Design of Carbon-carbon and Carbon-heteroatom Bond Formation Reactions under Green Conditions

Author(s): Nagaraju Kerru, Suresh Maddila, Sreekantha B. Jonnalagadda*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 28 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The development of C-C and C-heteroatom (C-N, C-O and C-P) bond reactions is a field of significant interest and has received momentous attention in modern organic chemistry. These reactions have been exploited in the synthesis of pharmaceuticals, agrochemicals and molecules of interest in materials science. With the increasing awareness of global warming and the use of renewable energies, it is of paramount importance to reduce the usage of hazardous chemicals in both industrial and academic research and to achieve a healthier environment through green practices. Green chemistry is a rapidly emerging approach that shows us a path for the sustainable growth of future science and technologies. In the recent past, healthy growth has been recorded in a number of organic reactions in aqueous media, which are environment-friendly and energy conserving. This review documents the literature on the development of green methodologies involving the design of C-C, C-O, C-N and C-P bond formations of coupling and condensed reactions. It emphasizes the exceptional practices and important advances achieved using alternative green tools, such as microwave (MW), high-speed ball milling (HSBM) and ultrasound irradiation techniques, and a variety of reusable catalysts and green solvents, with attention to water.

Keywords: Carbon-carbon bond, carbon-heteroatom bond, green conditions, aqueous medium, coupling reactions, condensation reactions.

[1]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[2]
Kaur, R.; Chaudhary, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Recent synthetic and medicinal perspectives of dihydropyrimidinones: a review. Eur. J. Med. Chem., 2017, 132, 108-134.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.025] [PMID: 28342939]
[3]
Ma, X.; Lv, X.; Zhang, J. Exploiting polypharmacology for improving therapeutic outcome of kinase inhibitors (KIs): an update of recent medicinal chemistry efforts. Eur. J. Med. Chem., 2018, 143, 449-463.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.049] [PMID: 29202407]
[4]
Wu, G.G.; Chen, F.X.; Yong, K. 9.8 Industrial applications of metal–promoted C–C, C–N, and C–O asymmetric bond formations. Comprehensive Chirality, 2012, 9, 147-208.
[http://dx.doi.org/10.1016/B978-0-08-095167-6.00907-1]
[5]
Zhang, Y.; Wang, W. Recent advances in organocatalytic asymmetric Michael reactions. Catal. Sci. Technol., 2012, 2, 42-53.
[http://dx.doi.org/10.1039/C1CY00334H]
[6]
Sultan, S.; Shah, B.A. Carbon-carbon and carbon-heteroatom bond formation reactions using unsaturated carbon compounds. Chem. Rec., 2019, 19(2-3), 644-660.
[http://dx.doi.org/10.1002/tcr.201800095] [PMID: 30276948]
[7]
Brahmachari, G. Design for carbon–carbon bond forming reactions under ambient conditions. RSC Advances, 2016, 6, 64676-64725.
[http://dx.doi.org/10.1039/C6RA14399G]
[8]
Li, L.; Li-Wen, X.; Ya-Dong, J.; Guo-Qiao, L. Asymmetric direct aldol reactions catalyzed by a simple chiral primary diamine–bronsted acid catalyst in/on water. Synth. Commun., 2009, 39, 764-774.
[http://dx.doi.org/10.1080/00397910802431131]
[9]
Bariwal, J.; Van der Eycken, E. C-N bond forming cross-coupling reactions: an overview. Chem. Soc. Rev., 2013, 42(24), 9283-9303.
[http://dx.doi.org/10.1039/c3cs60228a] [PMID: 24077333]
[10]
Hosoya, K.; Odagi, M.; Nagasawa, K. Guanidine organocatalysis for enantioselective carbon-heteroatom bond-forming reactions. Tetrahedron Lett., 2018, 59, 687-696.
[http://dx.doi.org/10.1016/j.tetlet.2017.12.058]
[11]
Felpin, F.X.; Sengupta, S. Biaryl synthesis with arenediazonium salts: cross-coupling, CH-arylation and annulation reactions. Chem. Soc. Rev., 2019, 48(4), 1150-1193.
[http://dx.doi.org/10.1039/C8CS00453F] [PMID: 30608075]
[12]
Schmidt, N.G.; Eger, E.; Kroutil, W. Building bridges: Biocatalytic C–C-bond formation toward multifunctional products. ACS Catal., 2016, 6(7), 4286-4311.
[http://dx.doi.org/10.1021/acscatal.6b00758] [PMID: 27398261]
[13]
Lennox, A.J.J.; Lloyd-Jones, G.C. Selection of boron reagents for Suzuki-Miyaura coupling. Chem. Soc. Rev., 2014, 43(1), 412-443.
[http://dx.doi.org/10.1039/C3CS60197H] [PMID: 24091429]
[14]
Liu, B.; Shetty, R.S.; Moffett, K.K. Kelly. M.J. Efficient synthesis of 1,3,5-trisubstituted benzenes via three Pd-mediated carbon–sulfur, carbon–nitrogen and carbon–carbon bond formation reactions. Tetrahedron Lett., 2011, 52, 1680-1684.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.140]
[15]
Majumda, K.C. Regioselective formation of medium-ring heterocycles of biological relevance by intramolecular cyclization. RSC Advances, 2011, 1, 1152-1170.
