunol Res 2017; 65(1): 282-4.
[http://dx.doi.org/10.1007/s12026-016-8855-1] [PMID: 27561785]
[93]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[94]
Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75(5): 855-62.
[http://dx.doi.org/10.1016/0092-8674(93)90530-4] [PMID: 8252622]
[95]
Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 2006; 94(6): 776-80.
[http://dx.doi.org/10.1038/sj.bjc.6603023] [PMID: 16495913]
[96]
Hsieh WJ, Wang H. RRSM with a data-dependent threshold for miRNA target prediction. J Theor Biol 2013; 337: 54-60.
[http://dx.doi.org/10.1016/j.jtbi.2013.08.002] [PMID: 23948551]
[97]
Hsieh WJ, Wang H. Human microRNA target identification by RRSM. J Theor Biol 2011; 286(1): 79-84.
[http://dx.doi.org/10.1016/j.jtbi.2011.06.022] [PMID: 21736879]
[98]
Wang H, Li W-H. Increasing MicroRNA target prediction confidence by the relative R(2) method. J Theor Biol 2009; 259(4): 793-8.
[http://dx.doi.org/10.1016/j.jtbi.2009.05.007] [PMID: 19463832]
[99]
Hsieh WJ, Lin FM, Huang HD, Wang H. Investigating microRNA-target interaction-supported tissues in human cancer tissues based on miRNA and target gene expression profiling. PLoS One 2014; 9(4) e95697
[http://dx.doi.org/10.1371/journal.pone.0095697] [PMID: 24756070]
[100]
Wang H. Predicting microRNA biomarkers for cancer using phylogenetic tree and microarray analysis. Int J Mol Sci 2016; 17(5): 773.
[http://dx.doi.org/10.3390/ijms17050773] [PMID: 27213352]
[101]
Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016; 1: 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4] [PMID: 29263891]
[102]
Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99(24): 15524-9.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
[103]
Wang H, Peng R, Wang J, Qin Z, Xue L. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics 2018; 10(1): 59.
[http://dx.doi.org/10.1186/s13148-018-0492-1] [PMID: 29713393]
[104]
Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer. Annu Rev Med 2009; 60: 167-79.
[http://dx.doi.org/10.1146/annurev.med.59.053006.104707] [PMID: 19630570]
[105]
Karthikeyan A, Patnala R, Jadhav SP, Eng-Ang L, Dheen ST. MicroRNAs: key players in microglia and astrocyte mediated inflammation in CNS pathologies. Curr Med Chem 2016; 23(30): 3528-46.
[http://dx.doi.org/10.2174/0929867323666160814001040] [PMID: 27528056]
[106]
Rizzuti M, Filosa G, Melzi V, et al. MicroRNA expression analysis identifies a subset of downregulated miRNAs in ALS motor neuron progenitors. Sci Rep 2018; 8(1): 10105.
[http://dx.doi.org/10.1038/s41598-018-28366-1] [PMID: 29973608]
[107]
Taguchi YH, Wang H. Exploring microRNA biomarker for amyotrophic lateral sclerosis. Int J Mol Sci 2018; 19(5): 1318.
[http://dx.doi.org/10.3390/ijms19051318] [PMID: 29710810]
[108]
Kim J, Inoue K, Ishii J, et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science 2007; 317(5842): 1220-4.
[http://dx.doi.org/10.1126/science.1140481] [PMID: 17761882]
[109]
Taguchi YH, Wang H. Exploring MicroRNA biomarkers for Parkinson’s Disease from mRNA expression profiles. Cells 2018; 7(12): 245.
[http://dx.doi.org/10.3390/cells7120245] [PMID: 30563060]
[110]
Hoss AG, Labadorf A, Beach TG, Latourelle JC, Myers RH. microRNA profiles in Parkinson’s Disease prefrontal cortex. Front Aging Neurosci 2016; 8: 36.
