Progress in the Mechanism and Clinical Application of Cilostazol

Author(s): Huilei Zheng, Hua Yang, Danping Gong, Lanxian Mai, Xiaoling Qiu, Lidai Chen, Xiaozhou Su, Ruoqi Wei, Zhiyu Zeng*.

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 31 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Cilostazol is a unique platelet inhibitor that has been used clinically for more than 20 years. As a phosphodiesterase type III inhibitor, cilostazol is capable of reversible inhibition of platelet aggregation and vasodilation, has antiproliferative effects, and is widely used in the treatment of peripheral arterial disease, cerebrovascular disease, percutaneous coronary intervention, etc. This article briefly reviews the pharmacological mechanisms and clinical application of cilostazol.

Keywords: Cilostazol, Mechanism, Clinical application, Anti-platelet aggregation, Antiplatelet drugs, ADP.

[1]
Noma, K.; Higashi, Y. Cilostazol for treatment of cerebral infarction. Expert Opin. Pharmacother., 2018, 19(15), 1719-1726.
[http://dx.doi.org/10.1080/14656566.2018.1515199] [PMID: 30212227]
[2]
Kan, C.D.; Wang, J.N.; Li, W.P.; Lin, S.H.; Chen, W.L.; Hsu, Y.P.; Yeh, C.S. Clinical ultrasound stimulating angiogenesis following drug-release from polymersomes on the ischemic zone for peripheral arterial occlusive disease. Nanomedicine (Lond.), 2018, 14(7), 2205-2213.
[http://dx.doi.org/10.1016/j.nano.2018.07.010] [PMID: 30055269]
[3]
Shima, H.; Tashiro, M.; Yamada, S.; Matsuura, M.; Okada, K.; Doi, T.; Minakuchi, J.; Kawashima, S. Cilostazol-induced acute tubulointerstitial nephritis accompanied by IgA nephropathy: a case report. BMC Nephrol., 2018, 19(1), 52.
[http://dx.doi.org/10.1186/s12882-018-0854-0] [PMID: 29506491]
[4]
Fakhry, F.; Fokkenrood, H.J.; Spronk, S.; Teijink, J.A.; Rouwet, E.V.; Hunink, M.G.M. Endovascular revascularisation versus conservative management for intermittent claudication. Cochrane Database Syst. Rev., 2018, 3CD010512
[http://dx.doi.org/10.1002/14651858.CD010512.pub2] [PMID: 29518253]
[5]
McDermott, M.M. Medical management of functional impairment in peripheral artery disease: A review. Prog. Cardiovasc. Dis., 2018, 60(6), 586-592.
[http://dx.doi.org/10.1016/j.pcad.2018.03.007] [PMID: 29727608]
[6]
Schrör, K. The pharmacology of cilostazol. Diabetes Obes. Metab., 2002, 4(Suppl. 2), S14-S19.
[http://dx.doi.org/10.1046/j.1463-1326.2002.0040s2s14.x] [PMID: 12180353]
[7]
Kariyazono, H.; Nakamura, K.; Shinkawa, T.; Yamaguchi, T.; Sakata, R.; Yamada, K. Inhibition of platelet aggregation and the release of P-selectin from platelets by cilostazol. Thromb. Res., 2001, 101(6), 445-453.
[http://dx.doi.org/10.1016/S0049-3848(00)00415-1] [PMID: 11323002]
[8]
Meiring, L.; Petzer, J.P.; Petzer, A. A review of the pharmacological properties of 3,4-dihydro-2(1H)- quinolinones. Mini Rev. Med. Chem., 2018, 18(10), 828-836.
[http://dx.doi.org/10.2174/1389557517666170927141323] [PMID: 28971767]
[9]
Chou, K.C. Impacts of bioinformatics to medicinal chemistry. Med. Chem., 2015, 11(3), 218-234.
[http://dx.doi.org/10.2174/1573406411666141229162834] [PMID: 25548930]
[10]
Oxenoid, K.; Dong, Y.; Cao, C.; Cui, T.; Sancak, Y.; Markhard, A.L.; Grabarek, Z.; Kong, L.; Liu, Z.; Ouyang, B.; Cong, Y.; Mootha, V.K.; Chou, J.J. Architecture of the mitochondrial calcium uniporter. Nature, 2016, 533(7602), 269-273.
[http://dx.doi.org/10.1038/nature17656] [PMID: 27135929]
[11]
Berardi, M.J.; Shih, W.M.; Harrison, S.C.; Chou, J.J. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature, 2011, 476(7358), 109-113.
[http://dx.doi.org/10.1038/nature10257] [PMID: 21785437]
[12]
Dev, J.; Park, D.; Fu, Q.; Chen, J.; Ha, H.J.; Ghantous, F.; Herrmann, T.; Chang, W.; Liu, Z.; Frey, G.; Seaman, M.S.; Chen, B.; Chou, J.J. Structural basis for membrane anchoring of HIV-1 envelope spike. Science, 2016, 353(6295), 172-175.
[http://dx.doi.org/10.1126/science.aaf7066] [PMID: 27338706]
[13]
Schnell, J.R.; Chou, J.J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 2008, 451(7178), 591-595.
[http://dx.doi.org/10.1038/nature06531] [PMID: 18235503]
[14]
Chou, J.J.; Matsuo, H.; Duan, H.; Wagner, G. Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell, 1998, 94(2), 171-180.
[http://dx.doi.org/10.1016/S0092-8674(00)81417-8] [PMID: 9695946]
[15]
Chou, K.C.; Jones, D.; Heinrikson, R.L. Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett., 1997, 419(1), 49-54.
[http://dx.doi.org/10.1016/S0014-5793(97)01246-5] [PMID: 9426218]
[16]
Chou, K.C. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem. Biophys. Res. Commun., 2004, 319(2), 433-438.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.016] [PMID: 15178425]
[17]
Chou, K.C. Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J. Proteome Res., 2005, 4(5), 1681-1686.
[http://dx.doi.org/10.1021/pr050145a] [PMID: 16212421]
[18]
Chou, K.C. Modeling the tertiary structure of human cathepsin-E. Biochem. Biophys. Res. Commun., 2005, 331(1), 56-60.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.123] [PMID: 15845357]
[19]
Chou, K.C. Insights from modeling the 3D structure of DNA-CBF3b complex. J. Proteome Res., 2005, 4(5), 1657-1660.
[http://dx.doi.org/10.1021/pr050135+] [PMID: 16212418]
[20]
Ma, Y.; Wang, S.Q.; Xu, W.R.; Wang, R.L.; Chou, K.C. Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. PLoS One, 2012, 7(6)e38546
[http://dx.doi.org/10.1371/journal.pone.0038546] [PMID: 22685582]
[21]
Wang, S.Q.; Du, Q.S.; Huang, R.B.; Zhang, D.W.; Chou, K.C. Insights from investigating the interaction of oseltamivir (Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus. Biochem. Biophys. Res. Commun., 2009, 386(3), 432-436.
[http://dx.doi.org/10.1016/j.bbrc.2009.06.016] [PMID: 19523442]
[22]
Li, X.B.; Wang, S.Q.; Xu, W.R.; Wang, R.L.; Chou, K.C. Novel inhibitor design for hemagglutinin against H1N1 influenza virus by core hopping method. PLoS One, 2011, 6(11)e28111
[http://dx.doi.org/10.1371/journal.pone.0028111] [PMID: 22140516]
[23]
Chou, K.C.; Tomasselli, A.G.; Heinrikson, R.L. Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett., 2000, 470(3), 249-256.
[http://dx.doi.org/10.1016/S0014-5793(00)01333-8] [PMID: 10745077]
[24]
Wang, S.Q.; Du, Q.S.; Chou, K.C. Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem. Biophys. Res. Commun., 2007, 354(3), 634-640.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.235] [PMID: 17266937]
[25]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J. Theor. Biol., 2015, 377, 47-56.
[http://dx.doi.org/10.1016/j.jtbi.2015.04.011] [PMID: 25908206]
[26]
Liu, Z.; Xiao, X.; Qiu, W.R.; Chou, K.C. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Anal. Biochem., 2015, 474, 69-77.
[http://dx.doi.org/10.1016/j.ab.2014.12.009] [PMID: 25596338]
[27]
Lin, H.; Deng, E.Z.; Ding, H.; Chen, W.; Chou, K.C. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res., 2014, 42(21), 12961-12972.
[http://dx.doi.org/10.1093/nar/gku1019] [PMID: 25361964]
[28]
Chou, K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins, 2001, 43(3), 246-255.