[http://dx.doi.org/10.1039/c1ra00494h]
[16]
Sherwood, J.; Clark, J.H.; Fairlamb, I.J.S.; Slattery, J.M. Solvent effects in palladium catalyzed cross-coupling reactions. Green Chem., 2019, 21, 2164-2213.
[http://dx.doi.org/10.1039/C9GC00617F]
[17]
Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J.M.; Polshettiwar, V. Nanocatalysts for Suzuki cross-coupling reactions. Chem. Soc. Rev., 2011, 40(10), 5181-5203.
[http://dx.doi.org/10.1039/c1cs15079k] [PMID: 21804997]
[18]
Verma, A.; Santos, W.L. Copper-catalyzed coupling reactions of organoboron compounds ACS Symposium Series, 2016, Vol. 1236, pp. 313-356.
[http://dx.doi.org/10.1021/bk-2016-1236.ch010]
[19]
Liu, Z.; Wei, S.; Liang, A.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Palladium-catalyzed reductive Heck reaction of α,β-unsaturated alkenes and cycloalkyl iodides. Tetrahedron Lett., 2019, 60, 485-488.
[http://dx.doi.org/10.1016/j.tetlet.2019.01.010]
[20]
Teng, S.; Tessensohn, M.E.; Webster, R.D.; Zhou, J.S. Palladium-catalyzed intermolecular heck-type reaction of epoxides. ACS Catal., 2018, 88, 7439-7444.
[http://dx.doi.org/10.1021/acscatal.8b02029]
[21]
Li, L.; Zhao, S.; Joshi-Pangu, A.; Diane, M.; Biscoe, M.R. Stereospecific pd-catalyzed cross-coupling reactions of secondary alkylboron nucleophiles and aryl chlorides. J. Am. Chem. Soc., 2014, 136(40), 14027-14030.
[http://dx.doi.org/10.1021/ja508815w] [PMID: 25226092]
[22]
Zhou, A.; Guo, R.M.; Zhou, J.; Dou, Y.; Chen, Y.; Li, J.R. Pd@ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance heck reaction. ACS Sustain. Chem. Eng., 2018, 62, 2103-2111.
[http://dx.doi.org/10.1021/acssuschemeng.7b03525]
[23]
Li, J.H.; Tang, B.X.; Tao, L.M.; Xie, Y.X.; Liang, Y.; Zhang, M.B. Reusable copper-catalyzed cross-coupling reactions of aryl halides with organotins in inexpensive ionic liquids. J. Org. Chem., 2006, 71(19), 7488-7490.
[http://dx.doi.org/10.1021/jo061220j] [PMID: 16958550]
[24]
Thapa, S.; Shrestha, B.; Gurung, S.K.; Giri, R. Copper-catalysed cross-coupling: an untapped potential. Org. Biomol. Chem., 2015, 13(17), 4816-4827.
[http://dx.doi.org/10.1039/C5OB00200A] [PMID: 25829351]
[25]
Zhou, F.; Cai, Q. Recent advances in copper-catalyzed asymmetric coupling reactions. Beilstein J. Org. Chem., 2015, 11, 2600-2615.
[http://dx.doi.org/10.3762/bjoc.11.280] [PMID: 26734106]
[26]
Desnoyer, A.N.; Love, J.A. Recent advances in well-defined, late transition metal complexes that make and/or break C-N, C-O and C-S bonds. Chem. Soc. Rev., 2017, 46(1), 197-238.
[http://dx.doi.org/10.1039/C6CS00150E] [PMID: 27849097]
[27]
Evano, G.; Wang, J.; Nitelet, A. Metal-mediated C–O bond forming reactions in natural product synthesis. Org. Chem. Front., 2017, 4, 2480-2499.
[http://dx.doi.org/10.1039/C7QO00671C]
[28]
Serra, J.; Parella, T.; Ribas, X. Au(iii)-aryl intermediates in oxidant-free C-N and C-O cross-coupling catalysis. Chem. Sci. (Camb.), 2017, 8(2), 946-952.
[http://dx.doi.org/10.1039/C6SC03699F] [PMID: 28572904]
[29]
Gawande, M.B.; Bonifácio, V.D.B.; Luque, R.; Branco, P.S.; Varma, R.S. Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 2013, 42(12), 5522-5551.
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409]
[30]
Kreuder, A.D.; Knight, T.H.; Whitford, J.; Ponnusamy, E.; Miller, P.; Jesse, N.; Rodenborn, R.; Sayag, S.; Gebel, M.; Aped, I.; Sharfstein, I.; Manaster, E.; Ergaz, I.; Harris, A.; Grice, L.N. A method for assessing greener alternatives between chemical products following the 12 principles of green chemistry. ACS Sustain. Chem. Eng., 2017, 5, 2927-2935.