[http://dx.doi.org/10.3389/fnagi.2016.00036] [PMID: 26973511]
[111]
Chen L, Yang J, Lü J, Cao S, Zhao Q, Yu Z. Identification of aberrant circulating miRNAs in Parkinson’s disease plasma samples. Brain Behav 2018; 8(4) e00941
[http://dx.doi.org/10.1002/brb3.941] [PMID: 29670823]
[112]
Heman-Ackah SM, Hallegger M, Rao MS, Wood MJ. RISC in PD: the impact of microRNAs in Parkinson’s disease cellular and molecular pathogenesis. Front Mol Neurosci 2013; 6: 40.
[http://dx.doi.org/10.3389/fnmol.2013.00040] [PMID: 24312000]
[113]
Prajapati P, Sripada L, Singh K, Bhatelia K, Singh R, Singh R. TNF-α regulates miRNA targeting mitochondrial complex-I and induces cell death in dopaminergic cells. Biochim Biophys Acta 2015; 1852(3): 451-61.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.019] [PMID: 25481834]
[114]
Khoo SK, Petillo D, Kang UJ, et al. Plasma-based circulating MicroRNA biomarkers for Parkinson’s disease. J Parkinsons Dis 2012; 2(4): 321-31.
[http://dx.doi.org/10.3233/JPD-012144] [PMID: 23938262]
[115]
Leggio L, Vivarelli S, L’Episcopo F, et al. microRNAs in Parkinson’s Disease: from pathogenesis to novel diagnostic and therapeutic approaches. Int J Mol Sci 2017; 18(12): 2698.
[http://dx.doi.org/10.3390/ijms18122698] [PMID: 29236052]
[116]
Grasso M, Piscopo P, Talarico G, et al. Plasma microRNA profiling distinguishes patients with frontotemporal dementia from healthy subjects. Neurobiol Aging 2019; 84(19): 240e1-12.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.01.024] [PMID: 30826067]
[117]
Gascon E, Lynch K, Ruan H, et al. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med 2014; 20(12): 1444-51.
[http://dx.doi.org/10.1038/nm.3717] [PMID: 25401692]
[118]
Chen-Plotkin AS, Unger TL, Gallagher MD, et al. TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways. J Neurosci 2012; 32(33): 11213-27.
[http://dx.doi.org/10.1523/JNEUROSCI.0521-12.2012] [PMID: 22895706]
[119]
Kocerha J, Kouri N, Baker M, et al. Altered microRNA expression in frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations. BMC Genomics 2011; 12(1): 527.
[http://dx.doi.org/10.1186/1471-2164-12-527] [PMID: 22032330]
[120]
Wang W-X, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008; 28(5): 1213-23.
[http://dx.doi.org/10.1523/JNEUROSCI.5065-07.2008] [PMID: 18234899]
[121]
Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 2007; 18(3): 297-300.
[http://dx.doi.org/10.1097/WNR.0b013e3280148e8b] [PMID: 17314675]
[122]
Absalon S, Kochanek DM, Raghavan V, Krichevsky AM. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci 2013; 33(37): 14645-59.
[http://dx.doi.org/10.1523/JNEUROSCI.1327-13.2013] [PMID: 24027266]
[123]
Banzhaf-Strathmann J, Benito E, May S, et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J 2014; 33(15): 1667-80.
[http://dx.doi.org/10.15252/embj.201387576] [PMID: 25001178]
[124]
Li JM, Kao KC, Li LF, et al. MicroRNA-145 regulates oncolytic herpes simplex virus-1 for selective killing of human non-small cell lung cancer cells. Virol J 2013; 10(1): 241.
[http://dx.doi.org/10.1186/1743-422X-10-241]
[125]
Gupta P, Bhattacharjee S, Sharma AR, Sharma G, Lee SS, Chakraborty C. miRNAs in Alzheimer Disease - a therapeutic perspective. Curr Alzheimer Res 2017; 14(11): 1198-206.
[http://dx.doi.org/10.2174/1567205014666170829101016] [PMID: 28847283]
[126]
Magri F, Vanoli F, Corti S. miRNA in spinal muscular atrophy pathogenesis and therapy. J Cell Mol Med 2018; 22(2): 755-67.
[PMID: 29160009]
[127]
Kye MJ, Niederst ED, Wertz MH, et al. SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet 2014; 23(23): 6318-31.