[http://dx.doi.org/10.1002/prot.1035] [PMID: 11288174]
[29]
Xu, Y.; Ding, J.; Wu, L.Y.; Chou, K.C. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One, 2013, 8(2)e55844
[http://dx.doi.org/10.1371/journal.pone.0055844] [PMID: 23409062]
[30]
Xiao, X.; Min, J.L.; Lin, W.Z.; Liu, Z.; Cheng, X.; Chou, K.C. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. J. Biomol. Struct. Dyn., 2015, 33(10), 2221-2233.
[http://dx.doi.org/10.1080/07391102.2014.998710] [PMID: 25513722]
[31]
Chen, W.; Lei, T.Y.; Jin, D.C.; Lin, H.; Chou, K.C. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. Anal. Biochem., 2014, 456, 53-60.
[http://dx.doi.org/10.1016/j.ab.2014.04.001] [PMID: 24732113]
[32]
Min, J.L.; Xiao, X.; Chou, K.C. iEzy-drug: a web server for identifying the interaction between enzymes and drugs in cellular networking. BioMed Res. Int., 2013, 2013701317
[http://dx.doi.org/10.1155/2013/701317] [PMID: 24371828]
[33]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking. PLoS One, 2013, 8(8)e72234
[http://dx.doi.org/10.1371/journal.pone.0072234] [PMID: 24015221]
[34]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iCDI-PseFpt: identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints. J. Theor. Biol., 2013, 337, 71-79.
[http://dx.doi.org/10.1016/j.jtbi.2013.08.013] [PMID: 23988798]
[35]
Chou, K.C. Graphic rule for drug metabolism systems. Curr. Drug Metab., 2010, 11(4), 369-378.
[http://dx.doi.org/10.2174/138920010791514261] [PMID: 20446902]
[36]
Xiao, X.; Lin, W.Z.; Chou, K.C. Recent advances in predicting protein classification and their applications to drug development. Curr. Top. Med. Chem., 2013, 13(14), 1622-1635.
[http://dx.doi.org/10.2174/15680266113139990113] [PMID: 23889055]
[37]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. Predict drug-protein interaction in cellular networking. Curr. Top. Med. Chem., 2013, 13(14), 1707-1712.
[http://dx.doi.org/10.2174/15680266113139990121] [PMID: 23889048]
[38]
Zhou, G.P. The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism. J. Theor. Biol., 2011, 284(1), 142-148.
[http://dx.doi.org/10.1016/j.jtbi.2011.06.006] [PMID: 21718705]
[39]
Chou, K.C.; Zhang, C.T.; Maggiora, G.M. Disposition of amphiphilic helices in heteropolar environments. Proteins, 1997, 28(1), 99-108.
[http://dx.doi.org/10.1002/(SICI)1097-0134(199705)28:1<99:AID-PROT10>3.0.CO;2-C] [PMID: 9144795]
[40]
Liu, B.; Wang, X.; Zou, Q.; Dong, Q.; Chen, Q. Protein remote homology detection by combining Chou’s pseudo amino acid composition and profile-based protein representation. Mol. Inform., 2013, 32(9-10), 775-782.
[http://dx.doi.org/10.1002/minf.201300084] [PMID: 27480230]
[41]
Liu, B.; Zhang, D.; Xu, R.; Xu, J.; Wang, X.; Chen, Q.; Dong, Q.; Chou, K.C. Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics, 2014, 30(4), 472-479.
[http://dx.doi.org/10.1093/bioinformatics/btt709] [PMID: 24318998]
[42]
Chou, K.C.; Wu, Z.C.; Xiao, X. iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS One, 2011, 6(3)e18258
[http://dx.doi.org/10.1371/journal.pone.0018258] [PMID: 21483473]
[43]
Lin, W.Z.; Fang, J.A.; Xiao, X.; Chou, K.C. iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins. Mol. Biosyst., 2013, 9(4), 634-644.
[http://dx.doi.org/10.1039/c3mb25466f] [PMID: 23370050]
[44]
Wang, P.; Xiao, X.; Chou, K.C. NR-2L: a two-level predictor for identifying nuclear receptor subfamilies based on sequence-derived features. PLoS One, 2011, 6(8)e23505
[http://dx.doi.org/10.1371/journal.pone.0023505] [PMID: 21858146]
[45]
Wu, Z.C.; Xiao, X.; Chou, K.C. iLoc-Plant: a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites. Mol. Biosyst., 2011, 7(12), 3287-3297.
[http://dx.doi.org/10.1039/c1mb05232b] [PMID: 21984117]
[46]
Wu, Z.C.; Xiao, X.; Chou, K.C. iLoc-Gpos: a multi-layer classifier for predicting the subcellular localization of singleplex and multiplex Gram-positive bacterial proteins. Protein Pept. Lett., 2012, 19(1), 4-14.
[http://dx.doi.org/10.2174/092986612798472839] [PMID: 21919865]
[47]
Xiao, X.; Wu, Z.C.; Chou, K.C. iLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites. J. Theor. Biol., 2011, 284(1), 42-51.
[http://dx.doi.org/10.1016/j.jtbi.2011.06.005] [PMID: 21684290]
[48]
Chou, K.C.; Wu, Z.C.; Xiao, X. iLoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Mol. Biosyst., 2012, 8(2), 629-641.
[http://dx.doi.org/10.1039/C1MB05420A] [PMID: 22134333]
[49]
Xiao, X.; Wang, P.; Lin, W.Z.; Jia, J.H.; Chou, K.C. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal. Biochem., 2013, 436(2), 168-177.
[http://dx.doi.org/10.1016/j.ab.2013.01.019] [PMID: 23395824]
[50]
Chou, K.C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 2013, 9(6), 1092-1100.
[http://dx.doi.org/10.1039/c3mb25555g] [PMID: 23536215]
[51]
Matus, M.F.; Ludueña, M.; Vilos, C.; Palomo, I.; Mariscal, M.M. Atomic-level characterization and cilostazol affinity of poly(lactic acid) nanoparticles conjugated with differentially charged hydrophilic molecules. Beilstein J. Nanotechnol., 2018, 9, 1328-1338.
[http://dx.doi.org/10.3762/bjnano.9.126] [PMID: 29977668]
[52]
Willmann, S.; Thelen, K.; Becker, C.; Dressman, J.B.; Lippert, J. Mechanism-based prediction of particle size-dependent dissolution and absorption: cilostazol pharmacokinetics in dogs. Eur. J. Pharm. Biopharm., 2010, 76(1), 83-94.
[http://dx.doi.org/10.1016/j.ejpb.2010.06.003] [PMID: 20554023]
[53]
Rychter, M.; Milanowski, B.; Grześkowiak, B.F.; Jarek, M.; Kempiński, M.; Coy, E.L.; Borysiak, S.; Baranowska-Korczyc, A.; Lulek, J. Cilostazol-loaded electrospun three-dimensional systems for potential cardiovascular application: Effect of fibers hydrophilization on drug release, and cytocompatibility. J. Colloid Interface Sci., 2019, 536, 310-327.
[http://dx.doi.org/10.1016/j.jcis.2018.10.026] [PMID: 30380431]
[54]
Manousopoulou, A.; Saito, S.; Yamamoto, Y.; Al-Daghri, N.M.; Ihara, M.; Carare, R.O.; Garbis, S.D. Hemisphere asymmetry of response to pharmacologic treatment in an Alzheimer’s disease mouse model. J. Alzheimers Dis., 2016, 51(2), 333-338.
[http://dx.doi.org/10.3233/JAD-151078] [PMID: 26836196]
[55]
Sanada, F.; Kanbara, Y.; Taniyama, Y.; Otsu, R.; Carracedo, M.; Ikeda-Iwabu, Y.; Muratsu, J.; Sugimoto, K.; Yamamoto, K.; Rakugi, H.; Morishita, R. Induction of angiogenesis by a type III phosphodiesterase inhibitor, cilostazol, through activation of peroxisome proliferator-activated receptor-γ and camp pathways in vascular cells. Arterioscler. Thromb. Vasc. Biol., 2016, 36(3), 545-552.
[http://dx.doi.org/10.1161/ATVBAHA.115.307011] [PMID: 26769045]
[56]
Yamamoto, S.; Kurokawa, R.; Kim, P. Cilostazol, a selective Type III phosphodiesterase inhibitor: prevention of cervical myelopathy in a rat chronic compression model. J. Neurosurg. Spine, 2014, 20(1), 93-101.
[http://dx.doi.org/10.3171/2013.9.SPINE121136] [PMID: 24206033]
[57]
de Donato, G.; Setacci, F.; Galzerano, G.; Mele, M.; Ruzzi, U.; Setacci, C. The use of cilostazol in patients with peripheral arterial disease: results of a national physician survey. J. Cardiovasc. Surg. (Torino), 2016, 57(3), 457-465.