[http://dx.doi.org/10.1021/acssuschemeng.6b02399]
[31]
Constable, D.J.C.; Dunn, P.J.; Hayler, J.D.; Humphrey, G.R.; Leazer, J.L.; Linderman, R.J.; Lorenz, K.; Manley, J.; Pearlman, B.A.; Wells, A.; Zaksh, A.; Zhang, T.Y. Key green chemistry research areas-a perspective from pharmaceutical manufacturers. Green Chem., 2007, 9, 411-420.
[http://dx.doi.org/10.1039/B703488C]
[32]
Cravotto, G.; Cintas, P. The combined use of microwaves and ultrasound: improved tools in process chemistry and organic synthesis. Chemistry, 2007, 13(7), 1902-1909.
[http://dx.doi.org/10.1002/chem.200601845] [PMID: 17245792]
[33]
Mehta, V.P.; Van der Eycken, E.V. Microwave-assisted C-C bond forming cross-coupling reactions: an overview. Chem. Soc. Rev., 2011, 40(10), 4925-4936.
[http://dx.doi.org/10.1039/c1cs15094d] [PMID: 21717007]
[34]
Kulla, H.; Wilke, M.; Fischer, F.; Röllig, M.; Maierhofer, C.; Emmerling, F. Warming up for mechanosynthesis - temperature development in ball mills during synthesis. Chem. Commun. (Camb.), 2017, 53(10), 1664-1667.
[http://dx.doi.org/10.1039/C6CC08950J] [PMID: 28099549]
[35]
Saïd, K.; Moussaoui, Y.; Kammoun, M.; Ben Salem, R. Ultrasonic activation of Heck type reactions in the presence of Aliquat-336. Ultrason. Sonochem., 2011, 18(1), 23-27.
[http://dx.doi.org/10.1016/j.ultsonch.2010.04.007] [PMID: 20471902]
[36]
Baig, R.B.N.; Varma, R.S. Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev., 2012, 41(4), 1559-1584.
[http://dx.doi.org/10.1039/C1CS15204A] [PMID: 22076552]
[37]
Hoffmann, I.; Blumenroder, B.; Thumann, S.O.; Dommer, S.; Schatz, J. Suzuki cross-coupling in aqueous media. Green Chem., 2015, 17, 3844-3857.
[http://dx.doi.org/10.1039/C5GC00794A]
[38]
Ohtaka, A.; Okagaki, T.; Hamasaka, G.; Uozumi, Y.; Shinagawa, T.; Shimomura, O.; Nomura, R. Application of “boomerang” linear polystyrene-stabilized Pd nanoparticles to a series of C-C coupling reactions in water. Catalysts, 2015, 5, 106-118.
[http://dx.doi.org/10.3390/catal5010106]
[39]
Sheldon, R.A. Green solvents for sustainable organic synthesis: state of the art. Green Chem., 2005, 7, 267-278.
[http://dx.doi.org/10.1039/b418069k]
[40]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95, 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007]
[41]
Seyyed, E.H.; Bahareh, H.; Roya, S.; Rajender, S.V. Recent advances in the Suzuki–Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chem., 2019, 21, 381-405.
[http://dx.doi.org/10.1039/C8GC02860E]
[42]
Thunga, S.; Poshala, S.; Anugu, N.; Konakanchi, R.; Vanaparthi, S.; Kokatla, H.P. An efficient Pd(II)-(2-aminonicotinaldehyde) complex as complementary catalyst for the Suzuki-Miyaura coupling in water. Tetrahedron Lett., 2019, 60, 2046-2048.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.051]
[43]
Mondal, P.; Bhanja, P.; Khatun, R.; Bhaumik, A.; Das, D.; Manirul Islam, S. Palladium nanoparticles embedded on mesoporous TiO2 material (Pd@MTiO2) as an efficient heterogeneous catalyst for Suzuki-Coupling reactions in water medium. J. Colloid Interface Sci., 2017, 508, 378-386.
[http://dx.doi.org/10.1016/j.jcis.2017.08.046] [PMID: 28843927]
[44]
Kaboudin, B.; Salemi, H.; Mostafalu, R.; Kazemi, F.; Yokomatsu, T. Pd(II)-β-cyclodextrin complex: synthesis, characterization and efficient nanocatalyst for the selective Suzuki-Miyaura coupling reaction in water. J. Organomet. Chem., 2016, 818, 195-199.
[http://dx.doi.org/10.1016/j.jorganchem.2016.06.007]
[45]
Rathod, P.V.; Jadhav, V.H. Palladium incorporated on carbonaceous catalyst for Suzuki coupling reaction in water. Tetrahedron Lett., 2017, 58, 1006-1009.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.093]
[46]
Han, J.; Liu, Y.; Guo, R. Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki-Miyaura cross-coupling reaction in water. J. Am. Chem. Soc., 2009, 131(6), 2060-2061.
[http://dx.doi.org/10.1021/ja808935n] [PMID: 19170490]
[47]
Liu, L.; Dong, Y.; Pang, B.; Ma, J. [Bmim]PF6-promoted ligandless Suzuki-Miyaura coupling reaction of potassium aryltrifluoroborates in water. J. Org. Chem., 2014, 79(15), 7193-7198.