[http://dx.doi.org/10.1093/hmg/ddu350] [PMID: 25055867]
[128]
Wang LT, Chiou SS, Liao YM, Jong YJ, Hsu SH. Survival of motor neuron protein downregulates miR-9 expression in patients with spinal muscular atrophy. Kaohsiung J Med Sci 2014; 30(5): 229-34.
[http://dx.doi.org/10.1016/j.kjms.2013.12.007] [PMID: 24751385]
[129]
Wertz MH, Winden K, Neveu P, Ng SY, Ercan E, Sahin M. Cell-type-specific miR-431 dysregulation in a motor neuron model of spinal muscular atrophy. Hum Mol Genet 2016; 25(11): 2168-81.
[http://dx.doi.org/10.1093/hmg/ddw084] [PMID: 27005422]
[130]
Bhinge A, Namboori SC, Bithell A, Soldati C, Buckley NJ, Stanton LW. MiR-375 is essential for human spinal motor neuron development and may be involved in motor neuron degeneration. Stem Cells 2016; 34(1): 124-34.
[http://dx.doi.org/10.1002/stem.2233] [PMID: 26507573]
[131]
Zhang J, Xu X, Zhao S, et al. The expression and significance of the plasma let-7 family in Anti-N-methyl-D-aspartate receptor encephalitis. J Mol Neurosci 2015; 56(3): 531-9.
[http://dx.doi.org/10.1007/s12031-015-0489-6] [PMID: 25603816]
[132]
Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64(11): 3753-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0637] [PMID: 15172979]
[133]
Leypoldt F, Höftberger R, Titulaer MJ, et al. Investigations on CXCL13 in anti-N-methyl-D-aspartate receptor encephalitis: a potential biomarker of treatment response. JAMA Neurol 2015; 72(2): 180-6.
[http://dx.doi.org/10.1001/jamaneurol.2014.2956] [PMID: 25436993]
[134]
Liba Z, Kayserova J, Elisak M, et al. Anti-N-methyl-D-aspartate receptor encephalitis: the clinical course in light of the chemokine and cytokine levels in cerebrospinal fluid. J Neuroinflammation 2016; 13(1): 55.
[http://dx.doi.org/10.1186/s12974-016-0507-9] [PMID: 26941012]
[135]
Ge Y, Zhao K, Qi Y, et al. Serum microRNA expression profile as a biomarker for the diagnosis of pertussis. Mol Biol Rep 2013; 40(2): 1325-32.
[http://dx.doi.org/10.1007/s11033-012-2176-9] [PMID: 23073777]
[136]
Song L, Liu H, Gao S, Jiang W, Huang W. Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol 2010; 84(17): 8849-60.
[http://dx.doi.org/10.1128/JVI.00456-10] [PMID: 20554777]
[137]
Ma YJ, Yang J, Fan XL, et al. Cellular microRNA let-7c inhibits M1 protein expression of the H1N1 influenza A virus in infected human lung epithelial cells. J Cell Mol Med 2012; 16(10): 2539-46.
[http://dx.doi.org/10.1111/j.1582-4934.2012.01572.x] [PMID: 22452878]
[138]
Song H, Wang Q, Guo Y, et al. Microarray analysis of microRNA expression in peripheral blood mononuclear cells of critically ill patients with influenza A (H1N1). BMC Infect Dis 2013; 13: 257.
[http://dx.doi.org/10.1186/1471-2334-13-257] [PMID: 23731466]
[139]
Terrier O, Textoris J, Carron C, Marcel V, Bourdon JC, Rosa-Calatrava M. Host microRNA molecular signatures associated with human H1N1 and H3N2 influenza A viruses reveal an unanticipated antiviral activity for miR-146a. J Gen Virol 2013; 94(Pt. 5): 985-95.
[http://dx.doi.org/10.1099/vir.0.049528-0] [PMID: 23343627]
[140]
Wang X, Diao C, Yang X, et al. ICP4-induced miR-101 attenuates HSV-1 replication. Sci Rep 2016; 6: 23205.
[http://dx.doi.org/10.1038/srep23205] [PMID: 26984403]
[141]
Ashraf U, Zhu B, Ye J, et al. MicroRNA-19b-3p modulates japanese encephalitis virus-mediated inflammation via targeting RNF11. J Virol 2016; 90(9): 4780-95.