[PMID: 27094424]
[58]
Kibos, A.; Campeanu, A.; Tintoiu, I. Pathophysiology of coronary artery in-stent restenosis. Acute Card. Care, 2007, 9(2), 111-119.
[http://dx.doi.org/10.1080/17482940701263285] [PMID: 17573586]
[59]
Okuda, Y.; Mizutani, M.; Ikegami, T.; Ueno, E.; Yamashita, K. Hemodynamic effects of cilostazol on peripheral artery in patients with diabetic neuropathy. Arzneimittelforschung, 1992, 42(4), 540-542.
[PMID: 1642679]
[60]
Liu, Y.; Wang, T.; Yan, J.; Jiagbogu, N.; Heideman, D.A.; Canfield, A.E.; Alexander, M.Y. HGF/c-Met signalling promotes Notch3 activation and human vascular smooth muscle cell osteogenic differentiation in vitro. Atherosclerosis, 2011, 219(2), 440-447.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.08.033] [PMID: 21920521]
[61]
Herath, S.C.; Lion, T.; Klein, M.; Stenger, D.; Scheuer, C.; Holstein, J.H.; Mörsdorf, P.; Rollmann, M.F.; Pohlemann, T.; Menger, M.D.; Histing, T. Stimulation of angiogenesis by cilostazol accelerates fracture healing in mice. J. Orthop. Res., 2015, 33(12), 1880-1887.
[http://dx.doi.org/10.1002/jor.22967] [PMID: 26134894]
[62]
Hayashi, S.; Morishita, R.; Matsushita, H.; Nakagami, H.; Taniyama, Y.; Nakamura, T.; Aoki, M.; Yamamoto, K.; Higaki, J.; Ogihara, T. Cyclic AMP inhibited proliferation of human aortic vascular smooth muscle cells, accompanied by induction of p53 and p21. Hypertension, 2000, 35(1 Pt 2), 237-243.
[http://dx.doi.org/10.1161/01.HYP.35.1.237] [PMID: 10642304]
[63]
Ohtsubo, H.; Ichiki, T.; Miyazaki, R.; Inanaga, K.; Imayama, I.; Hashiguchi, Y.; Sadoshima, J.; Sunagawa, K. Inducible cAMP early repressor inhibits growth of vascular smooth muscle cell. Arterioscler. Thromb. Vasc. Biol., 2007, 27(7), 1549-1555.
[http://dx.doi.org/10.1161/ATVBAHA.107.145011] [PMID: 17463330]
[64]
Kim, M.J.; Park, K.G.; Lee, K.M.; Kim, H.S.; Kim, S.Y.; Kim, C.S.; Lee, S.L.; Chang, Y.C.; Park, J.Y.; Lee, K.U.; Lee, I.K. Cilostazol inhibits vascular smooth muscle cell growth by downregulation of the transcription factor E2F. Hypertension, 2005, 45(4), 552-556.
[http://dx.doi.org/10.1161/01.HYP.0000158263.64320.eb] [PMID: 15723965]
[65]
Inoue, T.; Uchida, T.; Sakuma, M.; Imoto, Y.; Ozeki, Y.; Ozaki, Y.; Hikichi, Y.; Node, K. Cilostazol inhibits leukocyte integrin Mac-1, leading to a potential reduction in restenosis after coronary stent implantation. J. Am. Coll. Cardiol., 2004, 44(7), 1408-1414.
[http://dx.doi.org/10.1016/j.jacc.2004.06.066] [PMID: 15464320]
[66]
Shiraishi, Y.; Kanmura, Y.; Itoh, T. Effect of cilostazol, a phosphodiesterase type III inhibitor, on histamine-induced increase in [Ca2+]i and force in middle cerebral artery of the rabbit. Br. J. Pharmacol., 1998, 123(5), 869-878.
[http://dx.doi.org/10.1038/sj.bjp.0701699] [PMID: 9535015]
[67]
Kitamura, A.; Manso, Y.; Duncombe, J.; Searcy, J.; Koudelka, J.; Binnie, M.; Webster, S.; Lennen, R.; Jansen, M.; Marshall, I.; Ihara, M.; Kalaria, R.N.; Horsburgh, K. Long-term cilostazol treatment reduces gliovascular damage and memory impairment in a mouse model of chronic cerebral hypoperfusion. Sci. Rep., 2017, 7(1), 4299.
[http://dx.doi.org/10.1038/s41598-017-04082-0] [PMID: 28655874]
[68]
Grouse, J.R., III; Allan, M.C.; Elam, M.B. Clinical manifestation of atherosclerotic peripheral arterial disease and the role of cilostazol in treatment of intermittent claudication. J. Clin. Pharmacol., 2002, 42(12), 1291-1298.
[http://dx.doi.org/10.1177/0091270002042012002] [PMID: 12463722]
[69]
Tanaka, H.; Zaima, N.; Ito, H.; Hattori, K.; Yamamoto, N.; Konno, H.; Setou, M.; Unno, N. Cilostazol inhibits accumulation of triglycerides in a rat model of carotid artery ligation. J. Vasc. Surg., 2013, 58(5), 1366-1374.
[http://dx.doi.org/10.1016/j.jvs.2013.01.033] [PMID: 23571077]
[70]
Rizzo, M.; Corrado, E.; Patti, A.M.; Rini, G.B.; Mikhailidis, D.P. Cilostazol and atherogenic dyslipidemia: a clinically relevant effect? Expert Opin. Pharmacother., 2011, 12(4), 647-655.
[http://dx.doi.org/10.1517/14656566.2011.557359] [PMID: 21284580]
[71]
Tani, T.; Uehara, K.; Sudo, T.; Marukawa, K.; Yasuda, Y.; Kimura, Y. Cilostazol, a selective type III phosphodiesterase inhibitor, decreases triglyceride and increases HDL cholesterol levels by increasing lipoprotein lipase activity in rats. Atherosclerosis, 2000, 152(2), 299-305.
[http://dx.doi.org/10.1016/S0021-9150(99)00480-3] [PMID: 10998457]
[72]
Elam, M.B.; Heckman, J.; Crouse, J.R.; Hunninghake, D.B.; Herd, J.A.; Davidson, M.; Gordon, I.L.; Bortey, E.B.; Forbes, W.P. Effect of the novel antiplatelet agent cilostazol on plasma lipoproteins in patients with intermittent claudication. Arterioscler. Thromb. Vasc. Biol., 1998, 18(12), 1942-1947.
[http://dx.doi.org/10.1161/01.ATV.18.12.1942] [PMID: 9848888]
[73]
Lee, T.M.; Su, S.F.; Hwang, J.J.; Tseng, C.D.; Chen, M.F.; Lee, Y.T.; Wang, S.S. Differential lipogenic effects of cilostazol and pentoxifylline in patients with intermittent claudication: potential role for interleukin-6. Atherosclerosis, 2001, 158(2), 471-476.
[http://dx.doi.org/10.1016/S0021-9150(01)00457-9] [PMID: 11583728]
[74]
Hong, K.W.; Kim, K.Y.; Shin, H.K.; Lee, J.H.; Choi, J.M.; Kwak, Y.G.; Kim, C.D.; Lee, W.S.; Rhim, B.Y. Cilostazol prevents tumor necrosis factor-alpha-induced cell death by suppression of phosphatase and tensin homolog deleted from chromosome 10 phosphorylation and activation of Akt/cyclic AMP response element-binding protein phosphorylation. J. Pharmacol. Exp. Ther., 2003, 306(3), 1182-1190.
[http://dx.doi.org/10.1124/jpet.103.052365] [PMID: 12807996]
[75]
Park, S.Y.; Lee, J.H.; Kim, Y.K.; Kim, C.D.; Rhim, B.Y.; Lee, W.S.; Hong, K.W. Cilostazol prevents remnant lipoprotein particle-induced monocyte adhesion to endothelial cells by suppression of adhesion molecules and monocyte chemoattractant protein-1 expression via lectin-like receptor for oxidized low-density lipoprotein receptor activation. J. Pharmacol. Exp. Ther., 2005, 312(3), 1241-1248.
[http://dx.doi.org/10.1124/jpet.104.077826] [PMID: 15525793]
[76]
Hong, K.W.; Lee, J.H.; Kima, K.Y.; Park, S.Y.; Lee, W.S. Cilostazol: therapeutic potential against focal cerebral ischemic damage. Curr. Pharm. Des., 2006, 12(5), 565-573.