[http://dx.doi.org/10.1021/jo500840s] [PMID: 24979337]
[48]
Wilson, K.L.; Murray, J.; Jamieson, C.; Watson, A.J.B. Cyrene as a bio-based solvent for the Suzuki-Miyaura cross-coupling. Synlett, 2018, 29, 650-654.
[http://dx.doi.org/10.1055/s-0036-1589143]
[49]
Samarasimhareddy, M.; Prabhu, S.G.; Vishwanatha, T.M.; Sureshbabu, V.V. PVC-supported palladium nanoparticles: an efficient catalyst for Suzuki cross-coupling reactions at room temperature. Synthesis, 2013, 45, 1201-1206.
[http://dx.doi.org/10.1055/s-0033-1338293]
[50]
Jiang, Z.J.; Li, Z.H.; Yu, J.B.; Su, W.K. Liquid-assisted grinding accelerating: Suzuki-Miyaura reaction of aryl chlorides under high-speed ball-milling conditions. J. Org. Chem., 2016, 81(20), 10049-10055.
[http://dx.doi.org/10.1021/acs.joc.6b01938] [PMID: 27690440]
[51]
Klingensmith, L.M.; Leadbeater, N.E. Ligand-free palladium catalysis of aryl coupling reactions facilitated by grinding. Tetrahedron Lett., 2003, 44, 765-768.
[http://dx.doi.org/10.1016/S0040-4039(02)02645-X]
[52]
Cravotto, G.; Garella, D.; Tagliapietra, S.; Stolle, A.; Schubler, S.; Leonhardtb, S.E.S.; Ondruschka, B. Suzuki cross-couplings of (hetero)aryl chlorides in the solid-state. New J. Chem., 2012, 36, 1304-1307.
[http://dx.doi.org/10.1039/c2nj40064b]
[53]
Rajagopal, R.; Jarikote, D.V.; Srinivasan, K.V. Ultrasound promoted Suzuki cross-coupling reactions in ionic liquid at ambient conditions. Chem. Commun. (Camb.), 2002, 21(6), 616-617.
[http://dx.doi.org/10.1039/b111271f] [PMID: 12120150]
[54]
Bai, L.; Wang, J.X.; Zhang, Y. Rapid microwave-promoted Suzuki cross coupling reaction in water. Green Chem., 2003, 5, 615-617.
[http://dx.doi.org/10.1039/b305191a]
[55]
Dawood, K.M.; El-Deftar, M.M. Microwave-assisted C-C cross-coupling reactions of aryl and heteroaryl halides in water. ARKIVOC, 2010, ix, 319-330.
[56]
Rana, S.; Maddila, S.; Yalagala, K.; Jonnalagadda, S.B. Organo functionalized graphene with Pd nanoparticles and its excellent catalytic activity for Suzuki coupling reaction. Appl. Catal. A Gen., 2015, 505, 539-547.
[http://dx.doi.org/10.1016/j.apcata.2015.07.018]
[57]
Jagtap, S. Heck reaction-state of the art. Catalysts, 2017, 7, 267.
[http://dx.doi.org/10.3390/catal7090267]
[58]
Lee, A.L. Enantioselective oxidative boron Heck reactions. Org. Biomol. Chem., 2016, 14(24), 5357-5366.
[http://dx.doi.org/10.1039/C5OB01984B] [PMID: 26529247]
[59]
Kumar, A.; Rao, G.K.; Singh, A.K. Organochalcogen ligands and their palladium(II) complexes: Synthesis to catalytic activity for Heck coupling. RSC Advances, 2012, 2, 12552-12574.
[http://dx.doi.org/10.1039/c2ra20508d]
[60]
Suzuki, N.; Takabe, T.; Yamauchi, Y.; Koyama, S.; Koike, R.; Rikukawa, M.; Liao, W.T.; Peng, W.S.; Tsai, F.Y. Palladium-catalyzed Mizoroki-Heck reactions in water using thermoresponsive polymer micelles. Tetrahedron, 2019, 75, 1351-1358.
[http://dx.doi.org/10.1016/j.tet.2019.01.047]
[61]
Lipshutz, B.H.; Taft, B.R. Heck couplings at room temperature in nanometer aqueous micelles. Org. Lett., 2008, 10(7), 1329-1332.
[http://dx.doi.org/10.1021/ol702755g] [PMID: 18335945]
[62]
Zhang, Z.; Zha, Z.; Gan, C.; Pan, C.; Zhou, Y.; Wang, Z.; Zhou, M.M. Catalysis and regioselectivity of the aqueous Heck reaction by Pd(0) nanoparticles under ultrasonic irradiation. J. Org. Chem., 2006, 71(11), 4339-4342.
[http://dx.doi.org/10.1021/jo060372b]] [PMID: 16709085]
[63]
An, G.; Ji, X.; Han, J.; Pan, Y. Ultrasound-promoted ligand-free Heck reaction in water. Synth. Commun., 2011, 41, 1464-1471.
[http://dx.doi.org/10.1080/00397911.2010.486511]
[64]
Zhu, X.; Liu, J.; Chen, T.; Su, W. Mechanically activated synthesis of (E)-stilbene derivatives by high-speed ball milling. Appl. Organomet. Chem., 2012, 26, 145-147.