[http://dx.doi.org/10.1128/JVI.02586-15] [PMID: 26937036]
[142]
Thounaojam MC, Kundu K, Kaushik DK, et al. MicroRNA 155 regulates Japanese encephalitis virus-induced inflammatory response by targeting Src homology 2-containing inositol phosphatase 1. J Virol 2014; 88(9): 4798-810.
[http://dx.doi.org/10.1128/JVI.02979-13] [PMID: 24522920]
[143]
Sharma N, Verma R, Kumawat KL, Basu A, Singh SK. miR-146a suppresses cellular immune response during Japanese encephalitis virus JaOArS982 strain infection in human microglial cells. J Neuroinflammation 2015; 12: 30.
[http://dx.doi.org/10.1186/s12974-015-0249-0] [PMID: 25889446]
[144]
Li Y, Wang F, Xu J, et al. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29. J Pathol 2011; 224(4): 484-95.
[http://dx.doi.org/10.1002/path.2873] [PMID: 21503900]
[145]
Lajer CB, Garnæs E, Friis-Hansen L, et al. The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer. Br J Cancer 2012; 106(9): 1526-34.
[http://dx.doi.org/10.1038/bjc.2012.109] [PMID: 22472886]
[146]
Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP, Khan SA. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene 2008; 27(18): 2575-82.
[http://dx.doi.org/10.1038/sj.onc.1210919] [PMID: 17998940]
[147]
Mason D, Zhang X, Marques TM, et al. Human papillomavirus 16 E6 modulates the expression of miR-496 in oropharyngeal cancer. Virology 2018; 521: 149-57.
[http://dx.doi.org/10.1016/j.virol.2018.05.022] [PMID: 29935424]
[148]
Wongjampa W, Ekalaksananan T, Chopjitt P, et al. Suppression of miR-22, a tumor suppressor in cervical cancer, by human papillomavirus 16 E6 via a p53/miR-22/HDAC6 pathway. PLoS One 2018; 13(10) e0206644
[http://dx.doi.org/10.1371/journal.pone.0206644] [PMID: 30379969]
[149]
Graur D, Li W-H. Fundamentals of molecular evolution. 2nd ed. 2000.
[150]
Wang H, Hung S-L. Phylogenetic tree selection by the adjusted k-means approach. J Appl Stat 2012; 39(3): 643-55.
[http://dx.doi.org/10.1080/02664763.2011.610442]
[151]
Yin H, Fan Z, Li X, et al. Phylogenetic tree-informed microRNAome analysis uncovers conserved and lineage-specific miRNAs in Camellia during floral organ development. J Exp Bot 2016; 67(9): 2641-53.
[http://dx.doi.org/10.1093/jxb/erw095] [PMID: 26951373]
[152]
Tarver JE, Sperling EA, Nailor A, et al. miRNAs: small genes with big potential in metazoan phylogenetics. Mol Biol Evol 2013; 30(11): 2369-82.
[http://dx.doi.org/10.1093/molbev/mst133] [PMID: 23913097]
[153]
Zhao J-P, Diao S, Zhang BY, et al. Phylogenetic analysis and molecular evolution patterns in the MIR482-MIR1448 polycistron of Populus L. PLoS One 2012; 7(10) e47811
[http://dx.doi.org/10.1371/journal.pone.0047811] [PMID: 23094096]
[154]
Patel VD, Capra JA. Ancient human miRNAs are more likely to have broad functions and disease associations than young miRNAs. BMC Genomics 2017; 18(1): 672.
[http://dx.doi.org/10.1186/s12864-017-4073-z] [PMID: 28859623]
[155]
Wang H. A protocol for investigating the association of vaccination and anti-NMDA receptor encephalitis. Front Biosci (Schol Ed) 2018; 10(10): 229-37.
[http://dx.doi.org/10.2741/s511] [PMID: 28930529]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 43
Year: 2019
Page: [4579 - 4588]
Pages: 10
DOI: 10.2174/1381612825666191210155059
Price: $65

Article Metrics

PDF: 26
HTML: 6