[http://dx.doi.org/10.2174/138161206775474323] [PMID: 16472148]
[77]
Oyama, N.; Yagita, Y.; Kawamura, M.; Sugiyama, Y.; Terasaki, Y.; Omura-Matsuoka, E.; Sasaki, T.; Kitagawa, K. Cilostazol, not aspirin, reduces ischemic brain injury via endothelial protection in spontaneously hypertensive rats. Stroke, 2011, 42(9), 2571-2577.
[http://dx.doi.org/10.1161/STROKEAHA.110.609834] [PMID: 21799161]
[78]
El-Abhar, H.; Abd El Fattah, M.A.; Wadie, W.; El-Tanbouly, D.M. Cilostazol disrupts TLR-4, Akt/GSK-3β/CREB, and IL-6/JAK-2/STAT-3/SOCS-3 crosstalk in a rat model of Huntington’s disease. PLoS One, 2018, 13(9)e0203837
[http://dx.doi.org/10.1371/journal.pone.0203837] [PMID: 30260985]
[79]
Kangawa, Y.; Yoshida, T.; Maruyama, K.; Okamoto, M.; Kihara, T.; Nakamura, M.; Ochiai, M.; Hippo, Y.; Hayashi, S.M.; Shibutani, M. Cilostazol and enzymatically modified isoquercitrin attenuate experimental colitis and colon cancer in mice by inhibiting cell proliferation and inflammation. Food Chem. Toxicol., 2017, 100, 103-114.
[http://dx.doi.org/10.1016/j.fct.2016.12.018] [PMID: 27989839]
[80]
Sakamoto, T.; Ohashi, W.; Tomita, K.; Hattori, K.; Matsuda, N.; Hattori, Y. Anti-inflammatory properties of cilostazol: Its interruption of DNA binding activity of NF-κB from the Toll-like receptor signaling pathways. Int. Immunopharmacol., 2018, 62, 120-131.
[http://dx.doi.org/10.1016/j.intimp.2018.06.021] [PMID: 30005227]
[81]
Eraso, L.H.; Fukaya, E.; Mohler, E.R., III; Xie, D.; Sha, D.; Berger, J.S. Peripheral arterial disease, prevalence and cumulative risk factor profile analysis. Eur. J. Prev. Cardiol., 2014, 21(6), 704-711.
[http://dx.doi.org/10.1177/2047487312452968] [PMID: 22739687]
[82]
Carvounis, C.P.; Nikas, N. Prevalence of peripheral arterial disease in subjects at moderate cardiovascular risk: Greek results of the PANDORA study. Hellenic J. Cardiol., 2014, 55(4), 294-304.
[PMID: 25039025]
[83]
Murabito, J.M.; D’Agostino, R.B.; Silbershatz, H.; Wilson, W.F. Intermittent claudication. A risk profile from The Framingham Heart Study. Circulation, 1997, 96(1), 44-49.
[http://dx.doi.org/10.1161/01.CIR.96.1.44] [PMID: 9236415]
[84]
Belch, J.; MacCuish, A.; Campbell, I.; Cobbe, S.; Taylor, R.; Prescott, R.; Lee, R.; Bancroft, J.; MacEwan, S.; Shepherd, J.; Macfarlane, P.; Morris, A.; Jung, R.; Kelly, C.; Connacher, A.; Peden, N.; Jamieson, A.; Matthews, D.; Leese, G.; McKnight, J.; O’Brien, I.; Semple, C.; Petrie, J.; Gordon, D.; Pringle, S.; MacWalter, R. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ, 2008, 337, a1840.
[http://dx.doi.org/10.1136/bmj.a1840] [PMID: 18927173]
[85]
Kawamura, K.; Watanabe, K.; Kimura, Y. Effect of cilostazol, a new antithrombotic drug, on cerebral circulation. Arzneimittelforschung, 1985, 35(7A), 1149-1154.
[PMID: 4074427]
[86]
Beebe, H.G.; Dawson, D.L.; Cutler, B.S.; Herd, J.A.; Strandness, D.E., Jr; Bortey, E.B.; Forbes, W.P. A new pharmacological treatment for intermittent claudication: results of a randomized, multicenter trial. Arch. Intern. Med., 1999, 159(17), 2041-2050.
[http://dx.doi.org/10.1001/archinte.159.17.2041] [PMID: 10510990]
[87]
Geng, D.F.; Deng, J.; Jin, D.M.; Wu, W.; Wang, J.F. Effect of cilostazol on the progression of carotid intima-media thickness: a meta-analysis of randomized controlled trials. Atherosclerosis, 2012, 220(1), 177-183.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.09.048] [PMID: 22015232]
[88]
Real, J.; Serna, M.C.; Giner-Soriano, M.; Forés, R.; Pera, G.; Ribes, E.; Alzamora, M.; Marsal, J.R.; Heras, A.; Morros, R. Safety of cilostazol in peripheral artery disease: a cohort from a primary healthcare electronic database. BMC Cardiovasc. Disord., 2018, 18(1), 85.
[http://dx.doi.org/10.1186/s12872-018-0822-4] [PMID: 29739318]
[89]
Heo, S.H.; Lee, J.S.; Kim, B.J.; Hwang, K.J.; Kim, J.H.; Chang, D.I. Effects of cilostazol against the progression of carotid IMT in symptomatic ischemic stroke patients. J. Neurol., 2013, 260(1), 122-130.
[http://dx.doi.org/10.1007/s00415-012-6599-y] [PMID: 22820682]
[90]
Katakami, N.; Kim, Y.S.; Kawamori, R.; Yamasaki, Y. The phosphodiesterase inhibitor cilostazol induces regression of carotid atherosclerosis in subjects with type 2 diabetes mellitus: principal results of the Diabetic Atherosclerosis Prevention by Cilostazol (DAPC) study: a randomized trial. Circulation, 2010, 121(23), 2584-2591.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.892414] [PMID: 20516379]
[91]
Takigawa, T.; Matsumaru, Y.; Hayakawa, M.; Nemoto, S.; Matsumura, A. Cilostazol reduces restenosis after carotid artery stenting. J. Vasc. Surg., 2010, 51(1), 51-56.
[http://dx.doi.org/10.1016/j.jvs.2009.08.040] [PMID: 19879096]
[92]
Ahangarpour, A.; Heidari, H.; Mard, S.A.; Hashemitabar, M.; Khodadadi, A. Progesterone and cilostazol protect mice pancreatic islets from oxidative stress induced by hydrogen peroxide. Iran. J. Pharm. Res., 2014, 13(3), 937-944.
[PMID: 25276194]
[93]
Liu, J.S.; Chuang, T.J.; Chen, J.H.; Lee, C.H.; Hsieh, C.H.; Lin, T.K.; Hsiao, F.C.; Hung, Y.J. Cilostazol attenuates the severity of peripheral arterial occlusive disease in patients with type 2 diabetes: the role of plasma soluble receptor for advanced glycation end-products. Endocrine, 2015, 49(3), 703-710.
[http://dx.doi.org/10.1007/s12020-015-0545-6] [PMID: 25666934]
[94]
Kwon, K.J.; Lee, E.J.; Kim, M.K.; Kim, S.Y.; Kim, J.N.; Kim, J.O.; Kim, H.J.; Kim, H.Y.; Han, J.S.; Shin, C.Y.; Han, S.H. Diabetes augments cognitive dysfunction in chronic cerebral hypoperfusion by increasing neuronal cell death: implication of cilostazol for diabetes mellitus-induced dementia. Neurobiol. Dis., 2015, 73, 12-23.
[http://dx.doi.org/10.1016/j.nbd.2014.08.034] [PMID: 25281785]
[95]
Kumar, A.; Kumar, A.; Jaggi, A.S.; Singh, N. Efficacy of Cilostazol a selective phosphodiesterase-3 inhibitor in rat model of Streptozotocin diabetes induced vascular dementia. Pharmacol. Biochem. Behav., 2015, 135, 20-30.
[http://dx.doi.org/10.1016/j.pbb.2015.05.006] [PMID: 25987325]
[96]
Asal, N.J.; Wojciak, K.A. Effect of cilostazol in treating diabetes-associated microvascular complications. Endocrine, 2017, 56(2), 240-244.
[http://dx.doi.org/10.1007/s12020-017-1279-4] [PMID: 28293857]
[97]
Tang, W.H.; Lin, F.H.; Lee, C.H.; Kuo, F.C.; Hsieh, C.H.; Hsiao, F.C.; Hung, Y.J. Cilostazol effectively attenuates deterioration of albuminuria in patients with type 2 diabetes: a randomized, placebo-controlled trial. Endocrine, 2014, 45(2), 293-301.