[http://dx.doi.org/10.1002/aoc.2827]
[65]
Declerck, V.; Colacino, E.; Bantreil, X.; Martinez, J.; Lamaty, F. Poly(ethylene glycol) as reaction medium for mild Mizoroki-Heck reaction in a ball-mill. Chem. Commun. (Camb.), 2012, 48(96), 11778-11780.
[http://dx.doi.org/10.1039/c2cc36286d] [PMID: 23104100]
[66]
Allam, B.K.; Singh, K.N. An efficient phosphine-free Heck reaction in water using Pd(L-Proline)2 as the catalyst under microwave irradiation. Synthesis, 2011, 7, 1125-1131.
[67]
Hervea, G.; Len, C. First ligand-free, microwave-assisted, Heck crosscoupling reaction in pure water on a nucleoside-application to the synthesis of antiviral BVDU. RSC Advances, 2014, 4, 46926-46929.
[http://dx.doi.org/10.1039/C4RA09798J]
[68]
Chinchilla, R.; Nájera, C. Recent advances in Sonogashira reactions. Chem. Soc. Rev., 2011, 40(10), 5084-5121.
[http://dx.doi.org/10.1039/c1cs15071e] [PMID: 21655588]
[69]
Bakherad, M. Recent progress and current applications of Sonogashira coupling reaction in water. Appl. Organomet. Chem., 2013, 27, 125-140.
[http://dx.doi.org/10.1002/aoc.2931]
[70]
Chinchilla, R.; Najera, C. The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem. Rev., 2007, 107(3), 874-922.
[http://dx.doi.org/10.1021/cr050992x] [PMID: 17305399]
[71]
Lipshutz, B.H.; Chung, D.W.; Rich, B. Sonogashira couplings of aryl bromides: room temperature, water only, no copper. Org. Lett., 2008, 10(17), 3793-3796.
[http://dx.doi.org/10.1021/ol801471f] [PMID: 18683937]
[72]
Liang, B.; Dai, M.; Chen, J.; Yang, Z. Copper-free sonogashira coupling reaction with PdCl2 in water under aerobic conditions. J. Org. Chem., 2005, 70(1), 391-393.
[http://dx.doi.org/10.1021/jo048599z] [PMID: 15624959]
[73]
Kodicherla, B.; Perumgani, C.P.; Mandapati, M.R. A reusable polystyrene-supported copper(II) catalytic system for N-arylation of indoles and Sonogashira coupling reactions in water. Appl. Catal. A Gen., 2014, 483, 110-115.
[http://dx.doi.org/10.1016/j.apcata.2014.07.001]
[74]
Bakherad, M.; Doosti, R.; Mirzaee, M.; Jadidi, K. Synthesis of new 2-substituted pyrazolo[5,1-b] [1,3]oxazoles via Sonogashira coupling reactions in water. Tetrahedron, 2017, 73, 3281-3287.
[http://dx.doi.org/10.1016/j.tet.2017.04.062]
[75]
Naeimi, H.; Kiani, F. Functionalized graphene oxide anchored to Ni complex as an effective recyclable heterogeneous catalyst for Sonogashira coupling reactions. J. Organomet. Chem., 2019, 885, 65-72.
[http://dx.doi.org/10.1016/j.jorganchem.2019.01.013]
[76]
Gholap, A.R.; Venkatesan, K.; Pasricha, R.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Copper- and ligand-free Sonogashira reaction catalyzed by Pd(0) nanoparticles at ambient conditions under ultrasound irradiation. J. Org. Chem., 2005, 70(12), 4869-4872.
[http://dx.doi.org/10.1021/jo0503815] [PMID: 15932333]
[77]
Fulmer, D.A.; Shearouse, W.C.; Medonza, S.T. Mack. J. Solvent-free Sonogashira coupling reaction via high speed ball milling. Green Chem., 2009, 11, 1821-1825.
[http://dx.doi.org/10.1039/b915669k]
[78]
Thorwirth, R.; Stolle, A.; Ondruschka, B. Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill. Green Chem., 2010, 12, 985-991.
[http://dx.doi.org/10.1039/c000674b]
[79]
Yamashita, Y.; Yasukawa, T.; Yoo, W.J.; Kitanosono, T.; Kobayashi, S. Catalytic enantioselective aldol reactions. Chem. Soc. Rev., 2018, 47(12), 4388-4480.
[http://dx.doi.org/10.1039/C7CS00824D] [PMID: 29845124]
[80]
Mandal, S.; Mandal, S.; Ghosh, S.K.; Ghosh, A.; Saha, R.; Banerjee, S.; Saha, B. Review of the aldol reaction. Synth. Commun., 2016, 46, 1327-1342.
[http://dx.doi.org/10.1080/00397911.2016.1206938]
[81]
Bhowmick, S.; Mondal, A.; Ghosh, A.; Bhowmick, K.C. Water: the most versatile and nature’s friendly media in asymmetric organocatalyzed direct aldol reactions. Tetrahedron Asymmetry, 2015, 26, 1215-1244.
[http://dx.doi.org/10.1016/j.tetasy.2015.09.009]
[82]
Yorulmaz, T.; Aydogan, F.; Yolacan, C. New and effective proline-based catalysts for asymmetric aldol reaction in water. Synth. Commun., 2017, 47, 78-85.