[http://dx.doi.org/10.1007/s12020-013-0002-3] [PMID: 23775007]
[98]
Chen, J.; Meng, H.; Xu, L.; Liu, J.; Kong, D.; Chen, P.; Gong, X.; Bai, J.; Zou, F.; Yang, Z.; Li, C.; Eikelboom, J.W. Efficacy and safety of cilostazol based triple antiplatelet treatment versus dual antiplatelet treatment in patients undergoing coronary stent implantation: an updated meta-analysis of the randomized controlled trials. J. Thromb. Thrombolysis, 2015, 39(1), 23-34.
[http://dx.doi.org/10.1007/s11239-014-1090-5] [PMID: 24869717]
[99]
Spiliopoulos, S.; Pastromas, G.; Katsanos, K.; Kitrou, P.; Karnabatidis, D.; Siablis, D. Platelet responsiveness to clopidogrel treatment after peripheral endovascular procedures: the PRECLOP study: clinical impact and optimal cutoff value of on-treatment high platelet reactivity. J. Am. Coll. Cardiol., 2013, 61(24), 2428-2434.
[http://dx.doi.org/10.1016/j.jacc.2013.03.036] [PMID: 23602777]
[100]
Fassa, A.A.; Urban, P. Stents and antiplatelet therapy. Adv. Cardiol., 2012, 47, 114-124.
[http://dx.doi.org/10.1159/000338054] [PMID: 22906907]
[101]
Bundhun, P.K.; Qin, T.; Chen, M.H. Comparing the effectiveness and safety between triple antiplatelet therapy and dual antiplatelet therapy in type 2 diabetes mellitus patients after coronary stents implantation: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord., 2015, 15, 118.
[http://dx.doi.org/10.1186/s12872-015-0114-1] [PMID: 26450578]
[102]
Bangalore, S.; Singh, A.; Toklu, B.; DiNicolantonio, J.J.; Croce, K.; Feit, F.; Bhatt, D.L. Efficacy of cilostazol on platelet reactivity and cardiovascular outcomes in patients undergoing percutaneous coronary intervention: insights from a meta-analysis of randomised trials. Open Heart, 2014, 1(1)e000068
[http://dx.doi.org/10.1136/openhrt-2014-000068] [PMID: 25332804]
[103]
Lee, S.W.; Park, S.W.; Kim, Y.H.; Yun, S.C.; Park, D.W.; Lee, C.W.; Kang, S.J.; Park, S.J.; Lee, J.H.; Choi, S.W.; Seong, I.W.; Lee, N.H.; Cho, Y.H.; Shin, W.Y.; Lee, S.J.; Lee, S.W.; Hyon, M.S.; Bang, D.W.; Choi, Y.J.; Kim, H.S.; Lee, B.K.; Lee, K.; Park, H.K.; Park, C.B.; Lee, S.G.; Kim, M.K.; Park, K.H.; Park, W.J. A randomized, double-blind, multicenter comparison study of triple antiplatelet therapy with dual antiplatelet therapy to reduce restenosis after drug-eluting stent implantation in long coronary lesions: results from the DECLARE-LONG II (Drug-Eluting Stenting Followed by Cilostazol Treatment Reduces Late Restenosis in Patients with Long Coronary Lesions) trial. J. Am. Coll. Cardiol., 2011, 57(11), 1264-1270.
[http://dx.doi.org/10.1016/j.jacc.2010.10.035] [PMID: 21392640]
[104]
Huang, F. Stent thrombosis associated with drug eluting stents on addition of cilostazol to the standard dual antiplatelet therapy following percutaneous coronary intervention: a systematic review and meta-analysis of published randomized controlled trials. BMC Pharmacol. Toxicol., 2018, 19(1), 31.
[http://dx.doi.org/10.1186/s40360-018-0224-3] [PMID: 29914573]
[105]
Zhao, S.; Zhong, Z.; Qi, G.; Shi, L.; Tian, W. Effects of cilostazol-based triple antiplatelet therapy versus dual antiplatelet therapy after coronary drug-eluting stent implantation: an updated meta-analysis of the randomized controlled trials. Clin. Drug Investig., 2019, 39(1), 1-13.
[http://dx.doi.org/10.1007/s40261-018-0711-8] [PMID: 30251232]
[106]
Jeong, Y.H.; Hwang, J.Y.; Kim, I.S.; Park, Y.; Hwang, S.J.; Lee, S.W.; Kwak, C.H.; Park, S.W. Adding cilostazol to dual antiplatelet therapy achieves greater platelet inhibition than high maintenance dose clopidogrel in patients with acute myocardial infarction: Results of the adjunctive cilostazol versus high maintenance dose clopidogrel in patients with AMI (ACCEL-AMI) study. Circ. Cardiovasc. Interv., 2010, 3(1), 17-26.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.109.880179] [PMID: 20118150]
[107]
Han, Y.; Li, Y.; Wang, S.; Jing, Q.; Wang, Z.; Wang, D.; Shu, Q.; Tang, X. Cilostazol in addition to aspirin and clopidogrel improves long-term outcomes after percutaneous coronary intervention in patients with acute coronary syndromes: a randomized, controlled study. Am. Heart J., 2009, 157(4), 733-739.
[http://dx.doi.org/10.1016/j.ahj.2009.01.006] [PMID: 19332203]
[108]
Lee, S.W.; Chun, K.J.; Park, S.W.; Kim, H.S.; Kim, Y.H.; Yun, S.C.; Kim, W.J.; Lee, J.Y.; Park, D.W.; Lee, C.W.; Hong, M.K.; Rhee, K.S.; Chae, J.K.; Ko, J.K.; Park, J.H.; Lee, J.H.; Choi, S.W.; Jeong, J.O.; Seong, I.W.; Jon, S.; Cho, Y.H.; Lee, N.H.; Kim, J.H.; Park, S.J. Comparison of Triple antiplatelet therapy and dual antiplatelet therapy in patients at high risk of restenosis after drug-eluting stent implantation (from the DECLARE-DIABETES and -LONG Trials). Am. J. Cardiol., 2010, 105(2), 168-173.
[http://dx.doi.org/10.1016/j.amjcard.2009.08.667] [PMID: 20102913]
[109]
Lee, S.W.; Ahn, J.M.; Han, S.; Park, G.M.; Cho, Y.R.; Lee, W.S.; Jang, J.Y.; Kwon, C.H.; Lee, J.Y.; Kim, W.J.; Kang, S.J.; Kim, Y.H.; Lee, C.W.; Kim, J.J.; Park, S.W.; Park, S.J. Differential impact of cilostazol on restenosis according to implanted stent type (from a pooled analysis of three DECLARE randomized trials). Am. J. Cardiol., 2013, 112(9), 1328-1334.
[http://dx.doi.org/10.1016/j.amjcard.2013.06.010] [PMID: 23890573]
[110]
Suh, J.W.; Lee, S.P.; Park, K.; Kang, H.J.; Koo, B.K.; Cho, Y.S.; Youn, T.J.; Chae, I.H.; Choi, D.J.; Rha, S.W.; Bae, J.H.; Kwon, T.G.; Bae, J.W.; Cho, M.C.; Kim, H.S. the effect of cilostazol on the angiographic outcome of drug-eluting coronary stents angiographic analysis of the CILON-T (Influence of CILostazol-based triple antiplatelet therapy ON ischemi complication after drug-eluting StenT implantation) Trial. Int. Heart J., 2017, 58(6), 853-860.
[http://dx.doi.org/10.1536/ihj.16-332] [PMID: 29118299]
[111]
Hankey, G.J. Secondary stroke prevention. Lancet Neurol., 2014, 13(2), 178-194.
[http://dx.doi.org/10.1016/S1474-4422(13)70255-2] [PMID: 24361114]
[112]
Mijajlovic, M.D.; Shulga, O.; Bloch, S.; Covickovic-Sternic, N.; Aleksic, V.; Bornstein, N.M. Clinical consequences of aspirin and clopidogrel resistance: an overview. Acta Neurol. Scand., 2013, 128(4), 213-219.
[http://dx.doi.org/10.1111/ane.12111] [PMID: 23432706]
[113]
Biscetti, F.; Pecorini, G.; Arena, V.; Stigliano, E.; Angelini, F.; Ghirlanda, G.; Ferraccioli, G.; Flex, A. Cilostazol improves the response to ischemia in diabetic mice by a mechanism dependent on PPARγ. Mol. Cell. Endocrinol., 2013, 381(1-2), 80-87.
[http://dx.doi.org/10.1016/j.mce.2013.07.011] [PMID: 23891623]
[114]
Nakase, T.; Sasaki, M.; Suzuki, A. The effect of acute medication with cilostazol, an anti-platelet drug, on the outcome of small vessel brain infarction. J. Stroke Cerebrovasc. Dis., 2014, 23(6), 1409-1415.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2013.11.023] [PMID: 24513481]
[115]
Ikeda, Y.; Yamanouchi, J.; Kumon, Y.; Yasukawa, M.; Hato, T. Association of platelet response to cilostazol with clinical outcome and CYP genotype in patients with cerebral infarction. Thromb. Res., 2018, 172, 14-20.
[http://dx.doi.org/10.1016/j.thromres.2018.10.003] [PMID: 30342278]
[116]
Uchiyama, S. Results of the cilostazol stroke prevention study II (CSPS II): a randomized controlled trial for the comparison of cilostazol and aspirin in stroke patients. Rinsho Shinkeigaku, 2010, 50(11), 832-834.
[http://dx.doi.org/10.5692/clinicalneurol.50.832] [PMID: 21921460]
[117]
Gotoh, F.; Tohgi, H.; Hirai, S.; Terashi, A.; Fukuuchi, Y.; Otomo, E.; Shinohara, Y.; Itoh, E.; Matsuda, T.; Sawada, T.; Yamaguchi, T.; Nishimaru, K.; Ohashi, Y. Cilostazol stroke prevention study: A placebo-controlled double-blind trial for secondary prevention of cerebral infarction. J. Stroke Cerebrovasc. Dis., 2000, 9(4), 147-157.
[http://dx.doi.org/10.1053/jscd.2000.7216] [PMID: 24192020]
[118]
Shinohara, Y.; Gotoh, F.; Tohgi, H.; Hirai, S.; Terashi, A.; Fukuuchi, Y.; Otomo, E.; Itoh, E.; Matsuda, T.; Sawada, T.; Yamaguchi, T.; Nishimaru, K.; Ohashi, Y. Antiplatelet cilostazol is beneficial in diabetic and/or hypertensive ischemic stroke patients. Subgroup analysis of the cilostazol stroke prevention study. Cerebrovasc. Dis., 2008, 26(1), 63-70.
[http://dx.doi.org/10.1159/000135654] [PMID: 18511873]
[119]
Shinohara, Y.; Katayama, Y.; Uchiyama, S.; Yamaguchi, T.; Handa, S.; Matsuoka, K.; Ohashi, Y.; Tanahashi, N.; Yamamoto, H.; Genka, C.; Kitagawa, Y.; Kusuoka, H.; Nishimaru, K.; Tsushima, M.; Koretsune, Y.; Sawada, T.; Hamada, C. Cilostazol for prevention of secondary stroke (CSPS 2): an aspirin-controlled, double-blind, randomised non-inferiority trial. Lancet Neurol., 2010, 9(10), 959-968.
[http://dx.doi.org/10.1016/S1474-4422(10)70198-8] [PMID: 20833591]
[120]
Nakamura, T.; Tsuruta, S.; Uchiyama, S. Cilostazol combined with aspirin prevents early neurological deterioration in patients with acute ischemic stroke: a pilot study. J. Neurol. Sci., 2012, 313(1-2), 22-26.
[http://dx.doi.org/10.1016/j.jns.2011.09.038] [PMID: 22014645]
[121]
Tan, L.; Margaret, B.; Zhang, J.H.; Hu, R.; Yin, Y.; Cao, L.; Feng, H.; Zhang, Y. Efficacy and safety of cilostazol therapy in ischemic stroke: a meta-analysis. J. Stroke Cerebrovasc. Dis., 2015, 24(5), 930-938.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.12.002] [PMID: 25804574]
[122]
Dinicolantonio, J.J.; Lavie, C.J.; Fares, H.; Menezes, A.R.; O’Keefe, J.H.; Bangalore, S.; Messerli, F.H. Meta-analysis of cilostazol versus aspirin for the secondary prevention of stroke. Am. J. Cardiol., 2013, 112(8), 1230-1234.
[http://dx.doi.org/10.1016/j.amjcard.2013.05.067] [PMID: 23827403]
[123]
Lee, Y.S.; Bae, H.J.; Kang, D.W.; Lee, S.H.; Yu, K.; Park, J.M.; Cho, Y.J.; Hong, K.S.; Kim, D.E.; Kwon, S.U.; Lee, K.B.; Rha, J.H.; Koo, J.; Han, M.G.; Lee, S.J.; Lee, J.H.; Jung, S.W.; Lee, B.C.; Kim, J.S. Cilostazol in Acute Ischemic Stroke Treatment (CAIST Trial): a randomized double-blind non-inferiority trial. Cerebrovasc. Dis., 2011, 32(1), 65-71.
[http://dx.doi.org/10.1159/000327036] [PMID: 21613787]
[124]
Kamal, A.K.; Naqvi, I.; Husain, M.R.; Khealani, B.A. Cilostazol versus aspirin for secondary prevention of vascular events after stroke of arterial origin. Cochrane Database Syst. Rev., 2011, (1)CD008076
[PMID: 21249700]
[125]
Saber, H.; Desai, A.; Palla, M.; Mohamed, W.; Seraji-Bozorgzad, N.; Ibrahim, M. Efficacy of cilostazol in prevention of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a meta-analysis. J. Stroke Cerebrovasc. Dis., 2018, 27(11), 2979-2985.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.06.027] [PMID: 30093204]
[126]
Han, S.W.; Song, T.J.; Bushnell, C.D.; Lee, S.S.; Kim, S.H.; Lee, J.H.; Kim, G.S.; Kim, O.J.; Koh, I.S.; Lee, J.Y.; Suk, S.H.; Lee, S.I.; Nam, H.S.; Kim, W.J.; Lee, K.Y.; Park, J.H.; Kim, J.Y.; Park, J.H. Cilostazol decreases cerebral arterial pulsatility in patients with mild white matter hyperintensities: subgroup analysis from the Effect of Cilostazol in Acute Lacunar Infarction Based on Pulsatility Index of Transcranial Doppler (ECLIPse) study. Cerebrovasc. Dis., 2014, 38(3), 197-203.
[http://dx.doi.org/10.1159/000365840] [PMID: 25300977]
[127]
Yamamoto, Y.; Ohara, T.; Nagakane, Y.; Tanaka, E.; Morii, F.; Koizumi, T. Concept of branch atheromatous disease (BAD) and its clinical significance. Rinsho Shinkeigaku, 2010, 50, 914-917.
[http://dx.doi.org/10.5692/clinicalneurol.50.914] [PMID: 21921508]
[128]
Sakurada, M.; Yoshimoto, T.; Sekizawa, N.; Hirono, Y.; Suzuki, N.; Hirata, Y. Vasculoprotective effect of cilostazol in aldosterone-induced hypertensive rats. Hypertens. Res., 2010, 33(3), 229-235.
[http://dx.doi.org/10.1038/hr.2009.211] [PMID: 20019701]
[129]
Omote, Y.; Deguchi, K.; Kono, S.; Liu, N.; Liu, W.; Kurata, T.; Yamashita, T.; Ikeda, Y.; Abe, K. Neurovascular protection of cilostazol in stroke-prone spontaneous hypertensive rats associated with angiogenesis and pericyte proliferation. J. Neurosci. Res., 2014, 92(3), 369-374.
[http://dx.doi.org/10.1002/jnr.23327] [PMID: 24375726]
[130]
Kwon, S.U.; Cho, Y.J.; Koo, J.S.; Bae, H.J.; Lee, Y.S.; Hong, K.S.; Lee, J.H.; Kim, J.S. Cilostazol prevents the progression of the symptomatic intracranial arterial stenosis: the multicenter double-blind placebo-controlled trial of cilostazol in symptomatic intracranial arterial stenosis. Stroke, 2005, 36(4), 782-786.
[http://dx.doi.org/10.1161/01.STR.0000157667.06542.b7] [PMID: 15746463]
[131]
Toyonaga, S.; Nakatsu, T.; Murakami, T.; Kusachi, S.; Mashima, K.; Tominaga, Y.; Yamane, S.; Uesugi, T.; Kanai, H.; Tsuji, T. Effects of cilostazol on heart rate and its variation in patients with atrial fibrillation associated with bradycardia. J. Cardiovasc. Pharmacol. Ther., 2000, 5(3), 183-191.
[http://dx.doi.org/10.1054/JCPT.2000.8696] [PMID: 11150407]
[132]
Moriya, I.; Takahashi, T.; Nomura, Y.; Kawaura, K.; Kusaka, K.; Yamakawa, J.; Fujioka, N.; Okubo, S.; Itoh, T.; Kanda, T. Chronotropic effect of the antithrombotic agent cilostazol in a patient with sick sinus syndrome and syncope. J. Int. Med. Res., 2004, 32(5), 549-551.