[http://dx.doi.org/10.1080/00397911.2016.1252988]
[83]
Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima, T.; Shoji, M. Highly diastereo- and enantioselective direct aldol reactions in water. Angew. Chem. Int. Ed. Engl., 2006, 45(6), 958-961.
[http://dx.doi.org/10.1002/anie.200502488] [PMID: 16385603]
[84]
Obregon-Zuniga, A.; Juaristi, E. (2S,4R)-Hyp-(S)-Phe-OMe dipeptide supported on imidazolium tagged molecules as recoverable organocatalysts for asymmetric aldol reactions using water as reaction medium. Tetrahedron, 2017, 73, 5373-5380.
[http://dx.doi.org/10.1016/j.tet.2017.07.037]
[85]
Zhao, W.; Qu, C.; Yang, L.; Cui, Y. Chitosan‐supported cinchonine as an efficient organocatalyst for direct asymmetric aldol reaction in water. Chin. J. Catal., 2015, 36, 367-371.
[http://dx.doi.org/10.1016/S1872-2067(14)60248-5]
[86]
Machuca, E.; Juaristi, E. Organocatalytic activity of α,α-dipeptide derivatives of (S)-proline in the asymmetric aldol reaction in absence of solvent. Evidence for non-covalent p–p interactions in the transition state. Tetrahedron Lett., 2015, 56, 1144-1148.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.079]
[87]
Deng, D.; Liu, P.; Ji, B.; Fu, W.; Li, L. Acyclic amino acids catalyzed direct asymmetric aldol reactions in aqueous media assisted by 2,4-dinitrophenol. Catal. Lett., 2010, 137, 163-170.
[http://dx.doi.org/10.1007/s10562-010-0351-y]
[88]
Schijndel, J.V.; Canalle, L.A.; Molendijk, D.; Meuldijk, J. The green Knoevenagel condensation: solvent-free condensation of benzaldehydes. Green Chem. Lett. Rev., 2017, 10, 404-411.
[http://dx.doi.org/10.1080/17518253.2017.1391881]
[89]
Rahmatpour, A.; Goodarzi, N. Cross-linked polystyrene-TiCl4 complex as a reusable Lewis acid catalyst for solvent-free Knoevenagel condensations of 1,3-dicarbonyl compounds with aldehydes. Catal. Commun., 2019, 124, 24-31.
[http://dx.doi.org/10.1016/j.catcom.2018.11.001]
[90]
Xu, G.; Jin, M.; Kalkhajeh, Y.K.; Wang, L.; Tao, M.; Zhang, W. Proton sponge functionalized polyacrylonitrile fibers as an efficient and recyclable superbasic catalyst for Knoevenagel condensation in water. J. Clean. Prod., 2019, 231, 77-86.
[http://dx.doi.org/10.1016/j.jclepro.2019.05.211]
[91]
Yadav, J.S.; Reddy, B.V.S.; Basak, A.K.; Visali, B.; Narsaiah, A.V.; Nagaiah, K. Phosphane-catalyzed Knoevenagel condensation: a facile synthesis of α-cyanoacrylates and α-cyanoacrylonitriles. Eur. J. Org. Chem., 2004, 2004, 546-551.
[http://dx.doi.org/10.1002/ejoc.200300513]
[92]
Rani, D.; Singla, P.; Agarwal, J. ‘Chitosan in water’ as an eco-friendly and efficient catalytic system for Knoevenagel condensation reaction. Carbohydr. Polym., 2018, 202, 355-364.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.008] [PMID: 30287010]
[93]
Xu, H.; Pan, L.; Fang, X.; Liu, B.; Zhang, W.; Lu, M.; Xu, Y.; Ding, T.; Chang, H. Knoevenagel condensation catalyzed by novel Nmm-based ionic liquids in water. Tetrahedron Lett., 2017, 58, 2360-2365.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.006]
[94]
Ansari, M.B.; Jin, H.; Parvin, M.N.; Park, S.E. Mesoporous carbon nitride as a metal-free base catalyst in the microwave assisted Knoevenagel condensation of ethylcyanoacetate with aromatic aldehydes. Catal. Today, 2012, 185, 211-216.
[http://dx.doi.org/10.1016/j.cattod.2011.07.024]
[95]
Gangliang, H.; Xue, L. Applications of Michael addition reaction in organic synthesis. Curr. Org. Synth., 2017, 14, 568-571.
[http://dx.doi.org/10.2174/1570179414666161121124846]
[96]
Nising, C.F.; Bräse, S. Recent developments in the field of oxa-Michael reactions. Chem. Soc. Rev., 2012, 41(3), 988-999.
[http://dx.doi.org/10.1039/C1CS15167C] [PMID: 21796323]
[97]
Jha, S.C.; Joshi, N.N. Catalytic, enatioselective Michael addition reactions. ARKIVOC, 2002, 167-196.
[98]
Nair, D.P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C.R.; Bowman, C.N. The Thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem. Mater., 2014, 26, 724-744.