[http://dx.doi.org/10.1177/147323000403200513] [PMID: 15458288]
[133]
Mizuo, J.; Nakatsu, T.; Murakami, T.; Kusachi, S.; Tominaga, Y.; Mashima, K.; Uesugi, T.; Ueda, H.; Suezawa, C.; Tsuji, T. Exponential hyperbolic sine function fitting of heart rate response to constant load exercise. Jpn. J. Physiol., 2000, 50(4), 405-412.
[http://dx.doi.org/10.2170/jjphysiol.50.405] [PMID: 11082538]
[134]
de la Peña-Moctezuma, A.; Bulach, D.M.; Adler, B. Genetic differences among the LPS biosynthetic loci of serovars of Leptospira interrogans and Leptospira borgpetersenii. FEMS Immunol. Med. Microbiol., 2001, 31(1), 73-81.
[http://dx.doi.org/10.1016/S0928-8244(01)00245-0] [PMID: 11476985]
[135]
Du, Y.M.; Nathan, R.D. Ionic basis of ischemia-induced bradycardia in the rabbit sinoatrial node. J. Mol. Cell. Cardiol., 2007, 42(2), 315-325.
[http://dx.doi.org/10.1016/j.yjmcc.2006.10.004] [PMID: 17101146]
[136]
Nakashima, H.; Watanabe, K.; Umegaki, H.; Suzuki, Y.; Kuzuya, M. Cilostazol for the prevention of pneumonia: a systematic review. Pneumonia (Nathan), 2018, 10, 3.
[http://dx.doi.org/10.1186/s41479-018-0046-5] [PMID: 29632801]
[137]
Umebayashi, R.; Uchida, H.A.; Kakio, Y.; Subramanian, V.; Daugherty, A.; Wada, J. Cilostazol attenuates angiotensin ii-induced abdominal aortic aneurysms but not atherosclerosis in apolipoprotein e-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2018, 38(4), 903-912.
[http://dx.doi.org/10.1161/ATVBAHA.117.309707] [PMID: 29437572]
[138]
Iqbal, A.M. Hai, O. Antiplatelet Medications. StatPearls Publishing LLC: Treasure Island 2019.
[139]
Khan, S.; Deen, M.; Hougaard, A.; Amin, F.M.; Ashina, M. Reproducibility of migraine-like attacks induced by phosphodiesterase-3-inhibitor cilostazol. Cephalalgia, 2018, 38(5), 892-903.
[http://dx.doi.org/10.1177/0333102417719753] [PMID: 28677994]
[140]
Sakurai, R.; Koo, B.K.; Kaneda, H.; Bonneau, H.N.; Nagai, R. Cilostazol added to aspirin and clopidogrel reduces revascularization without increases in major adverse events in patients with drug-eluting stents: a meta-analysis of randomized controlled trials. Int. J. Cardiol., 2013, 167(5), 2250-2258.
[http://dx.doi.org/10.1016/j.ijcard.2012.06.010] [PMID: 22727963]
[141]
Christensen, S.L.; Petersen, S.; Sørensen, D.B.; Olesen, J.; Jansen-Olesen, I. Cilostazol induces C-fos expression in the trigeminal nucleus caudalis and behavioural changes suggestive of headache with the migraine-like feature photophobia in female rats. Cephalalgia, 2018, 38(3), 452-465.
[http://dx.doi.org/10.1177/0333102417693833] [PMID: 28952321]
[142]
Nishiyama, K.; Seyama, H.; Okano, H.; Yamada, S.; Kurita, H.; Chiba, A.; Yamaguchi, Y.; Shiokawa, Y. Escalation regimen of cilostazol for acute brain infarction. Intern. Med., 2011, 50(15), 1559-1563.
[http://dx.doi.org/10.2169/internalmedicine.50.4384] [PMID: 21804281]
[143]
Smit, J.J.; van ’t Hof, A.W.; de Boer, M.J.; Hoorntje, J.C.; Dambrink, J.H.; Gosselink, A.T.; Ottervanger, J.P.; Kolkman, J.J.; Suryapranata, H. Incidence and predictors of subacute thrombosis in patients undergoing primary angioplasty for an acute myocardial infarction. Thromb. Haemost., 2006, 96(2), 190-195.
[http://dx.doi.org/10.1160/TH05-12-0802] [PMID: 16894463]
[144]
(a) Lee, S.W.; Lee, J.Y.; Ahn, J.M.; Park, D.W.; Han, S.; Park, Y.K.; Lee, W.S.; Jang, J.Y.; Kwon, C.H.; Park, G.M.; Cho, Y.R.; Kim, W.J.; Kang, S.J.; Kim, Y.H.; Lee, C.W.; Kim, J.J.; Park, S.W.; Park, S.J. Comparison of dual versus triple antiplatelet therapy after drug-eluting stent according to stent length (from the pooled analysis of DECLARE trials). Am. J. Cardiol., 2013, 112, 1738-1744.
(b) Lee, S.W.; Lee, J.Y.; Ahn, J.M.; Park, D.W.; Han, S.; Park, Y.K.; Lee, W.S.; Jang, J.Y.; Kwon, C.H.; Park, G.M.; Cho, Y.R.; Kim, W.J.; Kang, S.J.; Kim, Y.H.; Lee, C.W.; Kim, J.J.; Park, S.W.; Park, S.J. Comparison of dual versus triple antiplatelet therapy after drug-eluting stent according to stent length (from the pooled analysis of DECLARE trials). Am. J. Cardiol., 2013, 112, 1738-1744.
[http://dx.doi.org/10.1016/j.amjcard.2013.08.008] [PMID: 24063835]
[145]
Ahn, C.M.; Hong, S.J.; Park, J.H.; Kim, J.S.; Lim, D.S. Cilostazol reduces the progression of carotid intima-media thickness without increasing the risk of bleeding in patients with acute coronary syndrome during a 2-year follow-up. Heart Vessels, 2011, 26(5), 502-510.
[http://dx.doi.org/10.1007/s00380-010-0093-1] [PMID: 21153029]
[146]
Geng, D.F.; Liu, M.; Jin, D.M.; Wu, W.; Deng, J.; Wang, J.F. Cilostazol-based triple antiplatelet therapy compared to dual antiplatelet therapy in patients with coronary stent implantation: a meta-analysis of 5,821 patients. Cardiology, 2012, 122(3), 148-157.
[http://dx.doi.org/10.1159/000338812] [PMID: 22832561]
[147]
Chou, K.C.; Forsén, S. Graphical rules for enzyme-catalysed rate laws. Biochem. J., 1980, 187(3), 829-835.
[http://dx.doi.org/10.1042/bj1870829] [PMID: 7188428]
[148]
Chou, K.C.; Forsén, S. Diffusion-controlled effects in reversible enzymatic fast reaction systems--critical spherical shell and proximity rate constant. Biophys. Chem., 1980, 12(3-4), 255-263.
[http://dx.doi.org/10.1016/0301-4622(80)80002-0] [PMID: 7225518]
[149]
Chou, K.C.; Li, T.T.; Forsén, S. The critical spherical shell in enzymatic fast reaction systems. Biophys. Chem., 1980, 12(3-4), 265-269.
[http://dx.doi.org/10.1016/0301-4622(80)80003-2] [PMID: 7225519]
[150]
Chou, K.C. Biological functions of low-frequency vibrations (phonons). III. Helical structures and microenvironment. Biophys. J., 1984, 45(5), 881-889.
[http://dx.doi.org/10.1016/S0006-3495(84)84234-4] [PMID: 6428481]
[151]
Chou, K.C. The biological functions of low-frequency vibrations (phonons). 4. Resonance effects and allosteric transition. Biophys. Chem., 1984, 20(1-2), 61-71.
[http://dx.doi.org/10.1016/0301-4622(84)80005-8] [PMID: 6487745]
[152]
Chou, K.C. Low-frequency vibrations of DNA molecules. Biochem. J., 1984, 221(1), 27-31.
[http://dx.doi.org/10.1042/bj2210027] [PMID: 6466317]
[153]
Chou, K.C. Low-frequency motions in protein molecules. Beta-sheet and beta-barrel. Biophys. J., 1985, 48(2), 289-297.
[http://dx.doi.org/10.1016/S0006-3495(85)83782-6] [PMID: 4052563]
[154]
Chou, K.C. Origin of low-frequency motions in biological macromolecules. A view of recent progress in the quasi-continuity model. Biophys. Chem., 1986, 25(2), 105-116.