[http://dx.doi.org/10.1021/cm402180t]
[99]
Kumar, T.P.; Prasad, S.S.; Haribabu, K.; Kumar, V.N.; Reddy, C.S. Pyrrolidine-HOBt: an oxytriazole catalyst for the enantioselective Michael addition of cyclohexanone to nitroolefins in water. Tetrahedron Asymmetry, 2016, 27, 1133-1138.
[http://dx.doi.org/10.1016/j.tetasy.2016.08.006]
[100]
Wei, J.; Guo, W.; Zhang, B.; Liu, Y.; Du, X.; Li, C. An amphiphilic organic catalyst for the direct asymmetric Michael addition of cycloketone to nitroolefins in water. Chin. J. Catal., 2014, 35, 1008-1011.
[http://dx.doi.org/10.1016/S1872-2067(14)60080-2]
[101]
Sarkar, D.; Bhattarai, R.; Headley, A.D.; Ni, B. A Novel recyclable organocatalytic system for the highly asymmetric michael addition of aldehydes to nitroolefins in water. Synthesis, 2011, 12, 1993-1997.
[102]
Jia, C.; Chen, D.; Zhang, C.; Zhang, Q.; Cao, B.; Zhao, Z. Mechanosynthesis of γ-nitro dicarbonyl compounds via CaCl2-catalyzed Michael addition. Tetrahedron, 2013, 69, 7320-7324.
[http://dx.doi.org/10.1016/j.tet.2013.06.089]
[103]
Jorres, M.; Mersmann, S.; Raabe, G.; Bolm, C. Organocatalytic solvent-free hydrogen bondingmediated asymmetric Michael additions under ball milling conditions. Green Chem., 2013, 15, 612-616.
[http://dx.doi.org/10.1039/c2gc36906k]
[104]
Corma, A.; Leyva-Pérez, A.; Sabater, M.J. Gold-catalyzed carbon-heteroatom bond-forming reactions. Chem. Rev., 2011, 111(3), 1657-1712.
[http://dx.doi.org/10.1021/cr100414u] [PMID: 21391565]
[105]
Beletskaya, I.P. Transition-metal-catalyzed reactions of carbon–heteroatom bond formation by substitution and addition processes. Pure Appl. Chem., 2005, 77, 2021-2027.
[http://dx.doi.org/10.1351/pac200577122021]
[106]
Liu, D.; Liu, C.; Lei, A. Carbon-centered radical addition to C=X bonds for C-X bond formation. Chem. Asian J., 2015, 10(10), 2040-2054.
[http://dx.doi.org/10.1002/asia.201500326] [PMID: 26011433]
[107]
Sun, X.; Tu, X.; Dai, C.; Zhang, X.; Zhang, B.; Zeng, Q. Palladium-catalyzed C-N cross coupling of sulfinamides and aryl halides. J. Org. Chem., 2012, 77(9), 4454-4459.
[http://dx.doi.org/10.1021/jo3003584] [PMID: 22458413]
[108]
Jiang, B.; Li, Y.; Tu, M.S.; Wang, S.L.; Tu, S.J.; Li, G. Allylic amination and N-arylation-based domino reactions providing rapid three-component strategies to fused pyrroles with different substituted patterns. J. Org. Chem., 2012, 77(17), 7497-7505.
[http://dx.doi.org/10.1021/jo301323r] [PMID: 22852549]
[109]
Zhu, X.; Zhang, Q.; Su, W. Solvent-free N-arylation of amines with arylboronic acids under ball milling conditions. RSC Advances, 2014, 4, 22775-22778.
[http://dx.doi.org/10.1039/c4ra02952f]
[110]
Kurandina, D.V.; Eliseenkov, E.V.; Khaibulova, T.S.; Petrov, A.A.; Boyarskiy, V.P. Copper-catalyzed C-N bond cross-coupling of aryl halides and amines in water in the presence of ligand derived from oxalyl dihydrazide: scope and limitation. Tetrahedron, 2015, 71, 7931-7937.
[http://dx.doi.org/10.1016/j.tet.2015.07.071]
[111]
Gupta, A.K.; Rao, G.T.; Singh, K.N. NiCl2-6H2O as recyclable heterogeneous catalyst for N-arylation of amines and NH-heterocycles under microwave exposure. Tetrahedron Lett., 2012, 53, 2218-2221.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.081]
[112]
Liu, Z.J.; Vors, J.P.; Gesing, E.R.F.; Bolm, C. Microwave-assisted solvent- and ligand-free copper-catalysed cross-coupling between halopyridines and nitrogen nucleophiles. Green Chem., 2011, 13, 42-45.
[http://dx.doi.org/10.1039/C0GC00296H]
[113]
Chow, W.S.; Chan, T.H. Microwave-assisted solvent-free N-arylation of imidazole and pyrazole. Tetrahedron Lett., 2009, 50, 1286-1289.
[http://dx.doi.org/10.1016/j.tetlet.2008.12.119]
[114]
Thorwirth, R.; Stolle, A. Solvent-free synthesis of enamines from alkyl esters of propiolic or but-2-yne dicarboxylic acid in a ball mill. Synlett, 2011, 15, 2200-2202.
[115]
Chatterjee, T.; Saha, D.; Ranu, B.C. Solvent-free transesterification in a ball-mill over alumina surface. Tetrahedron Lett., 2012, 53, 4142-4144.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.127]
[116]
Kosurkar, U.B.; Dadmal, T.L.; Appalanaidu, K.; Rao, Y.K.; Nanubolu, J.B.; Kumbhare, R.M. Microwave assisted synthesis of 2-aminooxazolo [4,5-b] pyridine derivatives via intramolecular C–O bond formation in aqueous medium. Tetrahedron Lett., 2014, 55, 1296-1298.
[http://dx.doi.org/10.1016/j.tetlet.2013.12.090]
[117]
Lindstedt, E.; Ghosh, R.; Olofsson, B. Metal-free synthesis of aryl ethers in water. Org. Lett., 2013, 15(23), 6070-6073.
[http://dx.doi.org/10.1021/ol402960f] [PMID: 24228788]
[118]
Latif, E.A.; Metwally, M.A. Waste-free solid-state organic syntheses: Solvent-free alkylation, heterocyclization, and azo-coupling reactions. Monatsh. Chem., 2007, 138, 771-776.
[http://dx.doi.org/10.1007/s00706-007-0665-7]
[119]
Manabe, K.; Iimura, S.; Sun, X.M.; Kobayashi, S. Dehydration reactions in water. Brønsted acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. J. Am. Chem. Soc., 2002, 124(40), 11971-11978.
[http://dx.doi.org/10.1021/ja026241j] [PMID: 12358542]
[120]
Waddell, D.C.; Thiel, I.; Bunger, A.; Nkata, D.; Maloney, A.; Clark, T.; Smith, B.; Mack, J. Investigating the formation of dialkyl carbonates using high speed ball milling. Green Chem., 2011, 13, 3156-3161.
[http://dx.doi.org/10.1039/c1gc15594f]
[121]
Li, L.; Wang, J.J.; Wang, G.W. Manganese(III) acetate-promoted cross-coupling reaction of benzothiazole/thiazole derivatives with organophosphorus compounds under ball-milling conditions. J. Org. Chem., 2016, 81(13), 5433-5439.
[http://dx.doi.org/10.1021/acs.joc.6b00786] [PMID: 27248000]
[122]
Sobhani, S.; Vahidi, Z.; Zeraatkar, Z.; Khodadadi, S. A Pd complex of a NNN pincer ligand supported on γ-Fe2O3@SiO2 as the first magnetically recoverable heterogeneous catalyst for C–P bond forming reactions. RSC Advances, 2015, 5, 36552-36559.
[http://dx.doi.org/10.1039/C5RA03334A]
[123]
Bouzina, A.; Belhani, B. Aouf, N.E.; Berredjem, M. A novel, rapid and green method of phosphorylation under ultrasound irradiation and catalyst free conditions. RSC Advances, 2015, 5, 46272-46275.
[http://dx.doi.org/10.1039/C5RA06380A]
[124]
Gusarova, N.K.; Ivanova, N.I.; Volkov, P.A.; Khrapova, K.O.; Larina, L.I.; Smirnov, V.I.; Borodina, T.N.; Trofimov, B.A. Catalyst- and solvent-free rapid addition of secondary phosphine chalcogenides to aldehydes: another click chemistry. Synthesis, 2015, 47, 1611-1622.
[http://dx.doi.org/10.1055/s-0034-1380408]
[125]
Zhang, X.; Liu, H.; Hu, X.; Tang, G.; Zhu, J.; Zhao, Y. Ni(II)/Zn catalyzed reductive coupling of aryl halides with diphenylphosphine oxide in water. Org. Lett., 2011, 13(13), 3478-3481.
[http://dx.doi.org/10.1021/ol201141m] [PMID: 21619044]
[126]
Jablonkai, E.; Keglevich, G. P-Ligand-free, microwave-assisted variation of the Hirao reaction under solvent-free conditions; the P–C coupling reaction of >P(O)H species and bromoarenes. Tetrahedron Lett., 2013, 54, 4185-4188.
[http://dx.doi.org/10.1016/j.tetlet.2013.05.111]
[127]
Sarvari, M.H.; Tavakolian, M. P–C bond formation via direct and three-component conjugate addition catalyzed by ZnO nano-rods for the synthesis of 2-oxindolin-3-yl-phosphonates under solvent-free conditions. New J. Chem., 2012, 36, 1014-1021.
[http://dx.doi.org/10.1039/c2nj20947k]
[128]
Ghasemzadeh, M.S.; Akhlaghinia, B. C–P bond construction catalyzed by NiII immobilized on aminated Fe3O4@TiO2 yolk–shell NPs functionalized by (3-glycidyloxypropyl) trimethoxysilane (Fe3O4@TiO2 YS-GLYMO-UNNiII) in green media. New J. Chem., 2019, 43, 5341-5356.
[http://dx.doi.org/10.1039/C9NJ00352E]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 28
Year: 2019
Page: [3154 - 3190]
Pages: 37
DOI: 10.2174/1385272823666191202105820
Price: $58

Article Metrics

PDF: 30
HTML: 6
PRC: 1