[http://dx.doi.org/10.1016/0301-4622(86)87001-6] [PMID: 3101760]
[155]
Chou, K.C. Low-frequency collective motion in biomacromolecules and its biological functions. Biophys. Chem., 1988, 30(1), 3-48.
[http://dx.doi.org/10.1016/0301-4622(88)85002-6] [PMID: 3046672]
[156]
Chou, K.C. Low-frequency resonance and cooperativity of hemoglobin. Trends Biochem. Sci., 1989, 14(6), 212-213.
[http://dx.doi.org/10.1016/0968-0004(89)90026-1] [PMID: 2763333]
[157]
Chou, K.C.; Maggiora, G.M.; Mao, B. Quasi-continuum models of twist-like and accordion-like low-frequency motions in DNA. Biophys. J., 1989, 56(2), 295-305.
[http://dx.doi.org/10.1016/S0006-3495(89)82676-1] [PMID: 2775828]
[158]
Chou, K.C. Graphic rules in steady and non-steady state enzyme kinetics. J. Biol. Chem., 1989, 264(20), 12074-12079.
[PMID: 2745429]
[159]
Chou, K.C. Applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady-state systems. Biophys. Chem., 1990, 35(1), 1-24.
[http://dx.doi.org/10.1016/0301-4622(90)80056-D] [PMID: 2183882]
[160]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Aristoff, P.A.; Tarpley, W.G.; Reusser, F. Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E. J. Biol. Chem., 1993, 268(9), 6119-6124.
[PMID: 7681060]
[161]
Althaus, I.W.; Gonzales, A.J.; Chou, J.J.; Romero, D.L.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Resnick, L.; Busso, M.E.; So, A.G. The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J. Biol. Chem., 1993, 268(20), 14875-14880.
[PMID: 7686907]
[162]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Thomas, R.C.; Aristoff, P.A.; Tarpley, W.G. Kinetic studies with the non-nucleoside human immunodeficiency virus type-1 reverse transcriptase inhibitor U-90152E. Biochem. Pharmacol., 1994, 47(11), 2017-2028.
[http://dx.doi.org/10.1016/0006-2952(94)90077-9] [PMID: 7516658]
[163]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; LeMay, R.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Thomas, R.C.; Aristoff, P.A. Steady-state kinetic studies with the polysulfonate U-9843, an HIV reverse transcriptase inhibitor. Experientia, 1994, 50(1), 23-28.
[http://dx.doi.org/10.1007/BF01992044] [PMID: 7507441]
[164]
Chou, K.C.; Kézdy, F.J.; Reusser, F. Kinetics of processive nucleic acid polymerases and nucleases. Anal. Biochem., 1994, 221(2), 217-230.
[http://dx.doi.org/10.1006/abio.1994.1405] [PMID: 7529005]
[165]
Chou, K.C.; Zhang, C.T.; Maggiora, G.M. Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth. Biopolymers, 1994, 34(1), 143-153.
[http://dx.doi.org/10.1002/bip.360340114] [PMID: 8110966]
[166]
Althaus, I.W.; Chou, K.C.; Lemay, R.J.; Franks, K.M.; Deibel, M.R.; Kezdy, F.J.; Resnick, L.; Busso, M.E.; So, A.G.; Downey, K.M.; Romero, D.L.; Thomas, R.C.; Aristoff, P.A.; Tarpley, W.G.; Reusser, F. The benzylthio-pyrimidine U-31,355, a potent inhibitor of HIV-1 reverse transcriptase. Biochem. Pharmacol., 1996, 51(6), 743-750.
[http://dx.doi.org/10.1016/0006-2952(95)02390-9] [PMID: 8602869]
[167]
Wang, J.F.; Chou, K.C. Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations. Biochem. Biophys. Res. Commun., 2009, 390(3), 608-612.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.014] [PMID: 19819222]
[168]
Lian, P.; Wei, D.Q.; Wang, J.F.; Chou, K.C. An allosteric mechanism inferred from molecular dynamics simulations on phospholamban pentamer in lipid membranes. PLoS One, 2011, 6(4)e18587
[http://dx.doi.org/10.1371/journal.pone.0018587] [PMID: 21525996]
[169]
Liao, Q.H.; Gao, Q.Z.; Wei, J.; Chou, K.C. Docking and molecular dynamics study on the inhibitory activity of novel inhibitors on epidermal growth factor receptor (EGFR). Med. Chem., 2011, 7(1), 24-31.
[http://dx.doi.org/10.2174/157340611794072698] [PMID: 21235516]
[170]
Cheng, X.; Xiao, X. Chou, K.C. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics, 2017. S0888- 7543(17), 30102-30107.
[171]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 628, 315-321.
[http://dx.doi.org/10.1016/j.gene.2017.07.036] [PMID: 28728979]
[172]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc_bal-mPlant: Predict subcellular localization of plant proteins by general PseAAC and balancing training dataset. Curr. Pharm. Des., 2018, 24(34), 4013-4022.
[http://dx.doi.org/10.2174/1381612824666181119145030] [PMID: 30451108]
[173]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc_bal-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC. J. Theor. Biol., 2018, 458, 92-102.
[http://dx.doi.org/10.1016/j.jtbi.2018.09.005] [PMID: 30201434]
[174]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics, 2018, 34(9), 1448-1456.
[http://dx.doi.org/10.1093/bioinformatics/btx711] [PMID: 29106451]
[175]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics, 2018, 110(1), 50-58.
[http://dx.doi.org/10.1016/j.ygeno.2017.08.005] [PMID: 28818512]
[176]
Cheng, X.; Zhao, S.G.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33(22), 3524-3531.
[http://dx.doi.org/10.1093/bioinformatics/btx476] [PMID: 29036535]
[177]
Cheng, X.; Zhao, S.G.; Xiao, X.; Chou, K.C. iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics, 2017, 33(3), 341-346.
[http://dx.doi.org/10.1093/bioinformatics/btx387] [PMID: 28172617]
[178]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Jia, J.H.; Chou, K.C. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics, 2018, 110(5), 239-246.
[http://dx.doi.org/10.1016/j.ygeno.2017.10.008] [PMID: 29107015]
[179]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget, 2017, 8(3), 4208-4217.
[http://dx.doi.org/10.18632/oncotarget.13758] [PMID: 27926534]
[180]
Liu, B.; Yang, F.; Chou, K.C. 2L-piRNA: A Two-Layer Ensemble Classifier for Identifying Piwi-Interacting RNAs and Their Function. Mol. Ther. Nucleic Acids, 2017, 7, 267-277.
[http://dx.doi.org/10.1016/j.omtn.2017.04.008] [PMID: 28624202]
[181]
Liu, B.; Wang, S.; Long, R.; Chou, K.C. iRSpot-EL: identify recombination spots with an ensemble learning approach. Bioinformatics, 2017, 33(1), 35-41.
[http://dx.doi.org/10.1093/bioinformatics/btw539] [PMID: 27531102]
[182]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, D. Chou, K.C. iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory. Mol. Inform., 2017, 36(5-6)
[http://dx.doi.org/10.1002/minf.201600010]
[183]
Chou, K.C.; Cheng, X. Xiao, X. pLoc_bal-mHum: Predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset. Genomics, 2018, 111(6), 1274-1282.
[http://dx.doi.org/10.1016/j.ygeno.2018.08.007]
[184]
Xiao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K.C. pLoc_bal-mGpos: Predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics, 2019, 111(4), 886-892.
[http://dx.doi.org/10.1016/j.ygeno.2018.05.017] [PMID: 29842950]
[185]
Xiao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K.C. pLoc_bal-mVirus: predict subcellular localization of multi-label virus proteins by chou’s General PseAAC and IHTS treatment to balance training dataset. Med. Chem., 2019, 15(5), 496-509.
[http://dx.doi.org/10.2174/1573406415666181217114710] [PMID: 30556503]
[186]
Cheng, X.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC. Bioinformatics, 2019, 35(3), 398-406.
[http://dx.doi.org/10.1093/bioinformatics/bty628] [PMID: 30010789]
[187]
Chou, K.C. Advance in predicting subcellular localization of multi-label proteins and its implication for developing multi-target drugs. Curr. Med. Chem., 2019. [Epub ahead of Print
[http://dx.doi.org/ 10.2174/0929867326666190507082559] [PMID: 31060481]
[188]
Chou, K.C. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr. Top. Med. Chem., 2017, 17(21), 2337-2358.
[http://dx.doi.org/10.2174/1568026617666170414145508] [PMID: 28413951]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 31
Year: 2019
Page: [2919 - 2936]
Pages: 18
DOI: 10.2174/1568026619666191122123855
Price: $65

Article Metrics

PDF: 57
HTML: 3